GigaDevice Semiconductor Inc.

GD32F403xx Arm® Cortex®-M4 32-bit MCU

用户手册

3.0 版本

(2025年2月)

目录

目录		2
图索引		16
表索引		23
	统及存储器架构	
1.1.	Arm® Cortex®-M4 处理器	
1.2.	系统架构	27
1.3.	存储器映射	29
1.3.	5.1. 位带操作	33
1.3.	5.2. 片上 SRAM 存储器	33
1.3.	5.3. 片上 FLASH 存储器概述	33
1.4.	引导配置	34
1.5.	设备电子签名	35
1.5.		
1.5.	5.2. 设备唯一 ID(96 位)	35
1.6.	系统配置寄存器	36
-	存控制器(FMC)	
2.1.	简介	
2.2.	主要特征	38
2.3.	功能说明	38
2.3.	6.1. 闪存结构	38
2.3.	5,41.11	
2.3.	_	
2.3.	2 (44)	
2.3.		
2.3.		
2.3.		
2.3. 2.3.		
	5.10. 页擦除/编程保护	
	3.11. 安全保护	
	· · · · · ·	
2.4. 2.4.		
2.4. 2.4.		
2.4. 2.4.	· – ,	
2.4.		

	2.4.5.	控制寄存器 0 (FMC_CTL0)	. 49
	2.4.6.	地址寄存器 0 (FMC_ADDR0)	
	2.4.7.	选项字节状态寄存器 (FMC_OBSTAT)	
	2.4.8.	擦除/编程保护寄存器 (FMC_WP)	
	2.4.9.	解锁寄存器 1 (FMC_KEY1)	
	2.4.10.	状态寄存器 1 (FMC_STAT1)	
	2.4.11.	控制寄存器 1 (FMC_CTL1)	
	2.4.12.	地址寄存器 1 (FMC_ADDR1)	
	2.4.13.	等待状态使能寄存器 (FMC_WSEN)	
	2.4.14.	产品 ID 寄存器 (FMC_PID)	. 55
3.	电源管	理单元(PMU)	. 56
3	3.1. 简:	介	. 56
3	3.2. 主	要特征	. 56
3	.3. 功	能说明	. 57
	3.3.1.	电池备份域	. 57
	3.3.2.	V _{DD} / V _{DDA} 电源域	. 58
	3.3.3.	1.2V 电源域	. 59
	3.3.4.	省电模式	. 60
3	.4. PN	IU 寄存器	. 63
	3.4.1.	控制寄存器(PMU_CTL)	. 63
	3.4.2.	电源控制和状态寄存器(PMU_CS)	. 65
4.	备份寄	存器(BKP)	67
4	.1. 简:	<u> </u>	. 67
4	.2. 主	要特点	. 67
4	.3. 功	能描述	. 67
	4.3.1.	RTC 时钟校准	. 67
	4.3.2.	侵入检测	. 67
4	.4. BK	(P 寄存器	. 68
	4.4.1.	备份数据寄存器 (BKP_DATAx) (x= 041)	
	4.4.2.	RTC 信号输出控制寄存器 (BKP_OCTL)	
	4.4.3.	侵入引脚控制寄存器 (BKP_TPCTL)	
	4.4.4.	侵入控制状态寄存器 (BKP_TPCS)	. 69
5.	复位和	时钟单元(RCU)	. 71
5	5.1. 复	位控制单元(RCTL)	
	5.1.1.	简介	
	5.1.2.	功能描述	. 71
5	5.2. 时	钟控制单元(CCTL)	. 72
-	5.2.1.	10 10 10 10 10 10 10 10	
	522	主要特性	74

	5.2.3.	功能描述	74
į	5.3. R	CU 寄存器	78
	5.3.1.	控制寄存器(RCU_CTL)	78
	5.3.2.	时钟配置寄存器 0(RCU_CFG0)	80
	5.3.3.	时钟中断寄存器(RCU_INT)	83
	5.3.4.	APB2 复位寄存器(RCU_APB2RST)	86
	5.3.5.	APB1 复位寄存器(RCU_APB1RST)	89
	5.3.6.	AHB 使能寄存器(RCU_AHBEN)	
	5.3.7.	APB2 使能寄存器(RCU_APB2EN)	
	5.3.8.	APB1 使能寄存器(RCU_APB1EN)	
	5.3.9.	备份域控制寄存器(RCU_BDCTL)	
	5.3.10.	=	
	5.3.11.	AHB 复位寄存器(RCU_AHBRST)	
	5.3.12.	时钟配置寄存器 1(RCU_CFG1)	
	5.3.13. 5.3.14.	深度睡眠模式电压寄存器(RCU_DSV) 附加时钟控制寄存器(RCU_ADDCTL)	
	5.3.14.		
	5.3.16.	——————————————————————————————————————	
	5.3.17.	_	
_			
		を	
(6.1. 简	介	108
(6.2. 主	要特性	108
	<u> </u>	要特性 能描述	
	<u> </u>		108
	6. 3 . 功	能描述	108 . 109
	6.3.	能描述 REF 同步脉冲发生器	108 . 109 . 109
	6.3.	能描述 REF 同步脉冲发生器 CTC 校准计数器	108 . 109 . 109 . 110
(6.3.1. 6.3.2. 6.3.3. 6.3.4.	能描述 REF 同步脉冲发生器 CTC 校准计数器 频率评估和自动校准过程	108 . 109 . 109 110
(6.3.1. 6.3.2. 6.3.3. 6.3.4.	能描述	108 . 109 . 109 110 111
(6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.4. C	能描述	108 . 109 . 109 110 111 .112
(6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.4. C 6.4.1.	 能描述	108 . 109 . 109 110 111 .112 113
(6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.4. C 6.4.1. 6.4.2.	 能描述	108 . 109 . 109 110 111 .112 113 114
(6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4.	能描述 REF 同步脉冲发生器 CTC 校准计数器 频率评估和自动校准过程 软件编程指南 控制寄存器 0(CTC_CTL0) 控制寄存器 1(CTC_CTL1) 状态寄存器(CTC_STAT)	108 . 109 . 109 110 111 112 113 114 116
7.	6.3.1 6.3.2 6.3.3 6.3.4 6.4.1 6.4.2 6.4.3 6.4.4 中断/	 能描述 REF 同步脉冲发生器 CTC 校准计数器 频率评估和自动校准过程 软件编程指南 TC 寄存器 控制寄存器 0 (CTC_CTL0) 控制寄存器 1 (CTC_CTL1) 状态寄存器 (CTC_STAT) 中断清除寄存器 (CTC_INTC) 事件控制器 (EXTI)	108 . 109 . 109 110 111 112 113 114 116
7.	6.3.1 6.3.2 6.3.3 6.3.4 6.4.1 6.4.2 6.4.3 6.4.4 中断/	能描述	108 . 109 . 109 110 111 112 113 114 118
7.	6.3.1 6.3.2 6.3.3 6.3.4 6.4.1 6.4.2 6.4.3 6.4.4 中断/ 7.1. 管	 能描述	108 . 109 . 109 110 111 112 113 114 118 118
7.	6.3.1 6.3.2 6.3.3 6.3.4 6.4.1 6.4.2 6.4.3 6.4.4 中断/ 7.1. 管 7.2. 立	能描述	108 . 109 . 109 110 111 112 113 118 118 118
7.	5.3. 以 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4. 中断行	 能描述	108 . 109 . 109 110 111 112 113 118 118 118

GD32F<u>403xx</u> 用户手册

	7.6.1.	中断使能寄存器 (EXTI_INTEN)	123
	7.6.2.	事件使能寄存器 (EXTI_EVEN)	123
	7.6.3.	上升沿触发使能寄存器 (EXTI_RTEN)	124
	7.6.4.	下降沿触发使能寄存器 (EXTI_FTEN)	124
	7.6.5.	软件中断事件寄存器 (EXTI_SWIEV)	124
	7.6.6.	挂起寄存器 (EXTI_PD)	125
8.	通用和	备用输入/输出接口(GPIO 和 AFIO)	126
8	.1. 简介	`	126
8	.2. 主要	長特性	126
8	.3. 功能	盘描述	126
	8.3.1.	GPIO 引脚配置	127
	8.3.2.	外部中断/事件线	128
	8.3.3.	备用功能 (AF)	128
	8.3.4.	输入配置	128
	8.3.5.	输出配置	128
	8.3.6.	模拟配置	129
	8.3.7.	备用功能(AF)配置	129
	8.3.8.	GPIO 锁定功能	130
	8.3.9.	GPIO I/O 补偿单元	130
8	.4. I/O	重映射功能和调试配置	131
	8.4.1.	介绍	131
	8.4.2.	主要特性	131
	8.4.3.	JTAG/SWD 备用功能重映射	131
	8.4.4.	ADC AF 重映射	132
	8.4.5.	TIMER AF 重映射	132
	8.4.6.	USART AF 重映射	134
	8.4.7.	I2C0 备用功能重映射	135
	8.4.8.	SPI/I2S 备用功能重映射	135
	8.4.9.	CAN 备用功能重映射	135
	8.4.10.	ENET 备用功能重映射	
	8.4.11.	CTC 备用功能重映射	
	8.4.12.	CLK 引脚 AF 重映射	136
8	.5. GPI	O 寄存器	138
	8.5.1.	端口控制寄存器 0 (GPIOx_CTL0, x=AG)	138
	8.5.2.	端口控制寄存器 1 (GPIOx_CTL1, x=AG)	
	8.5.3.	端口输入状态寄存器 (GPIOx_ISTAT, x=AG)	141
	8.5.4.	端口输出控制寄存器 (GPIOx_OCTL, x=AG)	142
	8.5.5.	端口位操作寄存器 (GPIOx_BOP, x=AG)	142
	8.5.6.	位清除寄存器 (GPIOx_BC, x=AG)	143
	8.5.7.	端口配置锁定寄存器 (GPIOx_LOCK, x=AG)	143
	8.5.8.	端口位速度寄存器 (GPIOx_ SPD, x=AG)	144

	8.5.9.	事件控制寄存器 (AFIO_EC)	
	8.5.10.	, ,	
	8.5.11.	,	
	8.5.12.	,	
	8.5.13.	,	
	8.5.14.	,	
	8.5.15.	, , , , , , , , , , , , , , , , , , , ,	
	8.5.16.	,	
9.	循环沉	C余校验管理单元(CRC)	157
9).1. 貧	i介	157
9).2. 主	要特征	157
9).3.	能说明	158
g).4. C	RC 寄存器	160
	9.4.1.	数据寄存器(CRC DATA)	
	9.4.2.		
	9.4.3.		
10	直接	安存储器访问控制器(DMA)	162
1	0.1.	简介	
		主要特性	
	0.3.	<u> </u>	
	0.4.	功能描述	
	10.4. 10.4.1.	· · · · · · ·	
	10.4.1.		
	10.4.3.		
	10.4.4.		
	10.4.5.		
	10.4.6.	存储器到存储器模式	165
	10.4.7.	通道配置	166
	10.4.8.	中断	166
	10.4.9.	DMA 请求映射	167
1	0.5.	DMA 寄存器	
	10.5.1.	中断标志位寄存器 (DMA_INTF)	171
	10.5.2.	, ,,,, = , ,,,,, (= ,,	
	10.5.3.	/	
	10.5.4.	,	
	10.5.5.	,	
	10.5.6.	通道 x 存储器基地址寄存器 (DMA_CHxMADDR)	175
44			
11.	. 调词	(DBG)	177

11.2.	JTAG/SW 功能描述	177
11.2	2.1. 切换 JTAG/ SW 接口	177
11.2	2.2. 引脚分配	177
11.2		
11.2	2.4. 调试复位	178
11.2	2.5. JEDEC-106 ID code	178
11.3.	调试保持功能描述	178
11.3	3.1. 低功耗模式调试支持	178
11.3	3.2. TIMER, I2C, WWDGT, FWDGT 和 CAN 外设调试支持	179
11.4.	DBG 寄存器	180
11.4	l.1. ID 寄存器 (DBG_ID)	180
11.4	I.2. 控制寄存器 0 (DBG_CTL0)	180
12.	莫数转换器(ADC)	184
12.1.	简介	184
12.2.	主要特征	184
12.3.	引脚和内部信号	
12.4.	功能说明	
12.4. 12.4		
12.4		
12.4		
12.4		
12.4		
12.4	-1.2.	
12.4		
12.4		
12.4	1.9. 外部触发配置	191
12.4	I.10. DMA 请求	191
12.4	Ⅰ.11. ADC 内部通道	191
12.4	Ⅰ.12. 可编程分辨率(DRES)	192
12.4	1.13. 片上硬件过采样	192
12.5.	ADC 同步模式	194
12.5	5.1. 独立模式	195
12.5	5.2. 常规并行模式	195
12.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
12.5	5.4. 常规慢速交叉模式	196
12.6.	中断	197
12.7.	ADC 寄存器	198
12.7	7.1. 状态寄存器 (ADC_STAT)	198
12.7	7.2. 控制寄存器 0 (ADC_CTL0)	198
12.7	7.3. 控制寄存器 1 (ADC_CTL1)	200

12.7.4.	采样时间寄存器 0 (ADC_SAMPT0)	202
12.7.5.	. 采样时间寄存器 1 (ADC_SAMPT1)	203
12.7.6.	看门狗高阈值寄存器 (ADC_WDHT)	204
12.7.7.	看门狗低阈值寄存器 (ADC_WDLT)	204
12.7.8.	常规序列寄存器 0 (ADC_RSQ0)	205
12.7.9.	常规序列寄存器 1 (ADC_RSQ1)	205
12.7.10	0. 常规序列寄存器 2 (ADC_RSQ2)	206
12.7.11	1. 常规数据寄存器 (ADC_RDATA)	206
12.7.12	2. 过采样控制寄存器 (ADC_OVSAMPCTL)	207
13. 数模	莫转换器(DAC)	209
13.1.	简介	209
13.2.	主要特征	209
13.3.	功能描述	210
13.3.1.	DAC 使能	210
13.3.2.	DAC 输出缓冲	210
13.3.3.	DAC 数据配置	210
13.3.4.	DAC 触发	211
13.3.5.	DAC 转换	211
13.3.6.	DAC 噪声波	211
13.3.7.	DAC 输出电压	212
13.3.8.	DMA 请求	212
13.3.9.	DAC 并发转换	213
13.4.	DAC 寄存器	214
13.4.1.	DACx 控制寄存器 (DAC_CTL0)	214
13.4.2.	DACx 软件触发寄存器 (DAC_SWT)	216
13.4.3.	DACx_OUT0 12 位右对齐数据保持寄存器 (DAC_OUT0_R12DH)	217
13.4.4.	DACx_OUT0 12 位左对齐数据保持寄存器 (DAC_OUT0_L12DH)	217
13.4.5.	DACx_OUT0 8 位右对齐数据保持寄存器 (DAC_OUT0_R8DH)	218
13.4.6.	DACx_OUT1 12 位右对齐数据保持寄存器 (DAC_OUT1_R12DH)	218
13.4.7.	DACx_OUT1 12 位左对齐数据保持寄存器 (DAC_OUT1_L12DH)	219
13.4.8.	DACx_OUT1 8 位右对齐数据保持寄存器 (DAC_OUT1_R8DH)	219
13.4.9.	DACx 并发模式 12 位右对齐数据保持寄存器 (DACC_R12DH)	219
13.4.10	D. DACx 并发模式 12 位左对齐数据保持寄存器 (DACC_L12DH)	220
13.4.11	1. DACx 并发模式 8 位右对齐数据保持寄存器 (DACC_R8DH)	221
13.4.12	2. DACx_OUT0 数据输出寄存器 (DAC_OUT0_DO)	221
13.4.13	3. DACx_OUT1 数据输出寄存器 (DAC_OUT1_DO)	221
14. 看广]狗定时器(WDGT)	223
14.1.	独立看门狗定时器(FWDGT)	
14.1.1.	1471	
14.1.2.	—- · · · ·	
14.1.3.	功能说明	223

14.1.4	. FWDGT 寄存器	226
14.2.	窗口看门狗定时器(WWDGT)	229
14.2.1	. 简介	229
14.2.2	. 主要特征	229
14.2.3	. 功能说明	229
14.2.4	. WWDGT 寄存器	231
15. 实际	付时钟(RTC)	233
15.1.	简介	233
15.2.	主要特性	233
15.3.	功能描述	233
15.3.1		
15.3.2	. RTC 读取	234
15.3.3	. RTC 配置	234
15.3.4	. RTC 标志位	235
15.4.	RTC 寄存器	236
15.4.1	. RTC 中断使能寄存器 (RTC_INTEN)	236
15.4.2	2. RTC 控制寄存器 (RTC_CTL)	236
15.4.3	5. RTC 预分频寄存器高位 (RTC_PSCH)	237
15.4.4	. RTC 预分频寄存器低位 (RTC_PSCL)	238
15.4.5	i. RTC 分频器高位 (RTC_DIVH)	238
15.4.6	i. RTC 分频器低位 (RTC_DIVL)	238
15.4.7	7. RTC 计数寄存器高位 (RTC_CNTH)	239
15.4.8	. RTC 计数寄存器低位 (RTC_CNTL)	239
15.4.9	. RTC 闹钟寄存器高位 (RTC_ALRMH)	240
15.4.1	0. RTC 闹钟寄存器低位 (RTC_ALRML)	240
16. 定时	付器(TIMER)	241
16.1.	高级定时器(TIMERx,x=0,7)	242
16.1.1	. 简介	242
16.1.2	. 主要特性	242
16.1.3	. 结构框图	243
16.1.4	. 功能描述	243
16.1.5	5. TIMERx 寄存器(x=0,7)	268
16.2.	通用定时器 L0(TIMERx, x=2,3)	291
16.2.1	. 简介	291
16.2.2	. 主要特性	291
16.2.3	. 结构框图	292
16.2.4	. 功能描述	292
16.2.5	5. TIMERx 寄存器(x=2,3)	306
16.3.	通用定时器 L1(TIMERx, x=8,11)	325
16.3.1	简介	325

		/ • • / • • / • •
16.3.2.		325
16.3.3.	结构框图	326
16.3.4.	功能描述	326
16.3.5.	TIMERx 寄存器(x=8,11)	337
16.4.	通用定时器 L2(TIMERx, x=9,10,12,13)	348
16.4.1.	简介	348
16.4.2.	主要特性	348
16.4.3.	结构框图	348
16.4.4.	功能描述	349
16.4.5.	TIMERx 寄存器(x=9,10,12,13)	356
16.5.	基本定时器(TIMERx, x=5,6)	365
16.5.1.	简介	365
16.5.2.	主要特性	365
16.5.3.	结构框图	365
16.5.4.	功能描述	365
16.5.5.	TIMERx 寄存器(x=5,6)	369
17. 通用	同步异步收发器(USART)	374
17.1.	简介	374
17.2.	主要特征	374
17.3. 17.3.1.		
17.3.1.	波特率发生	
17.3.3.	USART 发送器	
17.3.4.		
17.3.5.	DMA 方式访问数据缓冲区	
17.3.6.	硬件流控制	
17.3.7.	多处理器通信	382
17.3.8.		
17.3.9.	同步通信模式	383
17.3.10	. 串行红外(IrDA SIR)编解码功能模块	384
17.3.11	. 半双工通信模式	385
17.3.12	. 智能卡(ISO7816-3)模式	385
17.3.13	. USART 中断	387
17.4.	USART 寄存器	389
17.4.1.	状态寄存器 0(USART_STAT0)	389
17.4.2.	数据寄存器(USART_DATA)	391
17.4.3.	波特率寄存器(USART_BAUD)	391
17.4.4.	控制寄存器 0(USART_CTL0)	392
17.4.5.	控制寄存器 1(USART_CTL1)	393
17.4.6.	控制寄存器 2(USART_CTL2)	395
17.4.7.	保护时间和预分频器寄存器(USART_GP)	396

17.4.8	B. 控制寄存器 3(USART_CTL3)	397
17.4.9	9. 接收超时寄存器(USART_RT)	399
17.4.1	10. 状态寄存器 1(USART_STAT1)	399
18. 内部	部集成电路总线接口(I2C)	401
18.1.	简介	401
18.2.	主要特征	401
18.3.	功能说明	401
18.3.1		
18.3.2	2. 数据有效性	403
18.3.3	3. 开始和停止信号	403
18.3.4	4. 时钟同步	403
18.3.5	5. 仲裁	404
18.3.6	6. I2C 通讯流程	404
18.3.7	7. 软件编程模型	405
18.3.8	3. SCL 线控制	417
18.3.9	9. DMA 模式下数据传输	418
18.3.1	10. 报文错误校验	418
18.3.1	11. SMBus 支持	418
18.3.1	12. 状态、错误和中断	420
18.4.	I2C 寄存器	421
18.4.1	1. 控制寄存器 0(I2C_CTL0)	421
18.4.2	2. 控制寄存器 1(I2C_CTL1)	423
18.4.3	3. 从机地址寄存器 0(I2C_SADDR0)	424
18.4.4	4. 从机地址寄存器 1(I2C_SADDR1)	424
18.4.5	5. 传输缓冲区寄存器(I2C_DATA)	425
18.4.6	6. 传输状态寄存器 0(I2C_STAT0)	425
18.4.7	7. 传输状态寄存器 1(I2C_STAT1)	427
18.4.8	B. 时钟配置寄存器(I2C_CKCFG)	429
18.4.9		
18.4.1	10. 快速+模式配置寄存器(I2C_FMPCFG)	430
19. 串往	行外设接口/片上音频接口(SPI/I2S)	431
19.1.	简介	431
19.2.	主要特性	431
19.2.1	1. SPI 主要特性	431
19.2.2	2. I2S 主要特性	431
19.3.	SPI 功能说明	432
19.3.1	1SPI 结构框图	432
19.3.2	2. SPI 信号线描述	432
19.3.3	3. SPI 时序和数据帧格式	433
19.3.4	4. NSS 功能	434

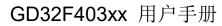
19.3.5.	SPI 运行模式	435
19.3.6.	DMA 功能	443
19.3.7.	CRC 功能	443
19.4.	SPI 中断	443
19.5.	I2S 功能说明	445
19.5.1.	I2S 结构框图	445
19.5.2.	I2S 信号线描述	445
19.5.3.	I2S 功能描述	445
19.5.4.		
19.5.5.	I2S 时钟	453
19.5.6.	运行	454
19.5.7.	DMA 功能	458
19.5.8.	I2S 中断	458
19.6.	SPI/I2S 寄存器	460
19.6.1.	控制寄存器 0 (SPI_CTL0)	460
19.6.2.	控制寄存器 1 (SPI_CTL1)	462
19.6.3.	状态寄存器 (SPI_STAT)	463
19.6.4.	数据寄存器 (SPI_DATA)	464
19.6.5.	,	
19.6.6.	接收 CRC 寄存器 (SPI_RCRC)	465
19.6.7.	发送 CRC 寄存器 (SPI_TCRC)	466
19.6.8.	I2S 控制寄存器 (SPI_I2SCTL)	466
19.6.9.	I2S 时钟预分频寄存器 (SPI_I2SPSC)	468
19.6.10	D. SPI0 四路 SPI 控制寄存器 (SPI_QCTL)	469
20. SDI	O 接口(SDIO)	470
20.1.	简介	470
20.2.	主要特性	470
20.3.	SDIO 总线拓扑	470
20.4.	SDIO 功能描述	472
20.4.1.	SDIO 适配器	473
20.4.2.	AHB 接口	476
20.5.	卡功能描述	478
20.5.1.	卡寄存器	478
20.5.2.	命令	479
20.5.3.	响应	487
20.5.4.	数据包格式	491
20.5.5.	卡的两种状态	492
20.6.	编程序列	498
20.6.1.	卡识别	498
20.6.2.	无数据命令	499

GD32F403<u>xx</u> 用户手册

		7 . 4 7 . 4
20.6.3.		500
20.6.4.	单个数据块或多个数据块读	501
20.6.5.	数据流写和数据流读 (仅适用于 MMC)	501
20.6.6.	擦除	503
20.6.7.	总线宽度选择	503
20.6.8.	保护管理	503
20.6.9.	卡上锁/解锁操作	504
20.7.	特定操作	506
20.7.1.		
20.7.2.	CE-ATA 特定操作	509
20.8.	SDIO 寄存器	510
20.8.1.	电源控制寄存器 (SDIO PWRCTL)	
20.8.2.	时钟控制寄存器 (SDIO_CLKCTL)	
20.8.3.	命令参数寄存器(SDIO CMDAGMT)	
20.8.4.	命令控制寄存器 (SDIO_CMDCTL)	
20.8.5.	命令索引响应寄存器 (SDIO_RSPCMDIDX)	
20.8.6.	响应寄存器 (SDIO_RESPx x=03)	
20.8.7.	数据超时寄存器 (SDIO DATATO)	
20.8.8.	数据长度寄存器 (SDIO_DATALEN)	
20.8.9.	数据控制寄存器 (SDIO_DATACTL)	
20.8.10	. 数据计数寄存器 (SDIO_DATACNT)	517
20.8.11	. 状态寄存器 (SDIO_STAT)	517
20.8.12	. 中断清除寄存器 (SDIO_INTC)	519
20.8.13	. 中断使能寄存器 (SDIO_INTEN)	520
20.8.14	. FIFO 计数寄存器 (SDIO_FIFOCNT)	521
20.8.15	. FIFO 数据寄存器 (SDIO_FIFO)	522
21. 外部	存储器控制器(EXMC)	523
	简介 简介	
21.2.	主要特性	523
21.3.	功能描述	523
21.3.1.	结构框图	523
21.3.2.	EXMC 访问基本规范	524
21.3.3.	外部设备地址映射	525
21.3.4.	NOR/PSRAM 控制器	
21.3.5.	NAND Flash 或 PC Card 控制器	546
21.4.	EXMC 寄存器	551
21.4.1.	NOR/PSRAM 控制器寄存器	551
21.4.2.	NAND Flash/PC Card 控制器寄存器	555
22. 控制	器局域网络(CAN)	562
22.1.	简介	562

22.2.	主要特征	. 562
22.3.	功能说明	. 563
22.3.1.	工作模式	563
22.3.2.	通信模式	564
22.3.3.	数据发送	565
22.3.4.	数据接收	566
22.3.5.	过滤功能	567
22.3.6.	时间触发通信	571
22.3.7.	通信参数	571
22.3.8.	错误标志	572
22.3.9.	中断	573
22.4.	CAN 寄存器	575
22.4.1.	控制寄存器(CAN CTL)	575
22.4.2.	_	
22.4.3.		578
22.4.4.	——————————————————————————————————————	
22.4.5.	接收 FIFO1 寄存器(CAN_RFIFO1)	581
22.4.6.	中断使能寄存器 (CAN_INTEN)	582
22.4.7.	错误寄存器(CAN_ERR)	583
22.4.8.	位时序寄存器(CAN_BT)	584
22.4.9.	发送邮箱标识符寄存器(CAN_TMIx)(x = 02)	585
22.4.10	D. 发送邮箱属性寄存器(CAN_TMPx)(x = 02)	586
22.4.1	I. 发送邮箱 data0 寄存器(CAN_TMDATA0x)(x = 02)	586
22.4.12	2. 发送邮箱 data1 寄存器(CAN_TMDATA1x)(x = 02)	587
22.4.13	3. 接收 FIFO 邮箱标识符寄存器 (CAN_RFIFOMIx) (x = 0,1)	587
22.4.14	4. 接收 FIFO 邮箱属性寄存器 (CAN_RFIFOMPx) (x = 0,1)	588
22.4.1	5. 接收 FIFO 邮箱 data0 寄存器(CAN_RFIFOMDATA0x)(x=0,1)	589
22.4.16	6. 接收 FIFO 邮箱 data1 寄存器(CAN_RFIFOMDATA1x)(x=0,1)	589
22.4.17	7. 过滤器控制寄存器(CAN_FCTL)(仅 CAN0 可用)	590
22.4.18	B. 过滤器模式配置寄存器(CAN_FMCFG)(仅 CAN0 可用)	590
22.4.19	9. 过滤器位宽配置寄存器(CAN_FSCFG)(仅 CAN0 可用)	591
22.4.20	D. 过滤器关联 FIFO 寄存器(CAN_FAFIFO)(仅 CAN0 可用)	591
22.4.2	=	
22.4.22	 过滤器(x)数据(y)寄存器(CAN_FxDATAy)(x = 027, y = 0,1)(仅 CAN0 = 592 	 可用)
23. 通月]串行总线全速接口(USBFS)	. 593
23.1.	简介	
23.2.	主要特性	
23.3.	结构框图	
23.4.	信号线描述	. 594
23.5.	功能描述	. 594

23.5.3. USB 设备功能	SBFS_PWRCLKCTL)
23.5.3. USB 设备功能	
23.5.3. USB 设备功能	
23.5.3. USB 设备功能	626
23.5.3. USB 设备功能	606
23.5.3. USB 设备功能 23.5.4. OTG 功能概述 23.5.5. 数据 FIFO 23.5.6. 操作手册	606
23.5.3. USB 设备功能	605
23.5.3. USB 设备功能	
23.5.3. USB 设备功能	
	599
23.5.2. USB 王机切能	598
00 F 0 LIOD 3-18-71-Ak	596
23.5.1. USBFS 时钟及工作模式	



图索引

图 1-1. Cortex®-M4 结构框图	27
图 1-2. GD32F403xx 系列的系统架构	29
图 2-1. 页擦除操作流程	41
图 2-2. 整片擦除操作流程	42
图 2-3. 字编程操作流程	43
图 3-1. 电源域概览	57
图 3-2. 上电/掉电复位波形图	58
图 3-3. LVD 阈值波形图	59
图 5-1. 系统复位电路	72
图 5-2. 时钟树	73
图 5-3. HXTAL 时钟源	74
图 5-4. 旁路模式下 HXTAL 时钟源	75
图 6-1. CTC 简介	109
图 6-2. CTC 校准计数器	110
图 7-1. EXTI 框图	121
图 8-1. 标准 I/O 端口位的基本结构	127
图 8-2. 输入配置	128
图 8-3. 输出配置	129
图 8-4. 模拟配置	129
图 8-5. 备用功能配置	130
图 9-1. CRC 管理单元框图	158
图 10-1. DMA 结构框图	163
图 10-2. 握手机制	165
图 10-3. DMA 中断逻辑图	167
图 10-4. DMA0 请求映射	168
图 10-5. DMA1 请求映射	168
图 12-1. ADC 模块框图	186
图 12-2. 单次运行模式	187
图 12-3. 连续运行模式	188
图 12-4. 扫描运行模式,且连续转换模式失能	189
图 12-5. 扫描运行模式,连续运行模式使能	189
图 12-6. 间断转换模式	189
图 12-7. 12 位数据存储模式	190
图 12-8. 6 位数据存储模式	190
图 12-9. 20 位到 16 位的结果截断	193
图 12-10. 右移 5 位和取整的数例	193
图 12-11. ADC 同步框图	195
图 12-12. 基于 10 个通道的常规并行模式	196
图 12-13. 常规序列上的快速交叉模式(两个 ADC 的 CTN=1)	196
图 12-14. 常规序列上的慢速交叉模式	197

图 13-1. DAC 结构框图	209
图 13-2. DAC LFSR 算法	212
图 13-3. DAC 三角噪声模式生成的波形	212
图 14-1. 独立看门狗定时器框图	224
图 14-2. 窗口看门狗定时器框图	229
图 14-3. 窗口看门狗定时器时序图	230
图 15-1. RTC 框图	234
图 15-2. RTC 秒信号及闹钟信号的波形 (RTC_PSC = 3,RTC_ ALRM = 2)	235
图 15-3. RTC 秒信号及溢出信号的波形(RTC_PSC = 3)	235
图 16-1. 高级定时器结构框图	243
图 16-2. 内部时钟分频为 1 时,计数器的时序图	244
图 16-3. 当 PSC 数值从 0 变到 2 时,计数器的时序图	245
图 16-4. 向上计数时序图,PSC=0/2	246
图 16-5. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值	246
图 16-6. 向下计数时序图,PSC=0/2	247
图 16-7. 向下计数时序图,在运行时改变 TIMERx_CAR 寄存器值	248
图 16-8. 中央计数模式计数器时序图	249
图 16-9. 中央计数模式下计数器重复时序图	250
图 16-10. 在向上计数模式下计数器重复时序图	250
图 16-11. 在向下计数模式下计数器重复时序图	251
图 16-12. 通道输入捕获原理	252
图 16-13. 三种输出比较模式	254
图 16-14. EAPWM 时序图	255
图 16-15. CAPWM 时序图	255
图 16-16. 带死区时间的互补输出	258
图 16-17. 通道响应中止输入(高电平有效)时,输出信号的行为	259
图 16-18. 在编码器模式 2 且 Cl0FE0 极性不反相时计数器行为	260
图 16-19. 在编码器模式 2 且 Cl0FE0 极性反相时计数器行为	260
图 16-20. 霍尔传感器用在 BLDC 电机控制中	261
图 16-21. 两个定时器之间的霍尔传感器时序图	262
图 16-22. 复位模式下的控制电路	263
图 16-23. 暂停模式下的控制电路	263
图 16-24. 事件模式下的控制电路	264
图 16-25. 单脉冲模式,TIMERx_CHxCV = 4 TIMERx_CAR=99	264
图 16-26. 定时器 0 主/从模式的例子	265
图 16-27. 用定时器 2 的使能信号触发定时器 0	266
图 16-28. 用定时器 2 的 CIO 输入来触发定时器 0 和定时器 2	267
图 16-29. 通用定时器 L0 结构框图	292
图 16-30. 内部时钟分频为 1 时,计数器的时序图	293
图 16-31. 当 PSC 数值从 0 变到 2 时,计数器的时序图	294
图 16-32. 向上计数时序图,PSC=0/2	295
图 16-33. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值	295
图 16-34. 向下计数时序图,PSC=0/2	296
图 16-35. 向下计数时序图,在运行时改变 TIMERx_CAR 寄存器值	297

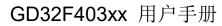
图 16-37. 通道輸入補菸原理	图 16-36.	中央计数模式计数器时序图	298
图 16-49. EAPWM 时序图 302 图 16-40. CAPVM 时序图 302 图 16-41. 复位模式下的控制电路 304 图 16-42. 事件模式下的控制电路 304 图 16-43. 事件模式下的控制电路 305 图 16-43. 事件模式下的控制电路 305 图 16-44. 通用定时器 1. 结构框图 326 图 16-45. 内部时钟分频为 1 时,计数器的时序图 327 图 16-46. 当 PSC 数值从 0 变到 2 时,计数器的时序图 328 图 16-47. 向上计数时序图,PSC=0/2. 329 图 16-48. 向上计数时序图,PSC=0/2. 329 图 16-48. 向上计数时序图,在运行时改变 TIMERX_CAR 寄存器的值 329 图 16-50. 三种输出比较模式 330 图 16-51. EAPWM 时序图 333 图 16-52. CAPVM 时序图 333 图 16-55. 事件模式下的控制电路 334 图 16-55. 事件模式下的控制电路 334 图 16-56. 事件模式下的控制电路 334 图 16-56. 事件模式下的控制电路 334 图 16-56. 事件模式下的控制电路 335 图 16-56. 事件模式下的控制电路 336 图 16-56. 声计数时钟分频为 1 时,计数器的时序图 336 图 16-56. 声计数时序图,PSC=0/2. 351 图 16-60. 向上计数时序图,PSC=0/2. 351 图 16-61. 向上计数时序图,PSC=0/2. 351 图 16-62. 三种输出比较模式 354 图 16-65. 三种输出比较模式 354 图 16-66. 向上计数时序图,PSC=0/2. 351 图 16-66. 向上计数时序图,PSC=0/2. 351 图 16-66. 向上计数时序图,PSC=0/2. 351 图 16-66. 与SC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 与SC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 与SC 数值的 0 元计数时序图,PSC=0/2. 367 图 16-68. 向上计数时序图,PSC=0/2. 36	图 16-37.	通道输入捕获原理	299
图 16-40. CAPWM 时序图 300 图 16-41. 复位模式下的控制电路 300 图 16-42. 暂停模式下的控制电路 300 图 16-42. 暂停模式下的控制电路 305 图 16-44. 通用定时器上1结构框图 326 图 16-45. 内部时钟分频为 1 时,计数器的时序图 328 图 16-45. 内部时钟分频为 1 时,计数器的时序图 328 图 16-47. 向上计数时序图 PSC 90 2. 329 图 16-48. 向上计数时序图 PSC 90 2. 329 图 16-49. 通道输入捕获原理 330 图 16-50. 三种输出比较模式 332 图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-50. 三种输出比较模式 332 图 16-55. 享作模式下的控制电路 333 图 16-55. 享作模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 声科模式下的控制电路 335 图 16-56. 声科模式下的控制电路 335 图 16-64. 有产模式下的控制电路 335 图 16-56. 声科模式下的控制电路 335 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1 时,计数器的时序图 348 图 16-58. 内部时钟分频为 1 时,计数器的时序图 360 图 16-60. 向上计数时序图 PSC 90 2. 351 图 16-61. 向上计数时序图 PSC 90 2. 351 图 16-65. 户部钟分频为 1 时,计数器的时序图 350 图 16-66. 向上计数时序图,在运行时改变 TIMERX_CAR 寄存器的值 351 图 16-65. 户部钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 367 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 16-66. 与 PSC 数值从 0 变到 2 时,计数器的时序图 368 图 17-1. USART 读外序图, SC 型位址 0 变到 2 时,计数器的时序图 368 图 17-1. USART 读外序图, CECTODO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	图 16-38.	三种输出比较模式	301
图 16-41. 复位模式下的控制电路 304 图 16-42. 暂停模式下的控制电路 305 图 16-42. 暂停模式下的控制电路 305 图 16-44. 通用定时器 L1 结构框图 326 图 16-44. 通用定时器 L1 结构框图 326 图 16-46. 当 PSC 数值从 0 变到 2 时,计数器的时序图 328 图 16-47. 向上计数时序图 PSC-0/2. 329 图 16-48. 向上计数时序图 PSC-0/2. 329 图 16-49. 通过输入捕获原理 330 图 16-50. 三种输出比较模式 332 图 16-50. 三种输出比较模式 332 图 16-52. CAPVM 时序图 333 图 16-52 CAPVM 时序图 333 图 16-52 CAPVM 时序图 333 图 16-55. 事件模式下的控制电路 334 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 事件模式下的控制电路 334 图 16-58. 单体式下的控制电路 334 图 16-56. 单脉冲模式,TIMERX_CHXCV = 4 TIMERX_CAR=99. 336 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1时,计数器的时序图 348 图 16-59. 当PSC 数值从 0 变到 2 时,计数器的时序图 350 图 16-60. 向上计数时序图,PSC=0/2. 351 图 16-61. 向上计数时序图,PSC=0/2. 351 图 16-65. 声略曲比较模式 352 图 16-65. 声略曲比较模式 354 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 与PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 与PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 与PSC 数值从 0 变到 2 时,计数器的时序图 367 图 16-68. 向上计数时序图,在运行时改变 TIMERX_CAR 寄存器的值 368 图 17-1. USART 模块内部框图 367 图 17-3. USART 发镜步骤 376 图 17-3. USART 发镜步骤 378 图 17-7. 两个 USART 为解技术配置步骤 388 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-10. 数据传输过程中检测断开帧 382 图 17-10. 数据传输过程中检测断开帧 383 图 17-10. 数据传输证程序记程序记录程序记录程序记录程序记录程序记录程序记录程序记录程序记录程序记录程	图 16-39.	EAPWM 时序图	302
图 16-42. 暫停模式下的控制电路 304 图 16-43. 事件模式下的控制电路 305 图 16-44. 通用定时器 L1 结构框图 326 图 16-45. 内部时钟分频为 1 时, 计数器的时序图 327 图 16-46. 当PSC数值从 0 变到 2 时, 计数器的时序图 328 图 16-47. 向上计数时序图,PSC=0/2 329 图 16-48. 向上计数时序图,PSC=0/2 329 图 16-48. 向上计数时序图,在运行时改变 TIMERX_CAR 寄存器的值 329 图 16-59. 通常输出比较模式 333 图 16-50. 三种输出比较模式 333 图 16-55. 三种输出比较模式 333 图 16-52. CAPWM 时序图 333 图 16-52. CAPWM 时序图 333 图 16-55. 事件模式下的控制电路 334 图 16-52. 体模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 336 图 16-57. 通用定时器 L2 结构框图 348 图 16-57. 通用定时器 L2 结构框图 348 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1 时, 计数器的时序图 349 图 16-67. 通用定时器 L2 结构框图 348 图 16-66. 向上计数时序图,PSC=0/2 351 图 16-61. 向上计数时序图,存至0/2 图 16-63. 三种输出比较模式 352 图 16-65. 内部时钟分频为 1 时, 计数器的时序图 352 图 16-65. 内部时钟分频为 1 时, 计数器的时序图 366 图 16-65. 内部时钟分频为 1 时, 计数器的时序图 366 图 16-65. 内部时钟序图,PSC=0/2 367 图 16-66. 当上数时序图,PSC=0/2 367 图 16-66. 向上计数时序图,PSC=0/2 376 图 16-66. 与上式数时序图,PSC=0/2 377 图 16-66. 向上计数时序图,PSC=0/2 378 图 16-67. 向上计数时序图,PSC=0/2 379 图 17-3. USART 发达步骤 388 图 17-1. USART 模块内部框图 376 图 17-3. USART 发达步骤 378 图 17-4. 采用 DMA 方式实现 USART 数据校收配置步骤 388 图 17-7. 两个 USART 之间的硬件流控制 388 图 17-10. 数据传输过程中检测断开帧 388 图 17-10. 数据传输过程中检测断开帧 388 图 17-10. 数据传输过程中检测断开帧 383 图 17-10. 数据传输 2 写解析	图 16-40.	CAPWM 时序图	302
图 16-43. 事件模式下的控制电路 305 图 16-44. 通用定时器 L1 结构框图 326 图 16-45. 内部时钟分频为 1 时, 计数器的时序图 327 图 16-46. 当 PSC 数值从 0 变到 2 时, 计数器的时序图 328 图 16-47. 向上计数时序图, PSC=0/2 329 图 16-48. 向上计数时序图, PSC=0/2 329 图 16-49. 通道输入捕获原理 330 图 16-50. 三种输出比较模式 332 图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-50. 美种值比较模式 333 图 16-53. 复位模式下的控制电路 334 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式, TIMERX_CHXCV = 4 TIMERX_CAR=99 336 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1 时, 计数器的时序图 350 图 16-58. 内部时钟分频为 1 时, 计数器的时序图 350 图 16-59. 当 PSC 数值从 0 变到 2 时, 计数器的时序图 350 图 16-60. 向上计数时序图, PSC=0/2 351 图 16-61. 向上计数时序图, PSC=0/2 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-66. 高,三种输出比较模式 354 图 16-66. 高,PSC 数值从 0 变到 2 时, 计数器的时序图 356 图 16-66. 向上计数时序图,PSC=0/2 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-66. 向上计数时序图,PSC=0/2 351 图 16-62. 通过输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时, 计数器的时序图 366 图 16-65. 内部时钟分频为 1 时, 计数器的时序图 367 图 16-68. 向上计数时序图,PSC=0/2 367 图 16-69. 向上计数标符数点数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数	图 16-41.	复位模式下的控制电路	304
图 16-44. 通用定时器 L1 结构框图 326 图 16-45、内部时钟分频为 1 时, 计数器的时序图 327 图 16-46. 当 PSC 数值从 0 变到 2 时, 计数器的时序图 328 图 16-47. 向上计数时序图 PSC=0/2 329 图 16-48. 向上计数时序图 PSC=0/2 329 图 16-49. 通道输入捕获原理 330 图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-55. 李仲模式下的控制电路 334 图 16-55. 李仲模式下的控制电路 335 图 16-55. 李仲模式下的控制电路 335 图 16-55. 李仲模式下的控制电路 335 图 16-55. 李仲模式下的控制电路 335 图 16-56. 单脉冲模式,TIMER_CHXCV = 4 TIMERX_CAR=99 336 图 16-57. 通用定时器 L2 结构框图 349 图 16-59. 当 PSC 数值从 0 变到 2 时, 计数器的时序图 349 图 16-59. 当 PSC 数值从 0 变到 2 时, 计数器的时序图 350 图 16-60. 向上计数时序图 PSC=0/2 351 图 16-61. 向上进数时序图 PSC=0/2 351 图 16-62. 三种输出比较模式 354 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时, 计数器的时序图 366 图 16-65. 内部时钟分频为 1 时, 计数器的时序图 366 图 16-66. 当 PSC 数值 从 0 变到 2 时, 计数器的时序图 366 图 16-66. 当 PSC 数值 从 0 变到 2 时, 计数器的时序图 367 图 16-62. 同上计数时序图 9 SC 9 位 从 0 变到 2 时, 计数器的时序图 367 图 16-62. □ L1 计数时序图 PSC=0/2 367 图 16-63. □ L1 计数时序图 PSC=0/2 367 图 16-64. 基本定时器结构框图 368 图 17-1. USART 模块内部框图 368 图 17-1. USART 模块内部框图 376 图 17-3. USART 发话步骤 378 图 17-1. USART 模块内部框图 378 图 17-1. USART 表示或现 USART 数据发送配置步骤 380 图 17-6. 采用 DMA 方式实现 USART 数据发送配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-10. 数据传输过程中检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 16-42.	暂停模式下的控制电路	304
图 16-45. 内部时钟分频为 1 时, 计数器的时序图	图 16-43.	事件模式下的控制电路	305
图 16-46. 当 PSC 數值从 0 变到 2 时, 计数器的时序图. 328 图 16-47. 向上计数时序图、 PSC=0/2. 329 图 16-48. 向上计数时序图、在运行时改变 TIMERX_CAR 寄存器的值. 329 图 16-49. 通道输入捕获原理. 330 图 16-50. 三种输出比较模式. 332 图 16-51. EAPWM 时序图. 233 图 16-52. CAPWM 时序图. 333 图 16-52. CAPWM 时序图. 333 图 16-52. CAPWM 时序图. 333 图 16-52. CAPWM 时序图. 335 图 16-55. 事件模式下的控制电路. 335 图 16-5. 单脉冲模式,TIMERX_CHXCV = 4 TIMERX_CAR=99. 336 图 16-5. 单脉冲模式,TIMERX_CHXCV = 4 TIMERX_CAR=99. 336 图 16-5. 自由。 349 图 16-5. 由户时数 12 结构框图. 349 图 16-6. 向上计数时序图、 PSC=0/2. 351 图 16-6. 向上计数时序图、在运行时改变 TIMERX_CAR 寄存器的值. 351 图 16-6. 向上计数时序图、在运行时改变 TIMERX_CAR 寄存器的值. 351 图 16-6. 向上计数时序图、在运行时改变 TIMERX_CAR 寄存器的值. 351 图 16-6. 向上计数时序图、 PSC=0/2. 351 图 16-6. 向上计数时序图、 PSC=0/2. 367 图 16-5. 本目 中域中的序列,在运行时改变 TIMERX_CAR 寄存器的值. 368 图 17-1. USART 发送步骤. 379 图 17-5. 采用 DMA 方式实现 USART 数据发达配置步骤. 379 图 17-5. 采用 DMA 方式实现 USART 数据按收配置步骤. 381 图 17-1. USART 发达来取 数据按收配置步骤. 381 图 17-1. 证解件流控制. 381 图 17-1. 更解外流控制. 383 图 17-10. 数据传输过程中检测断开帧. 383 图 17-10. 数据传输过程中检测断开帧. 383			
图 16-47. 向上计数时序图,PSC=0/2. 329 图 16-48. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 329 图 16-49. 通道输入相求原理 330 图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-53. 复位模式下的控制电路 334 图 16-53. 复位模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式,TIMERX_CHXCV = 4 TIMERX_CAR=99 336 图 16-56. 单脉冲模式,TIMERX_CHXCV = 4 TIMERX_CAR=99 340 图 16-57. 通用定时器 L 2 结构框图 348 图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图 349 图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图 350 图 16-60. 向上计数时序图,PSC=0/2. 351 图 16-61. 向上计数时序图,产生运行时改变 TIMERX_CAR 寄存器的值 351 图 16-62. 通道输入補求原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 356 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 向上计数时序图,PSC=0/2. 367 图 16-68. 向上计数时序图,产生运行时改变 TIMERX_CAR 寄存器的值 368 图 16-67. 向上计数时序图,在运行时改变 TIMERX_CAR 寄存器的值 368 图 17-1. USART 类块内部框图 376 图 17-3. USART 发块内部框图 376 图 17-3. USART 发进中枢图 379 图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤 381 图 17-7. 两个 USART 文表现 USART 数据发送配置步骤 381 图 17-7. 两个 USART 文表现 USART 数据接收配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-9. 空阳状态下检测断开帧 383 图 17-9. 空阳状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 16-45.	内部时钟分频为1时,计数器的时序图	327
图 16-48. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 329 图 16-49. 通道输入捕获原理 330 图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-52. CAPWM 时序图 333 图 16-52. CAPWM 时序图 333 图 16-52. CAPWM 时序图 333 图 16-52. 《文学 16-54. 图存模式下的控制电路 334 图 16-54. 图存模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式,TIMERx_CHxCV = 4 TIMERx_CAR=99 336 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1 时,计数器的时序图 349 图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图 350 图 16-60. 向上计数时序图,PSC=0/2 351 图 16-60. 向上计数时序图,存运行对改变 TIMERx_CAR 寄存器的值 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-67. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 368 图 17-1. USART 模块内部框图 376 图 17-3. USART 发送步骤 378 图 17-3. USART 发送步骤 379 图 17-5. 采用 DMA 方式实现 USART 数据发达配置步骤 380 图 17-6. 采用 DMA 方式实现 USART 数据发达配置步骤 381 17-10. 数据传输过程中检测断开帧 381 图 17-9. 空闲状态下检测断开帧 381 图 17-9. 空闲状态下检测断开帧 381 图 17-9. 空闲状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 16-46.	当 PSC 数值从 0 变到 2 时,计数器的时序图	328
图 16-49. 通道输入捕获原理	图 16-47.	向上计数时序图,PSC=0/2	329
图 16-50. 三种输出比较模式 332 图 16-51. EAPWM 时序图 333 图 16-52. CAPWM 时序图 333 图 16-52. CAPWM 时序图 333 图 16-52. CAPWM 时序图 334 图 16-53. 复位模式下的控制电路 334 图 16-54. 暂停模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式,TIMERX_CHXCV = 4 TIMERX_CAR=99 336 图 16-58. 内部时针分频为 1 时,计数器的时序图 349 图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图 350 图 16-60. 向上计数时序图,PSC=0/2 351 图 16-61. 向上计数时序图,在运行时改变 TIMERX_CAR 寄存器的值 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-67. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,在运行时改变 TIMERX_CAR 寄存器的值 368 图 17-1. USART 模块内部框图 376 图 17-5. 以SART 发步骤 379 图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤 379 图 17-5. 采用 DMA 方式实现 USART 数据按收配置步骤 381 17-1. 要用 DMA 方式实现 USART 数据接收配置步骤 381 图 17-7. 两 DMA 方式实现 USART 数据接收配置步骤 381 图 17-8. 硬件流控制 381 图 17-8. 硬件流控制 381 图 17-9. 空闲状态下检测断开帧 382 图 17-9. 空闲状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 16-48.	向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值	329
图 16-51. EAPWM 时序图 333 图 16-52. CAPWM 时序图 333 图 16-52. CAPWM 时序图 333 图 16-53. 复位模式下的控制电路 334 图 16-54. 暂停模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式,TIMERx_CHXCV = 4 TIMERx_CAR=99. 336 图 16-57. 通用定时器 L 2 结构框图 348 图 16-58. 内部时钟分频为 1 时,计数器的时序图 350 图 16-50. 向上计数时序图, PSC=0/2. 351 图 16-61. 向上计数时序图, PSC=0/2. 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 355 图 16-65. 内部时钟分频为 1 时,计数器的时序图 350 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 351 图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-67. 向上计数时序图, PSC=0/2. 367 图 16-68. 尚上计数时序图, PSC=0/2. 367 图 16-68. 向上计数时序图, 产医C=0/2. 367 图 17-3. USART 模块内部框图 376 图 17-1. USART 模块内部框图 376 图 17-3. USART 发进步骤 378 图 17-4. 过来样方式接收一个数据位 379 图 17-5. 采用 DMA 方式实现 USART 数据发达配置步骤 380 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-9. 空闲状态下检测断开帧 383	图 16-49.	通道输入捕获原理	330
图 16-52. CAPWM 时序图 333 图 16-53. 复位模式下的控制电路 334 图 16-54. 暂停模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式,TiMERx_CHxCV = 4 TIMERx_CAR=99 336 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1 时,计数器的时序图 349 图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图 350 图 16-60. 向上计数时序图,PSC=0/2 351 图 16-61. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 自上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,存至=0/2 367 图 16-68. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 368 图 17-1. USART 模块内部框图 366 图 17-2. USART 字符帧(8 数据位和 1 停止位) 376 图 17-3. USART 发送步骤 378 图 17-4. 过采样方式接收一个数据位 379 图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-8. 硬件流控制 381 图 17-8. 硬件流控制 381 图 17-8. 硬件流控制 381	图 16-50.	三种输出比较模式	332
图 16-53. 复位模式下的控制电路 334 图 16-54. 暂停模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式,TIMERx_CHxCV = 4 TIMERx_CAR=99 336 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1 时,计数器的时序图 349 图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图 350 图 16-60. 向上计数时序图,PSC=0/2 351 图 16-61. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-67. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 368 图 17-1. USART 模块内部框图 376 图 17-2. USART 模块内部框图 376 图 17-5. 采用 DMA 方式实现 USART 数据发达配置步骤 378 图 17-4. 过采样方式接收一个数据位 379 图 17-5. 采用 DMA 方式实现 USART 数据接收配置步骤 380 图 17-6. 采用 DMA 方式实现 USART 数据接收配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-8. 硬件流控制 381 17-9. 空闲状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 16-51.	EAPWM 时序图	333
图 16-54. 暂停模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式,TIMERx_CHxCV = 4 TIMERx_CAR=99 336 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1 时,计数器的时序图 349 图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图 350 图 16-60. 向上计数时序图,PSC=0/2 351 图 16-61. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 368 图 17-1. USART 模块内部框图 376 图 17-2. USART 字符帧 (8 数据位和 1 停止位) 376 图 17-3. USART 发送步骤 378 图 17-4. 过采样方式接收一个数据位 379 图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤 380 图 17-6. 采用 DMA 方式实现 USART 数据接收配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-8. 硬件流控制 381 图 17-9. 空闲状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 16-52.	CAPWM 时序图	333
图 16-55. 事件模式下的控制电路 335 图 16-56. 单脉冲模式,TIMERx_CHxCV = 4 TIMERx_CAR=99 336 图 16-57. 通用定时器 L2 结构框图 348 图 16-58. 内部时钟分频为 1 时,计数器的时序图 349 图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图 350 图 16-60. 向上计数时序图,PSC=0/2 351 图 16-61. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 351 图 16-62. 通道输入捕获原理 352 图 16-63. 三种输出比较模式 354 图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-67. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 368 图 17-1. USART 模块内部框图 365 图 17-2. USART 李符帧 (8 数据位和 1 停止位) 376 图 17-3. USART 发送步骤 378 图 17-4. 过采样方式接收一个数据位 379 图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤 380 图 17-6. 采用 DMA 方式实现 USART 数据接收配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-8. 硬件流控制 381 图 17-8. 硬件流控制 381 图 17-9. 空闲状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 16-53.	复位模式下的控制电路	334
图 16-56. 单脉冲模式, TIMERx_CHxCV = 4 TIMERx_CAR=99	图 16-54.	暂停模式下的控制电路	335
图 16-57. 通用定时器 L2 结构框图	图 16-55.	事件模式下的控制电路	335
图 16-58. 内部时钟分频为 1 时, 计数器的时序图	图 16-56.	单脉冲模式,TIMERx_CHxCV = 4 TIMERx_CAR=99	336
图 16-59. 当 PSC 数值从 0 变到 2 时,计数器的时序图	图 16-57.	通用定时器 L2 结构框图	348
图 16-60. 向上计数时序图,PSC=0/2	图 16-58.	内部时钟分频为1时,计数器的时序图	349
图 16-61. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值	图 16-59.	当 PSC 数值从 0 变到 2 时,计数器的时序图	350
图 16-62. 通道输入捕获原理	图 16-60.	向上计数时序图,PSC=0/2	351
图 16-63. 三种输出比较模式	图 16-61.	向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值	351
图 16-64. 基本定时器结构框图 365 图 16-65. 内部时钟分频为 1 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图 366 图 16-67. 向上计数时序图,PSC=0/2 367 图 16-68. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值 368 图 17-1. USART 模块内部框图 376 图 17-2. USART 字符帧 (8 数据位和 1 停止位) 376 图 17-3. USART 发送步骤 378 图 17-4. 过采样方式接收一个数据位 379 图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤 380 图 17-6. 采用 DMA 方式实现 USART 数据接收配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-8. 硬件流控制 382 图 17-9. 空闲状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 16-62.	通道输入捕获原理	352
图 16-65. 内部时钟分频为 1 时,计数器的时序图	图 16-63.	三种输出比较模式	354
图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图	图 16-64.	基本定时器结构框图	365
图 16-67. 向上计数时序图,PSC=0/2	图 16-65.	内部时钟分频为1时,计数器的时序图	366
图 16-68. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值	图 16-66.	当 PSC 数值从 0 变到 2 时,计数器的时序图	366
图 17-1. USART 模块内部框图	图 16-67.	向上计数时序图,PSC=0/2	367
图 17-2. USART 字符帧 (8 数据位和 1 停止位) 376 图 17-3. USART 发送步骤 378 图 17-4. 过采样方式接收一个数据位 379 图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤 380 图 17-6. 采用 DMA 方式实现 USART 数据接收配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-8. 硬件流控制 382 图 17-9. 空闲状态下检测断开帧 383	图 16-68.	向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值	368
图 17-3. USART 发送步骤	图 17-1. 년	JSART 模块内部框图	376
图 17-4. 过采样方式接收一个数据位	图 17-2. 년	JSART 字符帧 (8 数据位和 1 停止位)	376
图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤 380 图 17-6. 采用 DMA 方式实现 USART 数据接收配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-8. 硬件流控制 382 图 17-9. 空闲状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 17-3. 년	JSART 发送步骤	378
图 17-6. 采用 DMA 方式实现 USART 数据接收配置步骤 381 图 17-7. 两个 USART 之间的硬件流控制 381 图 17-8. 硬件流控制 382 图 17-9. 空闲状态下检测断开帧 383 图 17-10. 数据传输过程中检测断开帧 383	图 17-4.	过采样方式接收一个数据位	379
图 17-7. 两个 USART 之间的硬件流控制	图 17-5.	采用 DMA 方式实现 USART 数据发送配置步骤	380
图 17-8. 硬件流控制	图 17-6.	采用 DMA 方式实现 USART 数据接收配置步骤	381
图 17-9. 空闲状态下检测断开帧	图 17-7.	两个 USART 之间的硬件流控制	381
图 17-10. 数据传输过程中检测断开帧	图 17-8.	硬件流控制	382
	图 17-9.	空闲状态下检测断开帧	383
图 17-11. 同步模式下的 USART 示例	图 17-10.	数据传输过程中检测断开帧	383
	图 17-11.	同步模式下的 USART 示例	384

图 17-12. 8-bit 格式的 USART 同步通信波形(CLEN=1)	384
图 17-13. IrDA SIR ENDEC 模块	384
图 17-14. IrDA 数据调制	385
图 17-15. ISO7816-3 数据帧格式	386
图 17-16. USART 中断映射框图	388
图 18-1. I2C 模块框图	402
图 18-2. 数据有效性	403
图 18-3. 起始和停止信号	403
图 18-4. 时钟同步	403
图 18-5. SDA 线仲裁	_
图 18-6. 7 位地址的 I2C 通讯流程	
图 18-7. 10 位地址的 I2C 通讯流程(主机发送)	404
图 18-8. 10 位地址的 I2C 通讯流程(主机接收)	405
图 18-9. 从机发送模式(10 位地址模式)	406
图 18-10. 从机接收模式(10 位地址模式)	408
图 18-11. 主机发送模式(10 位地址模式)	
图 18-12. 主机接收使用方案 A 模式(10 位地址模式)	413
图 18-13. 主机接收使用方案 B 模式(10 位地址模式)	416
图 19-1. SPI 结构框图	
图 19-2. 常规模式下的 SPI 时序图	433
图 19-3. SPI 四线模式下的 SPI 时序图(CKPL=1, CKPH=1, LF=0)	434
图 19-4. 典型的全双工模式连接	
图 19-5. 典型的单工模式连接(主机:接收,从机:发送)	437
图 19-6. 典型的单工模式连接(主机: 只发送,从机:接收)	437
图 19-7. 典型的双向线连接	437
图 19-8. 主机 TI 模式在不连续发送时的时序图	
图 19-9. 主机 TI 模式在连续发送时的时序图	439
图 19-10. 从机 TI 模式时序图	439
图 19-11. NSS 脉冲模式时序图(主机连续发送)	440
图 19-12. SPI 四线模式四线写操作时序图	441
图 19-13. SPI 四路模式四路读操作时序图	442
图 19-14. I2S 结构框图	
图 19-15. I2S 飞利浦标准时序图(DTLEN=00, CHLEN=0, CKPL=0)	446
图 19-16. I2S 飞利浦标准时序图(DTLEN=00, CHLEN=0, CKPL=1)	446
图 19-17. I2S 飞利浦标准时序图(DTLEN=10, CHLEN=1, CKPL=0)	446
图 19-18. I2S 飞利浦标准时序图(DTLEN=10, CHLEN=1, CKPL=1)	446
图 19-19. I2S 飞利浦标准时序图(DTLEN=01, CHLEN=1, CKPL=0)	447
图 19-20. I2S 飞利浦标准时序图(DTLEN=01, CHLEN=1, CKPL=1)	447
图 19-21. I2S 飞利浦标准时序图(DTLEN=00, CHLEN=1, CKPL=0)	447
图 19-22. I2S 飞利浦标准时序图(DTLEN=00, CHLEN=1, CKPL=1)	447
图 19-23. MSB 对齐标准时序图(DTLEN=00, CHLEN=0, CKPL=0)	448
图 19-24. MSB 对齐标准时序图(DTLEN=00, CHLEN=0, CKPL=1)	448
图 19-25. MSB 对齐标准时序图(DTLEN=10, CHLEN=1, CKPL=0)	448
图 19-26. MSB 对齐标准时序图(DTLEN=10, CHLEN=1, CKPL=1)	448

图 19-27. MSB 对齐标准时序图(DTLEN=01, CHLEN=1, CKPL=0)	448
图 19-28. MSB 对齐标准时序图(DTLEN=01, CHLEN=1, CKPL=1)	449
图 19-29. MSB 对齐标准时序图(DTLEN=00, CHLEN=1, CKPL=0)	449
图 19-30. MSB 对齐标准时序图(DTLEN=00, CHLEN=1, CKPL=1)	449
图 19-31. LSB 对齐标准时序图(DTLEN=01, CHLEN=1, CKPL=0)	449
图 19-32. LSB 对齐标准时序图(DTLEN=01, CHLEN=1, CKPL=1)	449
图 19-33. LSB 对齐标准时序图(DTLEN=00, CHLEN=1, CKPL=0)	450
图 19-34. LSB 对齐标准时序图(DTLEN=00, CHLEN=1, CKPL=1)	450
图 19-35. PCM 标准短帧同步模式时序图(DTLEN=00, CHLEN=0, CKPL=0)	450
图 19-36. PCM 标准短帧同步模式时序图(DTLEN=00, CHLEN=0, CKPL=1)	450
图 19-37. PCM 标准短帧同步模式时序图(DTLEN=10, CHLEN=1, CKPL=0)	451
图 19-38. PCM 标准短帧同步模式时序图(DTLEN=10, CHLEN=1, CKPL=1)	451
图 19-39. PCM 标准短帧同步模式时序图(DTLEN=01, CHLEN=1, CKPL=0)	451
图 19-40. PCM 标准短帧同步模式时序图(DTLEN=01, CHLEN=1, CKPL=1)	451
图 19-41. PCM 标准短帧同步模式时序图(DTLEN=00, CHLEN=1, CKPL=0)	451
图 19-42. PCM 标准短帧同步模式时序图(DTLEN=00, CHLEN=1, CKPL=1)	451
图 19-43. PCM 标准长帧同步模式时序图(DTLEN=00, CHLEN=0, CKPL=0)	452
图 19-44. PCM 标准长帧同步模式时序图(DTLEN=00, CHLEN=0, CKPL=1)	
图 19-45. PCM 标准长帧同步模式时序图(DTLEN=10, CHLEN=1, CKPL=0)	452
图 19-46. PCM 标准长帧同步模式时序图(DTLEN=10, CHLEN=1, CKPL=1)	452
图 19-47. PCM 标准长帧同步模式时序图(DTLEN=01, CHLEN=1, CKPL=0)	452
图 19-48. PCM 标准长帧同步模式时序图(DTLEN=01, CHLEN=1, CKPL=1)	452
图 19-49. PCM 标准长帧同步模式时序图(DTLEN=00, CHLEN=1, CKPL=0)	453
图 19-50. PCM 标准长帧同步模式时序图(DTLEN=00, CHLEN=1, CKPL=1)	453
图 19-51. I2S 时钟生成结构框图	453
图 19-52. I2S 初始化流程	455
图 19-53. I2S 主机接收禁能流程	457
图 20-1. SDIO "无响应"和 "无数据"操作	471
图 20-2. SDIO 多块读操作	471
图 20-3. SDIO 多块写操作	472
图 20-4. SDIO 数据流读操作	472
图 20-5. SDIO 数据流写操作	
图 20-6. SDIO 框图	473
图 20-7. 命令标记格式	479
图 20-8. 响应令牌格式	
图 20-9. 1 位数据总线宽度	491
图 20-10. 4 位数据总线宽度	
图 20-11. 8 位数据总线宽度	492
图 20-12. 通过停止 SDIO_CLK 的读等待操作	
图 20-13. 使用 SDIO_DAT[2]信号线的读等待操作	
图 20-14. 在功能 1 的多块读周期期间插入功能 2 读周期	
图 20-15. 读中断周期时序	
图 20-16. 写中断周期时序	
图 20-17. 4 位模式下多块读中断周期时序	508

图 20-18. 4 位模式下多块写中断周期时序	509
图 20-19. 命令完成信号关闭操作	. 509
图 21-1. 系统架构	. 524
图 21-2. EXMC Bank 划分	. 525
图 21-3. Bank0 地址映射	. 526
图 21-4. NAND/PC Card 地址映射	. 527
图 21-5. Bank1 通用空间	. 527
图 21-6. 模式 1 读时序	. 531
图 21-7. 模式 1 写时序	. 531
图 21-8. 模式 A 读时序	. 533
图 21-9. 模式 A 写时序	. 533
图 21-10. 模式 2/B 读时序	. 534
图 21-11. 模式 2 写时序	. 535
图 21-12. 模式 B 写时序	. 535
图 21-13. 模式 C 读时序	. 536
图 21-14. 模式 C 写时序	. 537
图 21-15. 模式 D 读时序	. 538
图 21-16. 模式 D 写时序	. 538
图 21-17. 复用模式读时序	. 540
图 21-18. 复用模式写时序	. 540
图 21-19. 异步等待有效时的读时序	. 542
图 21-20. 异步等待有效时的写时序	. 542
图 21-21. 同步复用突发传输读时序	. 544
图 21-22. 同步复用突发传输写时序	. 545
图 21-23. PC Card 通用空间操作时序	. 548
图 21-24. NCE 敏感 NAND Flash 访问时序	. 549
图 22-1. CAN 模块结构框图	. 563
图 22-2. 发送寄存器	. 565
图 22-3. 发送邮箱状态转换	. 565
图 22-4. 接收寄存器	. 567
图 22-5. 32-bit 位宽过滤器	. 568
图 22-6. 16-bit 位宽过滤器	. 568
图 22-7. 32-bit 位宽掩码模式过滤器	. 568
图 22-8. 16-bit 位宽掩码模式过滤器	. 568
图 22-9. 32-bit 位宽列表模式过滤器	. 569
图 22-10. 16-bit 位宽列表模式过滤器	. 569
图 22-11. 位时序	
图 23-1. USBFS 结构框图	
图 23-2. 在主机或设备模式下连接示意图	
图 23-3. OTG 模式下连接示意图	
图 23-4. 主机端口状态转移图	
图 23-5. 主机模式 FIFO 空间	
图 23-6. 主机模式 FIFO 访问寄存器映射表	
图 23-7. 设备模式 FIFO 空间	

图 23-8. 设备模式 FIFO 访问寄存器映射表 601



表索引

表 1-1. AHB 互联矩阵的互联关系列表	27
表 1-2. GD32F403xx 系列器件的存储器映射表	30
表 1-3. 引导模式	34
表 2-1. GD32F403xx 闪存基地址和构成	39
表 2-2. 选项字节	45
表 3-1. 节电模式总结	61
表 5-1. 时钟输出 0 的时钟源选择	77
表 5-2. 深度睡眠模式下 1.2V 域电压选择	77
表 7-1. Cortex®-M4 中的 NVIC 异常类型	118
表 7-2. 中断向量表	119
表 7-3. EXTI 触发源	122
表 8-1. GPIO 配置表	126
表 8-2. 调试接口信号	131
表 8-3. 调试端口映射	131
表 8-4. ADC 常规转换外部触发备用功能重映射 ⁽¹⁾	132
表 8-5. TIMERx 备用功能重映射	132
表 8-6. TMER4 备用功能重映射	133
表 8-7. USART 备用功能重映射	134
表 8-8. I2C0 备用功能重映射	135
表 8-9. SPI/I2S 备用功能重映射	135
表 8-10. CANO 备用功能重映射	135
表 8-11. ENET 备用功能重映射	136
表 8-12. CTC 备用功能重映射	136
表 8-13. OSC32 引脚配置	137
表 8-14. OSC 引脚配置	
表 10-1. DMA 传输操作	163
表 10-2. 中断事件	
表 10-3. DMA0 各通道请求表	错误!未定义书签。
表 10-4. DMA1 各通道请求表	169
表 12-1. ADC 内部输入信号	
表 12-2. ADC 引脚输入定义	185
表 12-3. ADC0 和 ADC1 的外部触发源	191
表 12-4. ADC2 的外部触发源	191
表 12-5. 不同分辨率对应的 t _{CONV} 时间	192
表 12-6. N 和 M 的最大输出值(灰色部分表示截断)	193
表 12-7. ADC 同步模式表	194
表 13-1. DAC 引脚	210
表 13-2. DAC 触发与输出	210
表 13-3. DAC 外部触发	211
表 14-1. 独立看门狗定时器在 40kHz (IRC40K) 时的最小/最大超时周期	224

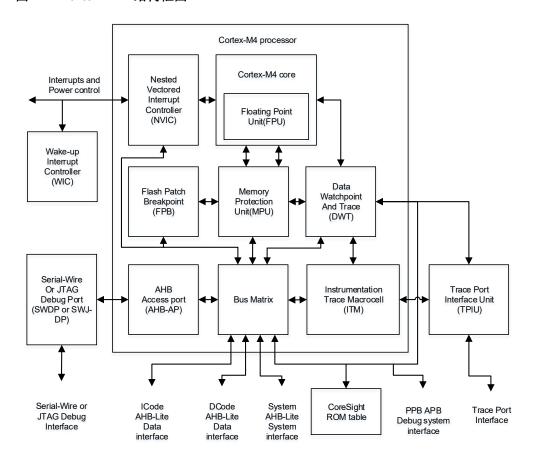
表 14-2. 在 84MHz(f _{PCLK1})时的最大/最小超时值	230
表 16-1. 定时器(TIMERx)分为五种类型	241
表 16-2. 由参数控制的互补输出表	
表 16-3. 不同编码器模式下的计数方向	259
表 16-4. 从模式例子列表	262
表 16-5. 从模式列表和举例	303
表 16-6. 从模式列表和举例	
表 17-1. USART 重要引脚描述	375
表 17-2. 停止位配置	
表 17-3. USART 中断请求	
表 18-1. I2C 总线术语说明(参考飞利浦 I2C 规范)	402
表 18-2. 事件状态标志位	420
表 18-3. I2C 错误标志位	
表 19-1. SPI 信号描述	432
表 19-2. SPI 四线信号描述	
表 19-3. 从机模式 NSS 功能	434
表 19-4. 主机模式 NSS 功能	435
表 19-5. SPI 运行模式	435
表 19-6. SPI 中断请求	444
表 19-7. I2S 比特率计算公式	453
表 19-8. 音频采样频率计算公式	454
表 19-9. 各种运行模式下 I2S 接口信号的方向	454
表 19-10. I2S 中断	459
表 20-1. SDIO I/O 定义	473
表 20-2. 命令格式	479
表 20-3. 卡命令类 (CCCs)	480
表 20-4. 基本命令(class 0)	482
表 20-5. 面向块的读命令(class 2)	483
表 20-6. 流读取命令(class 1)和流写入命令(class 3)	484
表 20-7. 面向块的写命令(class 4)	484
表 20-8. 擦除命令(class 5)	484
表 20-9. 面向块的写保护命令(class 6)	485
表 20-10. 锁卡命令(class 7)	485
表 20-11. 特定应用命令(class 8)	485
表 20-12. I/O 模式命令(class 9)	486
表 20-13. 切换功能命令(class 10)	487
表 20-14. R1 响应	488
表 20-15. R2 响应	489
表 20-16. R3 响应	489
表 20-17. R4 响应(MMC)	489
表 20-18. R4 响应(SD I/O)	
表 20-19. R5 响应(MMC)	490
表 20-20. R5 响应(SD I/O)	490
表 20-21. R6 响应	490

表 20-22. R7 响应	. 491
表 20-23. 卡状态	. 493
表 20-24. SD 状态	. 495
表 20-25. 移动性能字段	. 496
表 20-26. AU_SIZE 字段	. 496
表 20-27. 最大 AU 大小	. 497
表 20-28. 擦除大小字段	. 497
表 20-29. 擦除超时字段	. 497
表 20-30. 擦除偏移字段	. 498
表 20-31. 上锁/解锁数据结构	. 504
表 20-32. 不同响应类型对应的 SDIO_RESPx 寄存器	. 514
表 21-1. NOR Flash 接口信号描述	. 528
表 21-2. PSRAM 非复用接口信号描述	. 529
表 21-3. EXMC 的 Bank0 支持的所有处理	. 529
表 21-4. NOR/PSRAM 控制时序参数	. 530
表 21-5. EXMC 时序模型	. 530
表 21-6. 模式 1 相关寄存器配置	. 532
表 21-7. 模式 A 相关寄存器配置	. 533
表 21-8. 模式 2/B 相关寄存器配置	. 535
表 21-9. 模式 C 相关寄存器配置	. 537
表 21-10. 模式 D 相关寄存器配置	. 539
表 21-11. 复用模式相关寄存器配置	. 540
表 21-12. 同步复用模式读时序配置	
表 21-13. 同步复用模式写时序配置	. 545
表 21-14. 8 位/16 位 NAND 接口信号描述	. 546
表 21-15. 16 位 PC Card 接口信号描述	. 546
表 21-16. Bank1/2/3 支持的访问模式	. 547
表 21-17. NADN/PC Card 可编程参数	. 547
表 22-1. 32-bit 过滤序号	. 569
表 22-2. 过滤索引	
表 22-3. CAN 事件/中断标志	. 574
表 23-1. USBFS 信号线描述	
表 23-2. USBFS 全局中断	. 605
表 24-1. 版本历史	. 661

1. 系统及存储器架构

GD32F403xx系列器件是基于Arm® Cortex®-M4处理器的32位通用微控制器。Arm® Cortex®-M4处理器包括三条AHB总线分别称为I-CODE总线、D-Code总线和系统总线。Cortex®-M4处理器的所有存储访问,根据不同的目的和目标存储空间,都会在这三条总线上执行。存储器的组织采用了哈佛结构,预先定义的存储器映射和高达4 GB的存储空间,充分保证了系统的灵活性和可扩展性。

1.1. Arm® Cortex®-M4 处理器


Cortex®-M4处理器是一个具有浮点运算功能、低中断延迟时间和低成本调试特性的32位处理器。高集成度和增强的特性使Cortex®-M4处理器适合于那些需要高性能和低功耗微控制器的市场领域。Cortex®-M4处理器基于ARMv7架构,并且支持一个强大且可扩展的指令集,包括通用数据处理I/O控制任务、增强的数据处理位域操作、DSP(数字信号处理)和浮点运算指令。下面列出由Cortex®-M4提供的一些系统外设:

- 内部总线矩阵,用于实现I-Code总线、D-Code总线、系统总线、专用总线(PPB)以及调试 专用总线(AHB-AP)的互联;
- 嵌套式向量型中断控制器 (NVIC);
- 闪存地址重载及断点单元 (FPB);
- 数据观测点及跟踪单元 (DWT);
- 指令跟踪宏单元 (ITM);
- 串行线和JTAG调试接口 (SWJ-DP);
- 跟踪端口接口单元 (TPIU);
- 内存保护单元 (MPU);
- 浮点运算单元 (FPU)。

<u>图1-1. Cortex®-M4结构框图</u>显示了Cortex®-M4处理器结构框图。欲了解更多信息,请参阅Arm® Cortex®-M4技术参考手册。

图 1-1. Cortex®-M4 结构框图

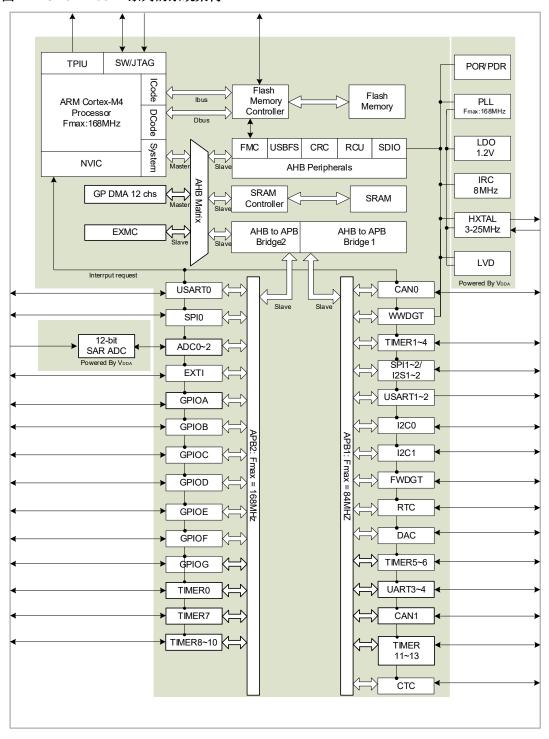
1.2. 系统架构

GD32F403xx系列器件采用32位多层总线结构,该结构可使系统中的多个主机和从机之间的并行通信成为可能。多层总线结构包括一个AHB互联矩阵、一个AHB总线和两个APB总线。AHB互联矩阵的互联关系接下来将进行说明。在*表1-1. AHB互联矩阵的互联关系列表*中,"1"表示相应的主机可以通过AHB互联矩阵访问对应的从机,空白的单元格表示相应的主机不可以通过AHB互联矩阵访问对应的从机。

表 1-1. AHB 互联矩阵的互联关系列表

	IBUS	DBUS	SBUS	DMA0	DMA1
FMC-I	1				
FMC-D		1		1	1
SRAM	1	1	1	1	1
EXMC	1	1	1	1	1
AHB			1	1	1
APB1			1	1	1

	IBUS	DBUS	SBUS	DMA0	DMA1
APB2			1	1	1


如<u>表1-1. AHB 互联矩阵的互联关系列表</u>所示,AHB互联矩阵连接了几个主机,分别为: IBUS、DBUS、SBUS、DMA0和DMA1。IBUS是Cortex®-M4内核的指令总线,用于从代码区域(0x0000000000~0x1FFF FFFF)中取指令和向量。DBUS是Cortex®-M4内核的数据总线,用于加载和存储数据,以及代码区域的调试访问。同样,SBUS是Cortex®-M4内核的系统总线,用于指令和向量获取、数据加载和存储以及系统区域的调试访问。系统区域包括内部SRAM区域和外设区域。DMA0和DMA1分别是DMA0和DMA1的存储器总线。

AHB互联矩阵也连接了几个从机,分别为: FMC-I、FMC-D、SRAM、EXMC、AHB、APB1和APB2。FMC-I是闪存存储器控制器的指令总线,而FMC-D是闪存存储器的数据总线。SRAM是片上静态随机存取存储器。EXMC是外部存储器控制器。AHB是连接所有AHB从机的AHB总线,而APB1和APB2是连接所有APB从机的两条APB总线。两条APB总线连接所有的APB外设。APB1操作速度限制在84MHz,APB2操作于全速(这取决于设备,可高达168MHz)。

互联的多层AHB总线架构如下图所示。

图 1-2. GD32F403xx 系列的系统架构

1.3. 存储器映射

Arm® Cortex®-M4处理器采用哈佛结构,可以使用相互独立的总线来读取指令和加载/存储数据。指令代码和数据都位于相同的存储器地址空间,但在不同的地址范围。程序存储器,数据存储器,寄存器和I/O端口都在同一个线性的4 GB的地址空间之内。这是Cortex®-M4的最大地址范围,因为它的地址总线宽度是32位。此外,为了降低不同器件供应商重复应用的软件复杂度,

Cortex®-M4处理器提供预先定义的存储器映射。在存储器映射表中,一部分地址空间由Arm® Cortex®-M4的系统外设所占用,且不可更改。此外,其余部分地址空间可由芯片供应商定义使用。<u>表1-2. GD32F403xx系列器件的存储器映射表显显示了GD32F403xx系列器件的存储器映射</u>包括代码、SRAM、外设和其他预先定义的区域。几乎每个外设都分配了1KB的地址空间,这样可以简化每个外设的地址译码。

表 1-2. GD32F403xx 系列器件的存储器映射表

预定义的区域	总线	地址范围	外设
外部设备		0xA000 0000 - 0xA000 0FFF	EXMC - SWREG
	AHB3	0x9000 0000 - 0x9FFF FFFF	EXMC - PC CARD
外部 RAM	ALIDS	0x7000 0000 - 0x8FFF FFFF	EXMC - NAND
		0x6000 0000 - 0x6FFF FFFF	EXMC - NOR/PSRAM/SRAM
		0x5000 0000 - 0x5003 FFFF	USBFS
		0x4008 0000 - 0x4FFF FFFF	保留
		0x4004 0000 - 0x4007 FFFF	保留
		0x4002 BC00 - 0x4003 FFFF	保留
		0x4002 B000 - 0x4002 BBFF	保留
		0x4002 A000 - 0x4002 AFFF	保留
		0x4002 8000 - 0x4002 9FFF	保留
		0x4002 6800 - 0x4002 7FFF	保留
		0x4002 6400 - 0x4002 67FF	保留
		0x4002 6000 - 0x4002 63FF	保留
		0x4002 5000 - 0x4002 5FFF	保留
		0x4002 4000 - 0x4002 4FFF	保留
		0x4002 3C00 - 0x4002 3FFF	保留
		0x4002 3800 - 0x4002 3BFF	保留
外设	AHB1	0x4002 3400 - 0x4002 37FF	保留
グド以	Andi	0x4002 3000 - 0x4002 33FF	CRC
		0x4002 2C00 - 0x4002 2FFF	保留
		0x4002 2800 - 0x4002 2BFF	保留
		0x4002 2400 - 0x4002 27FF	保留
		0x4002 2000 - 0x4002 23FF	FMC
		0x4002 1C00 - 0x4002 1FFF	保留
		0x4002 1800 - 0x4002 1BFF	保留
		0x4002 1400 - 0x4002 17FF	保留
		0x4002 1000 - 0x4002 13FF	RCU
		0x4002 0C00 - 0x4002 0FFF	保留
		0x4002 0800 - 0x4002 0BFF	保留
		0x4002 0400 - 0x4002 07FF	DMA1
		0x4002 0000 - 0x4002 03FF	DMA0
		0x4001 8400 - 0x4001 FFFF	保留
		0x4001 8000 - 0x4001 83FF	SDIO

			21 100/00 / ht / 1 /4/1
预定义的区域	总线	地址范围	外设
		0x4001 7C00 - 0x4001 7FFF	保留
		0x4001 7800 - 0x4001 7BFF	保留
		0x4001 7400 - 0x4001 77FF	保留
		0x4001 7000 - 0x4001 73FF	保留
		0x4001 6C00 - 0x4001 6FFF	保留
		0x4001 6800 - 0x4001 6BFF	保留
		0x4001 5C00 - 0x4001 67FF	保留
		0x4001 5800 - 0x4001 5BFF	保留
		0x4001 5400 - 0x4001 57FF	TIMER10
		0x4001 5000 - 0x4001 53FF	TIMER9
		0x4001 4C00 - 0x4001 4FFF	TIMER8
		0x4001 4800 - 0x4001 4BFF	保留
		0x4001 4400 - 0x4001 47FF	保留
		0x4001 4000 - 0x4001 43FF	保留
	4 DD0	0x4001 3C00 - 0x4001 3FFF	ADC2
	APB2	0x4001 3800 - 0x4001 3BFF	USART0
		0x4001 3400 - 0x4001 37FF	TIMER7
		0x4001 3000 - 0x4001 33FF	SPI0
		0x4001 2C00 - 0x4001 2FFF	TIMER0
		0x4001 2800 - 0x4001 2BFF	ADC1
		0x4001 2400 - 0x4001 27FF	ADC0
		0x4001 2000 - 0x4001 23FF	GPIOG
		0x4001 1C00 - 0x4001 1FFF	GPIOF
		0x4001 1800 - 0x4001 1BFF	GPIOE
		0x4001 1400 - 0x4001 17FF	GPIOD
		0x4001 1000 - 0x4001 13FF	GPIOC
		0x4001 0C00 - 0x4001 0FFF	GPIOB
		0x4001 0800 - 0x4001 0BFF	GPIOA
		0x4001 0400 - 0x4001 07FF	EXTI
		0x4001 0000 - 0x4001 03FF	AFIO
		0x4000 CC00 - 0x4000 FFFF	保留
		0x4000 C800 - 0x4000 CBFF	CTC
		0x4000 C400 - 0x4000 C7FF	保留
		0x4000 C000 - 0x4000 C3FF	保留
	A D D 4	0x4000 8000 - 0x4000 BFFF	保留
	APB1	0x4000 7C00 - 0x4000 7FFF	保留
		0x4000 7800 - 0x4000 7BFF	保留
		0x4000 7400 - 0x4000 77FF	DAC
		0x4000 7000 - 0x4000 73FF	PMU
		0x4000 6C00 - 0x4000 6FFF	BKP

预定义的区域	总线	地址范围	外设
		0x4000 6800 - 0x4000 6BFF	CAN1
		0x4000 6400 - 0x4000 67FF	CAN0
		0x4000 6000 - 0x4000 63FF	CAN SRAM 512 bytes
		0x4000 5C00 - 0x4000 5FFF	保留
		0x4000 5800 - 0x4000 5BFF	I2C1
		0x4000 5400 - 0x4000 57FF	I2C0
		0x4000 5000 - 0x4000 53FF	UART4
		0x4000 4C00 - 0x4000 4FFF	UART3
		0x4000 4800 - 0x4000 4BFF	USART2
		0x4000 4400 - 0x4000 47FF	USART1
		0x4000 4000 - 0x4000 43FF	保留
		0x4000 3C00 - 0x4000 3FFF	SPI2/I2S2
		0x4000 3800 - 0x4000 3BFF	SPI1/I2S1
		0x4000 3400 - 0x4000 37FF	保留
		0x4000 3000 - 0x4000 33FF	FWDGT
		0x4000 2C00 - 0x4000 2FFF	WWDGT
		0x4000 2800 - 0x4000 2BFF	RTC
		0x4000 2400 - 0x4000 27FF	保留
		0x4000 2000 - 0x4000 23FF	TIMER13
		0x4000 1C00 - 0x4000 1FFF	TIMER12
		0x4000 1800 - 0x4000 1BFF	TIMER11
		0x4000 1400 - 0x4000 17FF	TIMER6
		0x4000 1000 - 0x4000 13FF	TIMER5
		0x4000 0C00 - 0x4000 0FFF	TIMER4
		0x4000 0800 - 0x4000 0BFF	TIMER3
		0x4000 0400 - 0x4000 07FF	TIMER2
		0x4000 0000 - 0x4000 03FF	TIMER1
		0x2007 0000 - 0x3FFF FFFF	保留
		0x2006 0000 - 0x2006 FFFF	保留
SRAM	AHB	0x2003 0000 - 0x2005 FFFF	保留
		0x2001 8000 - 0x2002 FFFF	保留
		0x2000 0000 - 0x2001 7FFF	SRAM
		0x1FFF F810 - 0x1FFF FFFF	保留
		0x1FFF F800 - 0x1FFF F80F	Option Bytes
Code	АНВ	0x1FFF B000 - 0x1FFF F7FF	Boot loader
		0x1FFF 7A10 - 0x1FFF AFFF	保留
		0x1FFF 7800 - 0x1FFF 7A0F	保留

预定义的区域	总线	地址范围	外设
		0x1FFF 0000 - 0x1FFF 77FF	保留
		0x1FFE C010 - 0x1FFE FFFF	保留
		0x1FFE C000 - 0x1FFE C00F	保留
		0x1001 0000 - 0x1FFE BFFF	保留
		0x1000 0000 - 0x1000 FFFF	保留
		0x083C 0000 - 0x0FFF FFFF	保留
		0x0830 0000 - 0x083B FFFF	保留
		0x0800 0000 - 0x082F FFFF	Main Flash
		0x0030 0000 - 0x07FF FFFF	保留
		0x0010 0000 - 0x002F FFFF	Aliased to Main Flash or Boot
		0x0002 0000 - 0x000F FFFF	loader
		0x0000 0000 - 0x0001 FFFF	ioadei

1.3.1. 位带操作

为了减少"读-改-写"操作的次数,Cortex®-M4处理器提供了一个可以执行单原子比特操作的位带功能。存储器映射包含了两个支持位带操作的区域,分别位于SRAM和外设中。位带区域将存储器别名区的每个字映射到存储器位带区的某个位上。

下面的映射公式表明了别名区中的每个字如何对应到位带区的相应比特或目标比特。

其中:

- bit word addr指的是映射到位带区目标比特的别名存储器区字地址;
- bit_band_base指的是别名区的起始地址;
- byte offset指的是位带区目标比特所在的字节的字节地址偏移量;
- bit_number指的是目标比特在对应字节中的位置(0-7)。

例如,要想访问0x2000 0200地址的第7位,可访问的位带别名区地址是:

如果对0x2200 401C进行写操作,那么0x2000 0200的第7位将会相应变化;如果对0x2200 401C进行读操作,那么根据SRAM中0x2000 0200地址的第7位的值来返回0x01或0x00。

1.3.2. 片上 SRAM 存储器

GD32F403xx系列微控制器的片上SRAM起始地址是0x2000 0000,最大容量可达128KB。它支持字节、半字(16位)以及字(32位)访问。

1.3.3. 片上 FLASH 存储器概述

GD32F403xx系列微控制器提供高密度片上FLASH存储器,按以下分类进行组织:

- 高达3072KB主FLASH存储器;
- 高达18KB引导装载程序(boot loader)信息块存储器;
- 器件配置的选项字节。

更多详细说明请参考*闪存控制器(FMC)*章节。

1.4. 引导配置

GD32F403xx系列微控制器提供了三种引导源,可以通过BOOT0和BOOT1引脚来进行选择,详细说明见表1-3. 引导模式。该两个引脚的电平状态会在复位后的第四个CK_SYS(系统时钟)的上升沿进行锁存。用户可自行选择所需要的引导源,通过设置上电复位和系统复位后的BOOT0和BOOT1的引脚电平。一旦这两个引脚电平被采样,它们可以被释放并用于其他用途。

表 1-3. 引导模式

引导源选择	启动模式选择引脚					
21 A MYGTL	Boot1	Boot0				
主FLASH存储器	х	0				
引导装载程序	0	1				
片上SRAM	1	1				

上电序列或系统复位后,Arm®Cortex®-M4处理器先从0x0000 0000地址获取栈顶值,再从0x0000 0004地址获得引导代码的基地址,然后从引导代码的基地址开始执行程序。

根据所选择的引导源,主FLASH存储器(开始于0x0800 0000的原始存储空间)或系统存储器(开始于0x1FFF F000的原始存储空间)被映射到引导存储空间(起始于0x0000 0000)。片上 SRAM存储空间的起始地址是0x2000 0000,当它被选择为引导源时,在应用初始化代码中,你必须使用NVIC异常表和偏移寄存器来将向量表重定向到SRAM中。

嵌入式的Bootloader存放在系统存储空间,用于对FLASH存储器进行重新编程。GD32F403xx 芯片支持嵌入式引导程序通过多种接口方式来更新Flash。可以有2个USART端口(USART0-[PA9 PA10]、USART1-[PD5 PD6])和标准USB端口(PA9 PA11 PA12)用于GD32F403xx系列产品。

1.5. 设备电子签名

设备的电子签名中包含的存储容量信息和96位的唯一设备ID,它位于Flash存储器的信息块中。 96位设备唯一ID对任何设备来说都是独一无二的,可以用作序列号,或秘钥的一部分,等等。

1.5.1. 存储器容量信息

基地址: 0x1FFF F7E0

其值出厂已设置,不可由用户更改。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SRAM_DENSITY[15:0]														
	r														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FLASH_DENSITY[15:0]														

r

位/位域	名称	描述
31:16	SRAM_DENSITY[1	5: SRAM容量
	0]	该值表示器件的片上SRAM容量,以Kbytes为单位。
		例如: 0x0008表示8Kbytes。
15:0	FLASH_DENSITY[15 FLASH 存储器容量
	:0]	该值表示器件的FLASH存储器容量,以Kbytes为单位。
		例如: 0x0020表示32Kbytes。

1.5.2. 设备唯一ID(96位)

基地址: 0x1FFF F7E8

其值出厂已设置,不可由用户更改。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	UNIQUE_ID[31:16]														
	r														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	UNIQUE_ID[15:0]														

'

位/位域	名称	描述
31:0	UNIQUE_ID[31:0]	设备唯一ID

基地址: 0x1FFF F7EC

algabeth											ZI T		/11/	1 \1\1	
		其值出	厂已设	と置,フ	下可由用	戸更改	女。								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							UNIQUE	_ID[63:48]							
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							UNIQUE	_ID[47:32]							
								r							
位/位域		名称			描述										

位/位域		名称			描述										
31:0		UNIQUE	E_ID[63	:32]	设备唯一	→ ID									_
		基地址	: 0x1F	FF F	7F0										
		其信出	厂已设	置. オ	可由用	户更改	<i>T</i> ,								
		八匝田	/ 4.	ш, і	3 H1/13	, , , , , ,									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							UNIQUE_	_ID[95:80]							
								-							
								•							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							UNIQUE	ID[79:64]							
							5QOL_								

 位/位域
 名称
 描述

 31:0
 UNIQUE_ID[95:64]
 设备唯一ID

1.6. 系统配置寄存器

基地址: 0x4002 103C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留								保留						

 位/位域
 名称
 描述

 31:8
 保留
 必须保持复位值。

 7
 CEE
 代码执行效率

 0: 默认的代码执行效率

1: 增强的代码执行效率

6:0 保留

必须保持复位值。

注意: 只有bit[7]可以被读-改-写, 其他的位都不允许。

2. 闪存控制器(FMC)

2.1. 简介

闪存控制器(FMC),提供了片上闪存需要的所有功能。在闪存的前256K字节空间内,CPU执行指令零等待。FMC也提供了页擦除,整片擦除,以及32位整字/16位半字/位编程等闪存操作。

2.2. 主要特征

- 高达3M字节的片上闪存可用于存储指令或数据;
- 在闪存的前256K字节空间内,CPU执行指令零等待,在此范围外,CPU读取指令存在较长延时:
- 对于主存储闪存容量多于512KB的GD32F403xx,前512KB容量在第一片闪存(bank0)中,后续的容量在第二片闪存(bank1)中;
- bank0的闪存页大小为2KB,bank1的闪存页大小为4KB;
- 支持32位整字/16位半字/位编程,页擦除和整片擦除操作;
- 大小为16字节的可选字节块可根据用户需求配置;
- 每次系统复位后选项字节中的内容将重新加载到选项字节控制寄存器中;
- 具有安全保护状态,可阻止对代码或数据的非法读访问;
- 具有擦除和编程保护状态,可阻止意外写操作。

2.3. 功能说明

2.3.1. 闪存结构

对于主存储闪存容量不多于512KB的GD32F403xx,闪存页大小为2KB。对于主存储闪存容量不少于512KB的GD32F403xx,使用了两片闪存;前512KB容量在第一片闪存(bank0)中,后续的容量在第二片闪存(bank1)中。其中bank0的闪存页大小为2KB,bank1的闪存页大小为4KB。主存储闪存的每页都可以单独擦除。闪存结构见表2-1. GD32F403xx 闪存基地址和构成。

表 2-1. GD32F403xx 闪存基地址和构成

	闪存块	名称	地址范围	大小 (字节)	
		第0页 0x0800 0000 - 0x0800 07FF 2KB			
		第1页	0x0800 0800 - 0x0800 0FFF	2KB	
		第2页	2KB		
				-	
主	存储闪存块	第255页	0x0807 F800 - 0x0807 FFFF	2KB	
		第256页	0x0808 0000 - 0x0808 0FFF	4KB	
		第257页	0x0808 1000 - 0x0808 1FFF	4KB	
			·		
		-			
		第895页	0x082F F000 - 0x082F FFFF	4KB	
信息快	GD32F403xx	18KB			
	可选字节块	可选字节	0x1FFF F800 - 0x1FFF F80F	16B	

注意: 信息块存储了boot loader,不能被用户编程或擦除。

2.3.2. 读操作

闪存可以像普通存储空间一样直接寻址访问。对闪存取指令和取数据分别使用CPU的IBUS或 DBUS总线。

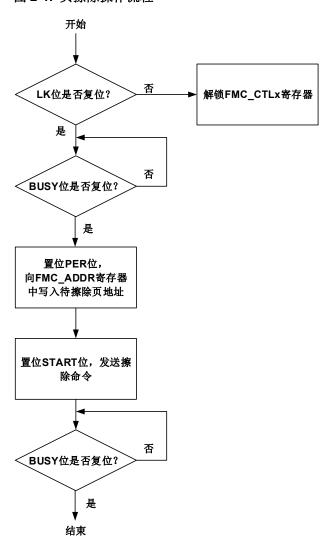
2.3.3. FMC_CTLx 寄存器解锁

复位后,FMC_CTL0寄存器进入锁定状态,LK位置为1。通过先后向FMC_KEY0寄存器写入0x45670123和0xCDEF89AB,可以使得FMC_CTL0寄存器解锁。两次写操作后,FMC_CTL0寄存器的LK位被硬件清0。可以通过软件设置FMC_CTL0寄存器的LK位为1再次锁定FMC_CTL0寄存器。任何对FMC_KEY0寄存器的错误操作都会将LK位置1,从而锁定FMC_CTL0寄存器,并引发一个总线错误。

FMC_CTL0寄存器的OBPG位和OBER位在FMC_CTL0寄存器第一层解锁后,仍然需要第二层解锁。第二层解锁过程也是两次写操作,向FMC_OBKEY寄存器先后写入0x45670123和0xCDEF89AB,然后硬件将FMC_CTL0寄存器的OBWEN位置1。软件可以将FMC_CTL0的OBWEN位清0来锁定FMC CTL0的OBPG位和OBER位。

对于主存储闪存容量多于512KB的GD32F403xx,FMC_CTL0寄存器用来设置对bank0和选项字节块的操作,FMC_CTL1寄存器用来设置对bank1的擦写操作。FMC_CTL1的解锁和锁定机制和FMC_CTL0类似。对FMC_KEY1写解锁序列可解除FMC_CTL1的锁定。

2.3.4. 页擦除


FMC的页擦除功能使得主存储闪存的页内容初始化为高电平。 每一页都可以被独立擦除,而不影响其他页内容。FMC擦除页步骤如下:

- 1. 确保FMC CTLx寄存器不处于锁定状态;
- 2. 检查FMC_STATx寄存器的BUSY位来判定闪存是否正处于擦写访问状态,若BUSY位为1,则需等待该操作结束,BUSY位变为0;
- 3. 置位FMC CTLx寄存器的PER位;
- 4. 将待擦除页的绝对地址(0x08XX XXXX) 写到FMC ADDRx寄存器;
- 5. 通过将FMC CTLx寄存器的START位置1来发送页擦除命令到FMC;
- 6. 等待擦除指令执行完毕,FMC_STATx寄存器的BUSY位清0;
- 7. 如果需要,使用DBUS读并验证该页是否擦除成功。

当页擦除成功执行,FMC_STATx寄存器的ENDF位将置位。若FMC_CTLx寄存器的ENDIE位被置1,则FMC将触发一个中断。需要注意的是,用户需确保写入的是正确的擦除地址,否则当待擦除页的地址被用来取指令或访问数据时,软件将会跑飞。该情况下,FMC不会提供任何出错通知。另一方面,对擦写保护的页进行擦除操作将无效。如果FMC_CTLx寄存器的ERRIE位被置位,该操作将触发操作出错中断。中断服务程序可通过检测FMC_STATx寄存器的WPERR位来判断该中断是否发生。图2-1. 页擦除操作流程显示了页擦除操作流程。

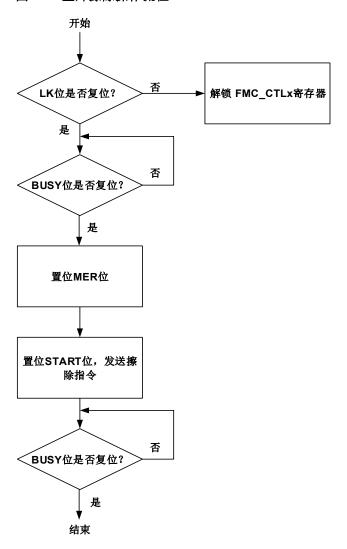
图 2-1. 页擦除操作流程

对于主存储闪存容量多于512KB的GD32F403xx,FMC_STAT0寄存器反应对bank0和选项字节块的操作状态,FMC_STAT1反应对bank1的操作状态。对bank1的页擦除操作与对bank0的页擦除操作类似。需要注意的是,在安全保护状态下,对bank1的页擦除,需将地址同时写至FMC_ADDR1和FMC_ADDR0寄存器。

2.3.5. 整片擦除

FMC提供了整片擦除功能可以初始化主存储闪存块的内容。当设置FMC_CTL0寄存器中MER为1时,擦除过程仅作用于Bank0,当设置FMC_CTL1寄存器中MER为1时,擦除过程仅作用于Bank1,当设置FMC_CTL0和FMC_CTL1寄存器中MER为1时,擦除过程作用于整片闪存。整片擦除操作,寄存器设置具体步骤如下:

- 1. 确保FMC CTLx寄存器不处于锁定状态;
- 2. 等待FMC_STATx寄存器的BUSY位变为0;
- 3. 如果单独擦除Bank0,置位FMC_CTL0寄存器的MER位。如果单独擦除Bank1,置位FMC_CTL1寄存器的MER位。如果整片擦除闪存,同时置位FMC_CTL0和FMC_CTL1寄存器的MER位;


- 4. 通过将FMC_CTLx寄存器的START位置1来发送整片擦除命令到FMC;
- 5. 等待擦除指令执行完毕,FMC_STATx寄存器的BUSY位清0;
- 6. 如果需要,使用DBUS读并验证是否擦除成功。

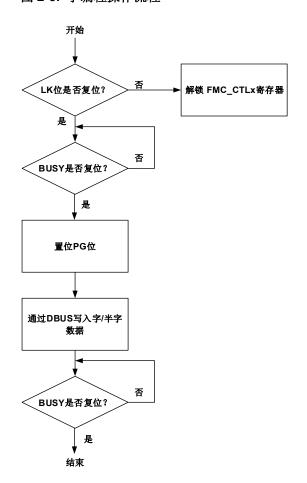
当整片擦除成功执行,FMC_STATx寄存器的ENDF位置位。若FMC_CTLx寄存器的ENDIE位被置1, FMC将触发一个中断。由于所有的闪存数据都将被复位为0xFFF_FFF,可以通过运行在SRAM中的程序或使用调试工具直接访问FMC寄存器来实现整片擦除操作。

对于主存储闪存容量多于512KB的GD32F403xx,对bank1的整片擦除操作与对bank0的整片擦除操作类似。

图2-2. 整片擦除操作流程显示了整片擦除操作流程。

图 2-2. 整片擦除操作流程

2.3.6. 主存储闪存块编程


FMC提供了一个32位整字/16位半字/位编程功能,用来修改主存储闪存块内容。编程操作使用各寄存器流程如下:

- 1. 确保FMC_CTLx寄存器不处于锁定状态;
- 2. 等待FMC STATx寄存器的BUSY位变为0;
- 3. 置位FMC CTLx寄存器的PG位;
- 4. DBUS写一个32位整字/16位半字到目的绝对地址(0x08XX XXXX);
- 5. 等待编程指令执行完毕,FMC_STATx寄存器的BUSY位清0;
- 6. 如果需要,使用DBUS读并验证是否编程成功。

当主存储块编程成功执行,FMC_STATx寄存器的ENDF位置位。若FMC_CTLx寄存器的ENDIE 位被置1, FMC将触发一个中断。需要注意的是,执行整字/半字编程操作时需要检查目的地址是否已经被擦除。如果该地址没有被擦除,对该地址写一个非0x0值,FMC_STATx寄存器的PGERR位将被置1,对该地址的编程操作无效(当写内容为0x0时,即使目的地址没有被正常擦除,也可以正确编程)。另一方面,如果目的地址在一个处于擦除和编程保护的页中,编程不会成功且FMC_STATx寄存器的WPERR位将会置位。在这两种情形下,如果FMC_CTLx寄存器的ERRIE位被置1,FMC将触发一次闪存操作错误中断。在中断服务程序中,可以检查FMC_STATx寄存器的PGERR位和WPERR位来判断哪一种错误发生了。图2-3. 字编程操作流程。流程显示了主存储块编程操作流程。

图 2-3. 字编程操作流程

对于主存储闪存容量多于512KB的GD32F403xx,对bank1的编程操作与对bank0的编程操作 类似。

注意: 当CPU进入省电模式时,对闪存的操作将失败。

2.3.7. 可选字节块擦除

FMC提供了一个擦除功能用来初始化闪存中的可选字节块。可选字节块擦除过程如下所示:

- 1. 确保FMC CTL0寄存器不处于锁定状态;
- 2. 等待FMC_STAT0寄存器的BUSY位变为0;
- 3. 解锁FMC CTLO寄存器的可选字节操作位;
- 4. 等待FMC CTL0寄存器的OBWEN位置1;
- 5. 置位FMC CTL0寄存器的OBER位;
- 6. 通过将FMC CTL0寄存器的START位置1来发送可选字节块擦除命令到FMC;
- 7. 等待擦除指令执行完毕,FMC STAT0寄存器的BUSY位清0;
- 8. 如果需要,使用DBUS读并验证是否擦除成功。

当可选字节块擦除成功执行,FMC_STAT0寄存器的ENDF位置位。若FMC_CTL0寄存器的ENDIE位被置1, FMC将触发一个中断。

2.3.8. 可选字节块编程

FMC提供擦写编程功能用来修改可选字节块内容。可选字节块共有8对可选字节。每对可选字节的高字节是低字节的补。当低字节被修改时,FMC自动生成该选项字节的高字节。字节块编程操作过程如下。

- 1. 确保FMC CTL0寄存器不处于锁定状态;
- 2. 等待FMC STAT0寄存器的BUSY位变为0;
- 3. 解锁FMC CTLO寄存器的可选字节操作位;
- 4. 等待FMC_CTL0寄存器的OBWEN位置1;
- 5. 置位FMC_CTL0寄存器的OBPG位;
- 6. DBUS写一个32位整字/16位半字到目的地址;
- 7. 等待编程指令执行完毕, FMC STAT寄存器的BUSY位清0;
- 8. 如果需要,使用DBUS读并验证是否编程成功。

当可选字节块编程成功执行,FMC_STAT0寄存器的ENDF位置位。若FMC_CTL0寄存器的ENDIE位被置1,FMC将触发一个中断。需要注意的是,执行整字/半字编程操作需要检查目的地址是否已经被擦除。如果该地址没有被擦除,对该地址写一个非0x0值,FMC_STAT0寄存器的PGERR位将被置1,对该地址的编程操作无效(当写内容为0x0时,即使目的地址没有被正常擦除,也可以正确编程)。

2.3.9. 可选字节块说明

每次系统复位后,闪存的可选字节块被重加载到FMC_OBSTAT和FMC_WP寄存器,可选字节生效。可选字节的补字节具体为可选字节取反。当可选字节被重装载时,如果可选字节的补字节和可选字节不匹配,FMC_OBSTAT寄存器的OBERR位将被置1,可选字节被强制设置为0xFF。若可选字节和其补字节同为0xFF,则OBERR位不置位。可选字节详情见表2-2. 选项字节。

表 2-2. 选项字节

地址	名称	说明
0x1fff f800	SPC	可选字节安全保护值
		0xA5: 未保护状态
		除0xA5外的任何值: 已保护状态
0x1fff f801	SPC_N	SPC补字节
0x1fff f802	USER	[7:4]: 保留
		[3]: BB
		0: 当配置为从主存储块启动时,若bank1有启动程序,从
		bank1启动,否则从bank0启动;
		1: 当配置为从主存储块启动时,从bank0启动。
		[2]: nRST_STDBY
		0: 设置特机模式时产生复位而不是进入待机模式;
		1: 设置待机模式时进入待机模式而不产生复位。
		[1]: nRST_DPSLP
		0: 设置深度睡眠模式时产生复位而不进入深度睡眠模式
		1: 设置深度睡眠模式时进入深度睡眠模式而不产生复位
		[0]: nWDG_HW
		0: 硬件使能独立看门狗功能
		1: 软件使能独立看门狗功能
0x1fff f803	USER_N	USER补字节值
0x1fff f804	DATA[7:0]	用户定义数据7到0位
0x1fff f805	DATA_N[7:0]	DATA补字节值的7到0位
0x1fff f806	DATA[15:8]	用户定义数据15到8位
0x1fff f807	DATA_N[15:8]	DATA补字节值的15到8位
0x1fff f808	WP[7:0]	页擦除/编程保护值的7到0位
		0: 保护生效
		1: 未保护
0x1fff f809	WP_N[7:0]	WP补字节值的7到0位
0x1fff f80a	WP[15:8]	页擦除/编程的保护值的15到8位
0x1fff f80b	WP_N[15:8]	WP补字节值的15到8位
0x1fff f80c	WP[23:16]	页擦除/编程的保护值的23到16位
0x1fff f80d	WP_N[23:16]	WP补字节值的23到16位
0x1fff f80e	WP[31:24]	页擦除/编程的保护值的31到24位
		WP[30:24]:每个bit可设置4KB闪存的保护状态。第0位设置前
		4KB闪存的保护状态,以此类推。这31位总计可设置前124KB
		的闪存保护状态。
		WP[31]: 第31位可设置闪存剩下部分的保护状态。
0x1fff f80f	WP_N[31:24]	WP补字节值的31到24位

2.3.10. 页擦除/编程保护

FMC的页擦除/编程保护功能可以阻止对闪存的意外操作。当FMC对被保护页进行页擦除或编

程操作时,操作本身无效且FMC_STAT寄存器的WPERR位将被置1。如果WPERR位被置1且FMC_CTL寄存器的ERRIE位也被置1来使能相应的中断,FMC将触发闪存操作出错中断,等待CPU处理。配置可选字节块的WP[31:0]某位为0可以单独使能某几页的保护功能。如果在可选字节块执行了擦除操作,所有的闪存页擦除和编程保护功能都将失效。当可选字节的WP被改变时,需要系统复位使之生效。

2.3.11. 安全保护

FMC提供了一个安全保护功能来阻止非法读取闪存。此功能可以很好地保护软件和固件免受非法的用户操作。

未保护状态: 当将SPC字节和它的补字节被设置为0x5AA5,系统复位以后,闪存将处于非安全保护状态。主存储块和可选字节块可以被所有操作模式访问。

已保护状态:当设置SPC字节和它的补字节值为任何除0x5AA5外的值,系统复位以后,安全保护状态生效。需要注意的是,若该修改过程中,MCU的调试模块依然和外部JTAG/SWD设备相连,需要用上电复位代替系统复位以使得修改后的保护状态生效。在安全保护状态下,主存储闪存块仅能被用户代码访问且前4KB的闪存自动处于页擦除/编程保护状态下。在调试模式下,或从SRAM中启动时,以及从boot loader区启动时,这些模式下对主存储块的操作都被禁止。如果在这些模式下读主存储块,将产生总线错误。如果在这些模式下,对主存储块进行编程或擦除操作,FMC_STAT寄存器的WPERR位将被置1。但这些模式下都可以对可选字节块进行操作,从而可以通过该方式失能安全保护功能。如果将SPC字节和它的补字节设置为0x5AA5,安全保护功能将失效,并自动触发一次整片擦除操作。

2.4. FMC 寄存器

FMC基地址: 0x4002 2000

2.4.1. 等待状态寄存器 (FMC_WS)

地址偏移: 0x00

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留											\	WSCNT[2:0]	

rw

位/位域	名称	描述
31:3	保留	必须保持复位值。
2:0	WSCNT[2:0]	等待状态计数寄存器 软件置1和清0,FMC_WSEN寄存器的WSEN位被置1时WSCNT位有效。 000:不增加等待状态 001:增加1个等待状态 010:增加2个等待状态 011~111:保留

2.4.2. 解锁寄存器 (FMC_KEY0)

地址偏移: 0x04

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	KEY[31:16]														
	w														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	KEY[15:0]														

W

位/位域	名称	描述
31:0	KEY[31:0]	FMC_CTL0解锁寄存器
		这些位仅能被软件写。
		写解锁值到KEY[31:0]可以解锁EMC, CTLO寄存器。

2.4.3. 选项字节操作解锁寄存器(FMC_OBKEY)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	OBKEY[31:16]														
	w														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OBKEY[15:0]														

w

位/位域 名称 描述

31:0 OBKEY[31:0] FMC_CTL0可选字节操作解锁寄存器

这些位仅软件可写。

写解锁值到OBKEY[31:0]解锁FMC_CTL0寄存器的可选字节命令。

2.4.4. 状态寄存器 0 (FMC_STAT0)

地址偏移: 0x0C

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
															r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留										WPERR	保留	PGERR	保留	BUSY
										rc_w1	rc_w1		rc_w1		rc_w1

位/位域	名称	描述
31:6	保留	必须保持复位值。
5	ENDF	操作结束标志位 操作成功执行后,此位被硬件置1,软件写1清0。
4	WPERR	擦除/编程保护错误标志位 在受保护的页上擦除/编程操作时,此位被硬件置1。软件写1清0。
3	保留	必须保持复位值。
2	PGERR	编程错误标志位 当被编程区域状态不为OxFFFF时,对闪存编程,此位被硬件置1。软件写1清0。

 1
 保留
 必须保持复位值。

0 BUSY 闪存忙标志

当闪存操作正在进行时,此位被置1。当操作结束或者出错,此位被清0。

2.4.5. 控制寄存器 0 (FMC_CTL0)

地址偏移: 0x10

复位值: 0x0000 0080

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		ENDIE	保留	ERRIE	OBWEN	保留	LK	START	OBER	OBPG	保留	MER	PER	PG
			rw.		nw.	rw.		re	re	nw.	ru.		nw.	r)A/	r)A/

n .n .n	t. mt	18.5
位/位域	名称	描述
31:13	保留	必须保持复位值。
12	ENDIE	操作结束中断使能位 软件置1和清0。 0: 无硬件中断产生 1: 使能操作结束中断
11	保留	必须保持复位值。
10	ERRIE	出错中断使能位 软件置1和清0。 0: 无硬件中断产生 1: 使能出错中断
9	OBWEN	可选字节擦除/编程使能位 当正确的序列写入FMC_OBKEY寄存器,此位由硬件置1。此位可以被软件清0。
8	保留	必须保持复位值。
7	LK	FMC_CTL0寄存器锁定标志位 当正确的序列写入FMC_KEY0寄存器,此位由硬件清0。此位可以由软件置1。
6	START	向FMC发送擦除命令位 软件置1可以发送擦除命令到FMC。当BUSY位被清0时,此位由硬件清0。
5	OBER	可选字节擦除命令位 软件置1和清0。 0: 无作用 1: 可选字节擦除命令

			0 0 2 2 2 7 1 3 7	4 /4/4
OBPG	可选字节编程命令位			
	软件置1和清0。			
	0: 无作用			
	1: 可选字节编程命令			
保留	必须保持复位值。			
MER	主存储块整片擦除命令位			
	软件置1和清0。			
	0: 无作用			
	1: 主存储块整片擦除命令			
PER	主存储块页擦除命令位			
	软件置1和清0。			
	0: 无作用			
	1: 主存储块页擦除命令			
PG	主存储块编程命令位			
	软件置1和清0。			
	0: 无作用			
	1: 主存储块编程命令			
	保留 MER PER	软件置1和清0。 0: 无作用 1: 可选字节编程命令 必须保持复位值。 MER 主存储块整片擦除命令位软件置1和清0。 0: 无作用 1: 主存储块更擦除命令位软件置1和清0。 0: 无作用 1: 主存储块项擦除命令 PG 主存储块编程命令位软件置1和清0。 0: 无作用 1: 主存储块编程命令位软件置1和清0。 0: 无作用	OBPG 可选字节编程命令位 软件置1和清0。 0:无作用 1:可选字节编程命令 保留 必须保持复位值。 MER 主存储块整片擦除命令位 软件置1和清0。 0:无作用 1:主存储块整片擦除命令 PER 主存储块页擦除命令位 软件置1和清0。 0:无作用 1:主存储块编程命令位 软件置1和清0。 0:无作用 1:至存储块编程命令位 软件置1和清0。 0:无作用	软件置1和清0。 0: 无作用 1: 可选字节编程命令 保留 必须保持复位值。 MER 主存储块整片擦除命令位软件置1和清0。 0: 无作用 1: 主存储块剪擦除命令位软件置1和清0。 0: 无作用 1: 主存储块剪擦除命令 PG 主存储块编程命令位软件置1和清0。 0: 无作用 0: 无作用

注意: 当相应闪存操作完成后, 该寄存器需处于复位状态。

2.4.6. 地址寄存器 0 (FMC_ADDR0)

地址偏移: 0x14

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADDR	[31:16]							
							V	٧							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ADDR	[15:0]							

w

位/位域	名称	描述
31:0	ADDR[31:0]	闪存擦除或编程地址
		该位通过软件设置。
		ADDR 位是闪存擦除命令的地址。

2.4.7. 选项字节状态寄存器 (FMC_OBSTAT)

地址偏移: 0x1C

复位值: 0x0XXX XXXX

		该寄存	F器只能	*接字(3	32位)访	问														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
		保	:留							DATA	A[15:6]									
r																				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
		DATA	A[5:0]						USE	R[7:0]				SPC	OBERR					
•										-										

位/位域	名称	描述
31:26	保留	必须保持复位值。
25:10	DATA[15:0]	系统复位后保存可选字节块的DATA[15:0]部分
9:2	USER[7:0]	系统复位后保存可选字节块的USER字节
1	SPC	安全保护状态 0:未保护 1:已保护
0	OBERR	可选字节读错误位 当可选字节和它的补字节不匹配时此位由硬件置1,可选字节被强制设置为 0xFF 。

2.4.8. 擦除/编程保护寄存器 (FMC_WP)

地址偏移: 0x20

复位值: 0xXXXX XXXX

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							WP[3	1:16]							
							ı	r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							WP[15:0]							

 位/位域
 名称
 描述

 31:0
 WP[31:0]
 系统复位后保存可选字节块的WP[31:0]部分。

2.4.9. 解锁寄存器 1 (FMC_KEY1)

地址偏移: 0x44

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[31:16]

W
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[15:0]

W

 位/位域
 名称
 描述

 31:0
 KEY[31:0]
 FMC_CTL1解锁寄存器

 这些位仅能被软件写。
 写解锁值到KEY[31:0]可以解锁 FMC_CTL1寄存器。

2.4.10. 状态寄存器 1 (FMC_STAT1)

地址偏移: 0x4C

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保	:留					ENDF	WPERR	保留	PGERR	保留	BUSY
										rc w1	rc w1		rc w1		rc w1

位/位域	名称	描述
31:6	保留	必须保持复位值。
5	ENDF	操作结束标志位 操作成功执行后,此位被硬件置1。软件写1清0。
4	WPERR	擦除/编程保护错误标志位 在受保护的页上擦除/编程操作时,此位被硬件置1。软件写1清0。
3	保留	必须保持复位值。
2	PGERR	编程错误标志位 当被编程区域状态不为0xFFFF时,对闪存编程,此位被硬件置1。软件写1清0。
1	保留	必须保持复位值。
0	BUSY	闪存忙标志 当闪存操作正在进行时,此位被置1。当操作结束或者出错,此位被清0。

2.4.11. 控制寄存器 1 (FMC_CTL1)

地址偏移: 0x50

复位值: 0x0000 0080

GD32F403xx 用户手册

	该寄存器只能按字(32位)访问														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		ENDIE	保留	ERRIE	保	留	LK	START		保留		MER	PER	PG
			rw		rw			rs	rs				rw	rw	rw

位/位域	名称	描述
31:13	保留	必须保持复位值。
12	ENDIE	操作结束中断使能位 软件置1和清0。 0: 无硬件中断产生 1: 使能操作结束中断
11	保留	必须保持复位值。
10	ERRIE	出错中断使能位 软件置1和清0。 0: 无硬件中断产生 1: 使能出错中断
9:8	保留	必须保持复位值。
7	LK	FMC_CTL1寄存器锁定标志位 当正确的序列写入FMC_KEY1寄存器,此位由硬件清0。此位可以由软件置1。
6	START	发送擦除命令到FMC位 软件置1可以发送擦除命令到FMC。当BUSY位被清0时,此位由硬件清0。
5:3	保留	必须保持复位值。
2	MER	主存储块整片擦除命令位 软件置1和清0。 0: 无作用 1: 主存储块整片擦除命令
1	PER	主存储块页擦除命令位 软件置1和清0。 0: 无作用 1: 主存储块页擦除命令
0	PG	主存储块编程命令位 软件置1和清0。 0: 无作用 1: 主存储块编程命令

注意: 当相应闪存操作完成后,该寄存器需处于复位状态。

2.4.12. 地址寄存器 1 (FMC_ADDR1)

地址偏移: 0x54

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADDR	[31:16]							
							٧	v							<u>.</u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ADDF	R[15:0]							

۱۸/

位/位域 名称 描述

31:0 ADDR[31:0] 闪存擦除或编程地址

该位通过软件设置。

ADDR 位是闪存擦除命令的地址

2.4.13. 等待状态使能寄存器 (FMC_WSEN)

地址偏移: 0xFC

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保	留							BPEN	WSEN

位/位域 名称 描述 31:2 必须保持复位值。 保留 **BPEN** FMC位编程功能使能寄存器 1 此位由软件置1和清0。 0: 无效, 写操作必须检测闪存操作页全为FF 1: 写操作不需要检测闪存操作页全为FF,FMC可以按位编程,写入数据和存储在 闪存中数据进行逻辑与操作 **WSEN** FMC等待状态使能寄存器 0 此位由软件置1和清0。此位也被FMC_KEYx寄存器保护。需要写0x45670123和 0xCDEF89AB到FMC_KEYx寄存器。 0: 从闪存取指无等待状态 1: 从闪存取指增加等待状态

2.4.14. 产品 ID 寄存器 (FMC_PID)

地址偏移: 0x100

复位值: 0xXXXX XXXX

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PID[3	31:16]							
	r														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PID[15:0]							

r

位/位域 名称 描述

31:0 PID[31:0]

产品保留ID寄存器

该寄存器为只读。

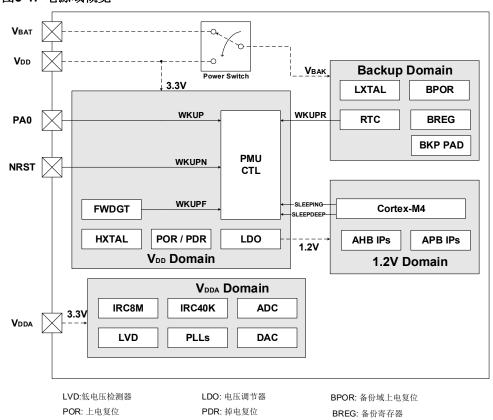
上电后这些位始终不会改变, 该寄存器在生产过程中被一次性编程。

3. 电源管理单元(PMU)

3.1. 简介

功耗设计是GD32F403xx系列产品比较注重的问题之一。电源管理单元提供了三种省电模式,包括睡眠模式,深度睡眠模式和待机模式。这些模式能减少电源能耗,且使得应用程序可以在CPU运行时间要求、速度和功耗的相互冲突中获得最佳折衷。如*图3-1. 电源域概览*所示,GD32F403xx系列设备有三个电源域,包括VDD/VDDA域,1.2V域和备份域。VDD/VDDA域由电源直接供电。在VDD/VDDA域中嵌入了一个LDO,用来为1.2V域供电。在备份域中有一个电源切换器,当VDD电源关闭时,电源切换器可以将备份域的电源切换到VBAT引脚,此时备份域由VBAT引脚(电池)供电。

3.2. 主要特征


- 三个电源域:备份域、VDD / VDDA域和1.2V电源域;
- 三种省电模式: 睡眠模式、深度睡眠模式和待机模式;
- 内部电压调节器(LDO)提供1.2V电源;
- 提供低电压检测器(LVD),当电压低于所设定的阈值时能发出中断或事件;
- 当VDD供电关闭时,由VBAT(电池)为备份域供电;
- LDO输出电压用于节约能耗;
- 低驱动模式用于在深入睡眠模式下超低功耗。高驱动模式用在高频模式中。

3.3. 功能说明

图3-1. 电源域概览提供了PMU及相关电源域的内部结构框图。

图3-1. 电源域概览

3.3.1. 电池备份域

电池备份域由内部电源切换器来选择V_{DD}供电或V_{BAT}(电池)供电,然后由V_{BAK}为备份域供电,该备份域包含RTC(实时时钟)、LXTAL(低速外部晶体振荡器)、BPOR(备份域上电复位)、BREG(备份寄存器),以及PC13至PC15共3个BKP PAD。为了确保备份域中寄存器的内容及RTC正常工作,当V_{DD}关闭时,V_{BAT}引脚可以连接至电池或其他电源等备份源供电。电源切换器是由V_{DD} / V_{DDA}域掉电复位电路控制的。对于没有外部电池的应用,建议将V_{BAT}引脚通过100nF的外部陶瓷去耦电容连接到V_{DD}引脚上。

备份域的复位源包括备份域上电复位和备份域软件复位。在VBAK没有完全上电前,BPOR信号强制设备处于复位状态。应用软件可以通过设置RCU_BDCTL寄存器BKPRST位来触发备份域软件复位。

RTC的时钟源可以是低速内部RC振荡器(IRC40K)或低速外部晶体振荡器(LXTAL),或高速外部晶体振荡器(HXTAL)时钟128分频。当VD放关闭时,RTC只能选择LXTAL作为时钟源。在通过WFI/WFE指令进入省电模式之前,Cortex®-M4需要通过RTC寄存器设置预期的唤醒时间并启用唤醒功能,以实现RTC定时器唤醒事件。进入省电模式一定时间之后,当经过的时间与预设的唤醒时间匹配时,RTC将唤醒设备。RTC的配置和操作的细节将在*实时时钟(RTC)*

来描述。

当备份域由VDD供电(VBAK连接至VDD)时,以下功能可用:

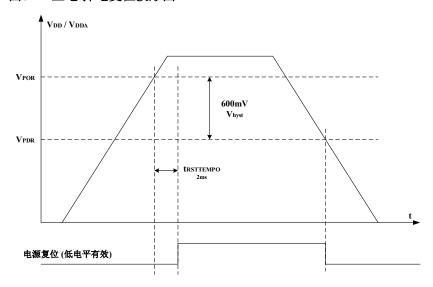
- PC13可以作为通用I/O口或RTC功能引脚(参见*实时时钟(RTC)*);
- PC14和PC15可以作为通用I/O口或LXTAL晶振引脚。

当备份域由VBAT电源供电时(VBAK连接至VBAT),以下功能可用:

- PC13仅可以作为RTC功能引脚(参见*实时时钟(RTC)*);
- PC14和PC15仅可作为LXTAL晶振引脚。

注意:由于PC13至PC15引脚是通过电源切换器供电的,电源切换器仅可通过小电流,因此当PC13至PC15的GPIO口在输出模式时,其工作的速度不能超过2MHz(最大负载为30Pf)。

3.3.2. VDD / VDDA 电源域


VDD / VDDA 域包括 VDD 域和 VDDA 域两部分。VDD 域包括 HXTAL(高速外部晶体振荡器)、LDO(电压调节器)、POR / PDR(上电/掉电复位)、FWDGT(独立看门狗定时器)和除 PC13、PC14 和 PC15 之外的所有 PAD 等等。VDDA 域包括 ADC / DAC(AD / DA 转换器)、IRC8M(内部 8M RC 振荡器)、IRC48M(内部 48M RC 振荡器)、IRC40K(内部 40KHz RC 振荡器)PLLs(锁相环)和 LVD(低电压检测器)等等。

VDD域

为 1.2V 域供电的 LDO (电压调节器), 其复位后保持使能。可以被配置为三种不同的工作状态:包括睡眠模式(全供电状态)、深度睡眠模式(全供电或低功耗状态)和待机模式(关闭状态)。

POR / PDR (上电/掉电复位) 电路检测 V_{DD} / V_{DDA} 并在电压低于特定阈值时产生电源复位信号复位除备份域之外的整个芯片。 **图 3-2.** 上电/掉电复位波形图显示了供电电压和电源复位信号之间的关系。 V_{POR} 表示上电复位的阈值电压,典型值约为 2.40V, V_{PDR} 表示掉电复位的阈值电压,典型值约为 1.8V。迟滞电压 V_{hyst} 值约为 600mV。

图3-2. 上电/掉电复位波形图



VDDA域

LVD 的功能是检测 VDD / VDDA 供电电压是否低于低电压检测阈值,该阈值由电源控制寄存器(PMU_CTL)中的 LVDT[2:0]位进行配置。LVD 通过 LVDEN 置位使能,位于电源状态寄存器(PMU_CS)中的 LVDF 位表示低电压事件是否出现,该事件连接至 EXTI 的第 16 线,用户可以通过配置 EXTI 的第 16 线产生相应的中断。图 3-3. LVD 阈值波形图显示了 VDD / VDDA 供电电压和 LVD 输出信号的关系。(LVD 中断信号依赖于 EXTI 第 16 线的上升或下降沿配置)。迟滞电压 Vhyst 值为 100mV。

图3-3. LVD阈值波形图

一般来说,数字电路由 V_{DD} 供电,而大多数的模拟电路由 V_{DDA} 供电。为了提高 ADC 和 DAC 的转换精度,为 V_{DDA} 独立供电可使模拟电路达到更好的特性。为避免噪声,V_{DDA} 通过外部滤波电路连接至 V_{DD},相应的 V_{SSA} 通过特定电路连接至 VSS。否则,当 VDD/VDDA 不是同一个电源提供时,在上电和运行过程中 VDD 与 VDDA 差值不超过 0.3V。

为提高 ADC 和 DAC 的精度,可将独立的外部参考电压连接至 ADC / DAC 引脚 VREF+ / VREF-。根据不同的封装, VREF+可被连接至 VDDA 引脚,或者外部参考电压,外部参考电压的范围请参考 表 12-2. ADC 引脚输入定义和表 13-1. DAC 引脚, VREF-须被连接至 VSSA 引脚, VREF-引脚仅存在于不小于 100-pin 封装上,而在 64-pin 或更少引脚封装不存在,因其内部已经连接至 VDDA 和 VSSA。 VREF-仅存在于不小于 100-pin 封装上,在其他封装里,其内部连接至 VSSA。

3.3.3. 1.2V 电源域

1.2V 电源域为 Cortex®-M4 内核逻辑、AHB / APB 外设、备份域和 VDD / VDDA 域的 APB 接口等供电。当 1.2V 电压上电后,POR 将在 1.2V 域中产生一个复位序列,复位完成后,如果要进入指定的省电模式,须先配置相关的控制位,之后一旦执行 WFI 或 WFE 指令,设备便进入该省电模式。关于这方面的详细内容,将在以下章节予以说明。

高驱动模式

如果 1.2V 电源域工作在高频状态下,且打开了多种功能,建议进入高驱动模式。使用高驱动

模式有以下步骤:

- 选择系统时钟为IRC8M或HXTAL;
- 将PMU CTL寄存器的HDEN置1,使能高驱动模式;
- 等待PMU_CS寄存器的HDRF被置位;
- 将PMU CTL寄存器的HDS置1,将LDO切换到高驱动模式;
- 等待PMU CS寄存器的HDSRF被置位。进入高驱动模式;
- 工作在高频状态。

在选择 IRC8M 或 HXTAL 作为系统时钟后,可以通过将 PMU_CTL 寄存器的 HDEN 和 HDS 清 0 退出高驱动模式。当系统退出深度睡眠模式,将会自动退出高驱动模式。

3.3.4. 省电模式

系统复位或电源复位后,GD32F403xx MCU 处于全功能状态且电源域全部处于供电状态。实现较低的功耗的方法有三种:减慢系统时钟(HCLK, PCLK1, PCLK2),关闭未使用的外设的时钟或通过 PMU_CTL 寄存器的 LDOVS 来配置 LDO 输出电压。LDOVS 只有在 PLL 关闭情况下才可以配置,在 PLL 打开时,被配置的 LDO 输出电压才会被用来驱动 1.2V 电源域。当 PLL 关闭时,LDO 输出低电压模式驱动 1.2V 电源域。此外,三种省电模式可以实现更低的功耗,它们是睡眠模式、深度睡眠模式和待机模式。

睡眠模式

睡眠模式与 Cortex®-M4 的 SLEEPING 模式相对应。在睡眠模式下,仅关闭 Cortex®-M4 的时钟。如需进入睡眠模式,只要清除 Cortex®-M4 系统控制寄存器中的 SLEEPDEEP 位,并执行一条 WFI 或 WFE 指令即可。如果睡眠模式是通过执行 WFI 指令进入的,任何中断都可以唤醒系统。如果睡眠模式是通过执行 WFE 指令进入的,任何唤醒事件都可以唤醒系统(如果 SEVONPEND 为 1,任何中断都可以唤醒系统,请参考 Cortex®-M4 技术手册)。由于无需在进入或退出中断上消耗时间,该模式所需的唤醒时间最短。

根据 Cortex®-M4 中 SCR (系统控制寄存器)的 SLEEPONEXIT 位,有两种睡眠进入机制可选:

- Sleep-now: 如果SLEEPONEXIT位被清零,一旦执行WFI或WFE指令,MCU立即进入睡眠模式.
- Sleep-on-exit: 如果SLEEPONEXIT位被置位,当系统从最低优先级的中断处理程序离开 后,MCU立即进入睡眠模式。

深度睡眠模式

深度睡眠模式与 Cortex®-M4 的 SLEEPDEEP 模式相对应。在深度睡眠模式下,1.2V 域中的 所有时钟全部关闭,IRC8M、HXTAL 及 PLLs 也全部被禁用。SRAM 和寄存器中的内容被保留。根据 PMU_CTL 寄存器的 LDOLP 位的配置,可控制 LDO 工作在正常模式或低功耗模式。进入深度睡眠模式之前,先将 Cortex®-M4 系统控制寄存器的 SLEEPDEEP 位置 1,再清除 PMU_CTL 寄存器的 STBMOD 位,然后执行 WFI 或 WFE 指令即可进入深度睡眠模式。如果睡眠模式是通过执行 WFI 指令进入的,任何来自 EXTI 的中断可以将系统从深度睡眠模式中唤醒。如果睡眠模式是通过执行 WFE 指令进入的,任何来自 EXTI 的事件可以将系统从深度睡

眠模式中唤醒(如果 SEVONPEND 为 1,任何来自 EXTI 的中断都可以唤醒系统,请参考 Cortex®-M4 技术手册)。刚退出深度睡眠模式时,IRC8M 被选中作为系统时钟。请注意,如果 LDO 工作在低功耗模式,那么唤醒时需额外的延时时间。

在深度睡眠模式下,通过配置 PMU_CTL 寄存器的 LDEN,LDNP,LDLP,LDOLP 位可以进入低驱动模式。低驱动模式具有低驱动能力,低能耗。

正常驱动/正常功耗:将 PMU_CTL 寄存器的 LDEN 位配置为 0b00,深度睡眠模式就工作在正常驱动模式下。将 PMU_CTL 寄存器的 LDOLP 清 0 可以退出低功耗模式。

正常驱动/低功耗:将 PMU_CTL 寄存器的 LDEN 位配置为 0b00,深度睡眠模式就工作在正常驱动模式下。将 PMU CTL 寄存器的 LDOLP 置 1 可以进入低功耗模式。

低驱动/正常功耗:将 PMU_CTL 寄存器的 LDEN 设置为 0b11,LDNP 置 1 可以进入深度睡眠模式的低驱动模式。将 PMU CTL 寄存器的 LDOLP 清 0 可以使 LDO 处于正常功耗模式。

低驱动/低功耗:将 PMU_CTL 寄存器的 LDEN 设置为 0b11,LDLP 置 1 可以进入深度睡眠模式的低驱动模式。将 PMU_CTL 寄存器的 LDOLP 清 1 可以使 LDO 处于正常功耗模式。

非低驱动:将 PMU CTL 寄存器的 LDEN 设置为 0b00,深度睡眠模式将不会处在低驱动模式。

注意:为了顺利进入深度睡眠模式,所有 EXTI 线上的挂起状态(在 EXTI_PD 寄存器中)和相关外设标志位必须被复位,参考<u>表 7-3. EXTI 触发源</u>。否则,程序将直接跳过深度睡眠模式进入过程而继续执行下面的程序。

待机模式

待机模式是基于 Cortex®-M4 的 SLEEPDEEP 模式实现的。在待机模式下,整个 1.2V 域全部停止供电,同时 LDO 和包括 IRC8M、HXTAL 和 PLL 也会被关闭。进入待机模式前,先将 Cortex®-M4 系统控制寄存器的 SLEEPDEEP 位置 1,再将 PMU_CTL 寄存器的 STBMOD 位置 1,再清除 PMU_CS 寄存器的 WUF 位,然后执行 WFI 或 WFE 指令,系统进入待机模式,PMU_CS 寄存器的 STBF 位状态表示 MCU 是否已进入待机模式。待机模式有四个唤醒源,包括来自 NRST 引脚的外部复位,RTC 报警,FWDGT 复位,WKUP 引脚的上升沿。待机模式可以达到最低的功耗,但唤醒时间最长。另外,一旦进入待机模式,SRAM 和 1.2V 电源域寄存器的内容都会丢失。退出待机模式时,会发生上电复位,复位之后 Cortex®-M4 将从 0x000000000 地址开始执行指令代码。

表3-1. 节电模式总结

模式	睡眠	深度睡眠	待机
描述	仅关闭 CPU 时钟	1、关闭 1.2V 电源域的所有 时钟 2、关闭 IRC8M、HXTAL 和 PLL	1、关闭 1.2V 电源域的供电 2、关闭 IRC8M、HXTAL 和 PLL
LDO 状态	开启(正常功耗模式、 正常驱动模式)	开启(正常功耗模式或低功耗 模式、正常驱动模式或低驱动 模式)	
配置	SLEEPDEEP = 0	SLEEPDEEP = 1 STBMOD = 0	SLEEPDEEP = 1 STBMOD = 1, WURST = 1
进入指令	WFI 或 WFE	WFI 或 WFE	WFI 或 WFE

GD32F403xx 用户手册

模式	睡眠	深度睡眠	待机
唤醒	若通过 WFI 进入,则任何中断均可唤醒; 若通过 WFE 进入,则任何事件(或 SEVONPEND = 1 时的中断)均可唤醒	若通过 WFI 进入,来自 EXTI 的任何中断可唤醒;若通过 WFE 进入,来自 EXTI 的任何事件(或 SEVONPEND = 1 时的中断)可唤醒	1. NRST 引脚 2. WKUP 引脚 3. FWDGT 复位 4. RTC
唤醒延迟	无	IRC8M 唤醒时间 如果 LDO 处于低功耗模式, 需增加 LDO 唤醒时间	上电序列

注意: 在待机模式下,除了 NRST 引脚,配置为 RTC 功能的 PC13,用作 LXTAL 晶振引脚的 PC14 和 PC15,使能的 WKUP 引脚,其他所有 I/O 都处于高阻态。

3.4. PMU 寄存器

PMU 基地址: 0x4000 7000

3.4.1. 控制寄存器 (PMU_CTL)

地址偏移: 0x00

复位值: 0x0000 C000 (从待机模式唤醒后复位)

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					保	留						LDE	N[1:0]	HDS	HDEN
												r	w	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LDOV	S[1:0]	保	留	LDNP	LDLP	保留	BKPWEN		LVDT[2:0]		LVDEN	STBRST	WURST	STBMOD	LDOLP
rs	8			rw	rw		rw		rw		rw	rc_w1	rc_w1	rw	rw

位/位域	名称	描述
31:20	保留	必须保持复位值。
19:18	LDEN[1:0]	深度睡眠模式下,低驱动模式使能 00:在深度睡眠模式下,禁用低驱动模式 01:保留 10:保留 11:在深度睡眠模式下,使能低驱动模式
17	HDS	高驱动模式切换器 选择 IRC8M 或 HXTAL 作为系统时钟, 当 HDRF 被置位时,由软件将该位置 1。该位被置位后,系统进入高驱动模式。可由软件清 0,也可在退出深度睡眠模式或 HDEN 被清 0 时由硬件清 0。 0. 没有高驱动模式切换器 1. 有高驱动模式切换器
16	HDEN	高驱动模式使能 当系统时钟为 IRC8M 或 HXTAL 时,该位由软件置位。该位可由软件清零或当系统 退出深度睡眠模式由硬件清零。 0: 禁用高驱动模式 1: 使能高驱动模式
15:14	LDOVS[1:0]	选择 LDO 输出 在 PLL 关闭时,这些位由软件配置,在主 PLL 使能后,LDOVS 设置的值生效。如 果主 PLL 关闭,LDO 输出低电压模式被选中。 00: 保留(LDO 输出低电压模式) 01: LDO 输出低电压模式 10: LDO 输出中电压模式

		11: LDO 输出高电压模式
13:12	保留	必须保持复位值。
11	LDNP	使用正常功耗 LDO 时,工作在低驱动模式 0:使用正常功耗 LDO 时,工作在正常驱动模式 1:使用正常功耗 LDO 且 LDEN 为 11 时,低驱动模式被使能
10	LDLP	使用低功耗 LDO 时,工作在低驱动模式 0:使用低功耗 LDO 时,工作在正常驱动模式 1:使用低功耗 LDO 且 LDEN 为 11 时,低驱动模式被使能
9	保留	必须保持复位值。
8	BKPWEN	备份域写使能 0:禁止对备份域寄存器的写访问 1:允许对备份域寄存器的写访问 复位之后,任何对备份域寄存器的写访问都将被禁止。如需对备份域寄存器做写访问,需先将该位置1。
7:5	LVDT[2:0]	低电压检测器阈值 000: 2.1V 001: 2.3V 010: 2.4V 011: 2.6V 100: 2.7V 101: 2.9V 110: 3.0V 111: 3.1V
4	LVDEN	低电压检测器使能 0: 关闭低电压检测器 1: 开启低电压检测器
3	STBRST	待机标志复位 0: 无影响 1: 复位待机标志 读该位,始终返回 0
2	WURST	唤醒标志复位0:无影响1:复位唤醒标志读该位,始终返回 0
1	STBMOD	待机模式 0: 当 Cortex®-M4 进入 SLEEPDEEP 模式时,系统进入深度睡眠模式 1: 当 Cortex®-M4 进入 SLEEPDEEP 模式时,系统进入待机模式
0	LDOLP	LDO 低功耗模式

- 0: 当系统进入深度睡眠模式时, LDO 仍正常工作
- 1: 当系统进入深度睡眠模式时, LDO 进入低功耗模式

3.4.2. 电源控制和状态寄存器(PMU_CS)

地址偏移: 0x04

复位值: 0x0000 0000 (从待机模式唤醒后不复位)

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					保	留						LDRF	[1:0]	HDSRF	HDRF
												rc_	w1	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	LDOVSR			保留			WUPEN			保留			LVDF	STBF	WUF
休田	F			休田			WUPEN			休田			LVDF	SIBF	WUF
	r						rw						r	r	r

位/位域	名称	描述
31:20	保留	必须保持复位值。
19:18	LDRF[1:0]	低驱动模式就绪标志 在深度睡眠模式下,且 LDO 处于低驱动模式,这些位由硬件设置。软件对这些位写 11 可以清 0。 00: 深度睡眠模式下,普通驱动模式 01: 保留 10: 保留 11: 深度睡眠模式下,低驱动模式
17	HDSRF	高驱动切换器就绪标志 0: 高驱动切换器未就绪 1: 高驱动切换器就绪
16	HDRF	高驱动准备就绪标志 0: 高驱动未就绪 1: 高驱动就绪
15	保留	必须保持复位值。
14	LDOVSRF	LDO 电压选择就绪标志 0: LDO 电压选择未就绪 1: LDO 电压选择就绪
13:9	保留	必须保持复位值。
8	WUPEN	WKUP 引脚唤醒使能 0: 关闭 WKUP 引脚唤醒功能 1: 开启 WKUP 引脚唤醒功能

GD32F403xx 用户手册

digabevice		GD321 403XX 用/ 于加
		如果 WUPEN 在进入待机模式之前置 1, WKUP 引脚的上升沿会将系统从待机模式唤醒。由于 WKUP 引脚为高电平有效,WKUP 引脚内部被配置为输入下拉模式。当
		置位该控制位后,当输入为高的时候,将会触发一个唤醒事件。
7:3	保留	必须保持复位值。
2	LVDF	低电压状态标志
		0: 低电压事件没出现(V _{DD} 高于设定的 LVD 阈值)
		1: 低电压事件出现(V _{DD} 等于或低于 LVD 阈值)
		注意: LVD 功能在待机模式被禁用。
1	STBF	待机标志
		0: 设备没进入过待机模式
		1: 设备曾进入过待机模式
		该位只能由 POR / PDR 或通过设置 PMU_CTL 寄存器的 STBRST 位来清零。
0	WUF	唤醒标志
		0: 没有收到唤醒事件
		1: 收到来自 WKUP 引脚或 RTC 闹钟事件。
		该位只能由 POR / PDR 或通过设置 PMU CTL 寄存器的 STBRST 位来清零。

4. 备份寄存器(BKP)

4.1. 简介

位于备份域中的备份寄存器可在 VDD 电源关闭时由 VBAT 供电,备份寄存器有 42 个 16 位(84 字节)寄存器可用来存储并保护用户应用数据,从待机模式唤醒或系统复位也不会对这些寄存器造成影响。

此外,BKP 寄存器也可实现侵入检测和RTC 校准功能。

在复位之后,任何对备份域寄存器的写操作都将被禁止,也就是说,备份寄存器和 RTC 不允许写访问。为使能对备份寄存器和 RTC 的写访问,首先通过设置 RCU_APB1EN 寄存器的 PMUEN 和 BKPIEN 位来打开电源和备份接口时钟,然后再通过设置 PMU_CTL 寄存器的 BKPWEN 位来使能对备份域中寄存器的写访问。

4.2. 主要特点

- 84字节备份寄存器用来在省电模式下保护数据。如果侵入事件发生,备份寄存器会被复位
- 侵入源(PC13)的有效电平可配置
- RTC时钟校准寄存器可提供RTC闹钟或秒输出选择,及设置校准值的功能
- 侵入控制状态寄存器(BKP TPCS)可实现侵入检测中断或事件的控制

4.3. 功能描述

4.3.1. RTC 时钟校准

为提高RTC时钟精度,MCU提供时钟输出校准功能。RTC时钟或者RTC时钟经64分频后作为输出至PC13。通过设置BKP_OCTL寄存器中的COEN位来使能此功能。

校准值通过BKP_OCTL寄存器中的RCCV[6:0]设置,校准功能可实现以1000000/2^20ppm的比例减慢RTC时钟。

4.3.2. 侵入检测

MCU提供侵入检测功能以保护重要的用户数据,可通过设置BKP_TPCTL寄存器中的TPEN位来使能TAMPER引脚对应的功能。为防止侵入事件的丢失,边沿检测信号与TPEN位的逻辑与作为侵入检测信号的输入,因此在TAMPER引脚使能之前,侵入检测应该被配置。当侵入事件被检测到,对应的BKP_TPCS寄存器中的TEF位被置位。如果侵入中断被使能,侵入事件可以产生一个中断。任何侵入事件将会复位所有备份数据寄存器。

注意: 当TPAL=0/1,如果TAMPER引脚在使能(通过设置TPEN位)之前已经为高/低,尽管TAMPER引脚上没有上升/下降沿信号,一个额外的侵入事件将会发生。

4.4. BKP 寄存器

4.4.1. 备份数据寄存器 (BKP_DATAx) (x= 0..41)

地址偏移: 0x04到0x28, 0x40到0xBC

复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [15:0]

....

位/位域 名称 描述

15:0 DATA[15:0] 备份数据

这些位用来存储一般用户数据。即使从待机模式唤醒或系统复位或电源复位后,

BKP_DATAx 寄存器的内容仍旧不会丢失。

4.4.2. RTC 信号输出控制寄存器 (BKP_OCTL)

地址偏移: 0x2C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

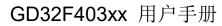
 CALDIR
 CCOSEL
 GRED
 ROSEL
 ASOEN
 COEN
 RCCV[6:0]

位/位域 名称 描述 RTC 时钟校方向 CALDIR 15 0: 变慢 1: 变快 该位只能被备份域复位清除。 **CCOSEL** RTC 时钟输出选择 14 0: RTC 时钟 64 分频 1: RTC 时钟 该位只能被上电复位(POR)清除。 必须保持复位值。 13:10 保留 **ROSEL** RTC 输出选择 9 0: RTC 输出为闹钟脉冲 1: RTC 输出为秒脉冲

该位只能被备份域复位清除。 **ASOEN** RTC 闹钟或秒信号输出使能 8 0: RTC 闹钟或秒信号输出禁止 1: RTC 闹钟或秒信号输出使能 使能后, TAMPER 引脚可作为 RTC 输出。 该位只能被备份域复位清除。 COEN RTC 时钟校准输出使能 7 0: RTC 时钟校准输出禁止 1: RTC 时钟校准输出使能 使能后,TAMPER 引脚输出 RTC 时钟或 RTC 时钟的 64 分频。ASOEN 位优先于 COEN 位, 当 ASOEN 位置位时,不管 COEN 置位与否,TAMPER 引脚作为 RTC 闹钟或秒信号输出。 该位只能被上电复位 (POR) 清除。 6:0 RCCV[6:0] RTC 时钟校准值 该值表示在每 2^20 个时钟脉冲内将有多少个时钟脉冲被忽略。 该位只能被备份域复位清除。

4.4.3. 侵入引脚控制寄存器 (BKP_TPCTL)

地址偏移: 0x30 复位值: 0x0000


该寄存器可以按半字(16位)或字(32位)访问

保留 TPAL TPEN	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保	留							TPAL	TPEN

位/位域 描述 名称 必须保持复位值。 15:2 保留 **TPAL** TAMPER 引脚有效电平 0: TAMPER 引脚高电平有效 1: TAMPER 引脚低电平有效 0 **TPEN** TAMPER 引脚使能 0: TAMPER 引脚作为 GPIO 口使用 1: TAMPER 引脚可实现备份复位功能。TAMPER 引脚上的有效电平将复位 BKP_DATAx 寄存器中所有数据。

4.4.4. 侵入控制状态寄存器 (BKP_TPCS)

地址偏移: 0x34 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	留			TIF	TEF			保留			TPIE	TIR	TER
						r	r						ru.	VA /	14/

位/位域	名称	描述
15:10	保留	必须保持复位值。
9	TIF	侵入中断标志 0: 没有侵入中断发生 1: 有侵入中断发生 该位可通过 TIR 位置 1 或 TPIE 位置 0 来清零。
8	TEF	侵入事件标志 0: 没有侵入事件发生 1: 有侵入事件发生 该位可通过对 TER 为写 1 来清零。
7:3	保留	必须保持复位值。
2	TPIE	侵入中断使能 0: 侵入中断禁用 1: 侵入中断使能 该位仅可通过系统复位或待机模式唤醒后复位。
1	TIR	侵入中断复位 0:不影响 1:复位 TIF 位 该位一直读为 0。
0	TER	侵入事件复位 0: 不影响 1: 复位 TEF 位 该位一直读为 0。

5. 复位和时钟单元(RCU)

5.1. 复位控制单元(RCTL)

5.1.1. 简介

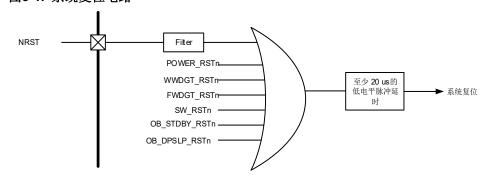
GD32F403复位控制包括三种控制方式:电源复位、系统复位和备份域复位。电源复位又称为冷复位,其复位除了备份域的所有系统。系统复位将复位除了SW-DP控制器和备份域之外的其余部分,包括处理器内核和外设IP。备份域复位将复位备份区域。复位能够被外部信号、内部事件和复位发生器触发。后续章节将介绍关于这些复位的详细信息

5.1.2. 功能描述

电源复位

当发生以下任一事件时,产生电源复位:上电/掉电复位(POR/PDR 复位),从待机模式中返回后由内部复位发生器产生。电源复位复位所有的寄存器除了备份域。电源复位为低电平有效,当内部LDO电源基准准备好提供1.2V电压时,电源复位电平将变为无效。复位入口向量被固定在存储器映射的地址0x0000 0004。

系统复位


当发生以下任一事件时,产生一个系统复位:

- 上电复位 (POWER RSTn);
- 外部引脚复位(NRST);
- 窗口看门狗计数终止(WWDGT RSTn);
- 独立看门狗计数终止(FWDGT RSTn);
- Cortex®-M4的中断应用和复位控制寄存器中的SYSRESETREQ位置'1'(SW RSTn);
- 用户选择字节寄存器nRST_STDBY设置为0,并且进入待机模式时将产生复位 (OB STDBY RSTn);
- 用户选择字节寄存器nRST_DPSLP设置为0,并且进入深度睡眠模式时将产生复位 (OB_DPSLP_RSTn)。

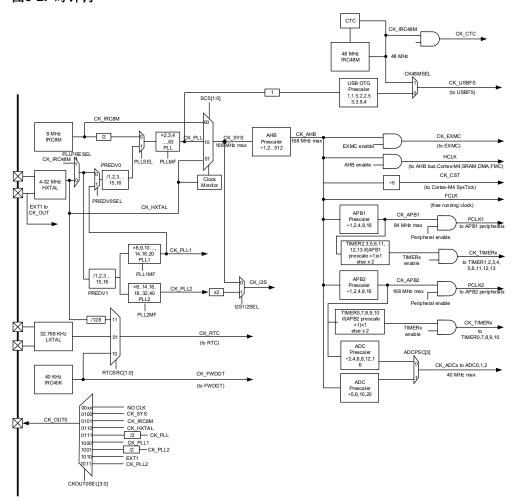
系统复位将复位除了SW-DP控制器和备份域之外的其余部分,包括处理器内核和外设IP。 系统复位脉冲发生器保证每一个复位源(外部或内部)都能有至少20µs的低电平脉冲延时。

图5-1. 系统复位电路

备份域复位

以下事件之一发生时,产生备份域复位: 1、设置备份域控制寄存器中的BKPRST位为'1'; 2、备份域电源上电复位(在VDD和VBAT两者都掉电的前提下,VDD或VBAT上电)。

5.2. 时钟控制单元(CCTL)


5.2.1. 简介

时钟控制单元提供了一系列频率的时钟功能,包括一个内部8M RC振荡器时钟(IRC8M)、一个内部48M RC 振荡器时钟(IRC48M)、一个外部高速晶体振荡器时钟(HXTAL)、一个内部40K RC振荡器时钟(IRC40K)、一个外部低速晶体振荡器时钟(LXTAL)、三个锁相环(PLL)、一个HXTAL时钟监视器、时钟预分频器、时钟多路复用器和时钟门控电路。

AHB、APB和Cortex®-M4时钟都源自系统时钟(CK_SYS),系统时钟的时钟源可以选择IRC8M、HXTAL或PLL。系统时钟的最大运行时钟频率可以达到168MHz。

图5-2. 时钟树

预分频器可以配置AHB、APB2和APB1域的时钟频率。AHB、APB2、APB1域的最高时钟频率分别为168MHz、168MHz、84MHz。RCU通过AHB时钟(HCLK)8分频后作为Cortex系统定时器(SysTick)的外部时钟。通过对SysTick控制和状态寄存器的设置,可选择上述时钟或AHB(HCLK)时钟作为SysTick时钟。

ADC时钟由APB2时钟经2、4、6、8、12、16分频或由AHB时钟经5、6、10、20分频获得,它们是通过设置RCU_CFG0和RCU_CFG1寄存器的ADCPSC位来选择。

TIMER时钟由CK_APB1和CK_APB2时钟分频获得,如果APBx(x=0,1)的分频系数不为1,则TIMER时钟为CK APBx(x=0,1)的两倍。

USBFS的时钟由CK48M时钟提供。通过配置RCU_ADDCTL寄存器的CK48MSEL及PLL48MSEL位可以选择CK PLL时钟或IRC48M时钟做为CK48M的时钟源。

CTC时钟由IRC48M时钟提供,通过CTC单元,可以实现IRC48M时钟精度的自动调整。

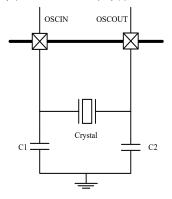
I2S的时钟由CK_SYS或PLL2*2提供,通过配置RCU_CFG1寄存器的I2SxSEL来选择。

通过配置RCU BDCTL寄存器的RTCSRC位,RTC时钟可以选择由LXTAL时钟、IRC40K时钟

或HXTAL时钟的128分频提供。RTC时钟选择HXTAL时钟的128分频做为时钟源后,当1.2V内核电压域掉电时,时钟将停止。RTC时钟选择IRC40K时钟做为时钟源后,当V_{DD}掉电时,时钟将停止。RTC时钟选择LXTAL时钟做为时钟源后,当V_{DD}和V_{BAT}都掉电时,时钟将停止。

当FWDGT启动时,FWDGT时钟被强制选择由IRC40K时钟做为时钟源。

5.2.2. 主要特性

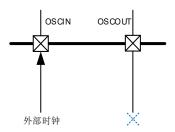

- 4到32MHz外部高速晶体振荡器(HXTAL);
- 内部8MHz RC振荡器(IRC8M);
- 内部48MHz RC振荡器:
- 32,768 Hz外部低速晶体振荡器 (LXTAL);
- 内部40KHz RC振荡器(IRC40K);
- PLL时钟源可选HXTAL、IRC8M或IRC48M;
- HXTAL时钟监视器。

5.2.3. 功能描述

外部高速晶体振荡时钟(HXTAL)

4到32M的外部高速晶体振荡器可为系统时钟提供更为精确时钟源。带有特定频率的晶体必须 靠近两个HXTAL的引脚连接。和晶体连接的外部电阻和电容必须根据所选择的振荡器来调整。

图5-3. HXTAL时钟源



HXTAL晶体振荡器可以通过设置控制寄存器RCU_CTL的HXTALEN位来启动或关闭,在控制寄存器RCU_CTL中的HXTALSTB位用来指示外部高速振荡器是否已稳定。在启动时,直到这一位被硬件置'1',时钟才被释放出来。这个特定的延迟时间被称为振荡器的启动时间。当HXTAL时钟稳定后,如果在中断寄存器RCU_INT中的相应中断使能位HXTALSTBIE位被置'1',将会产生相应中断。此时,HXTAL时钟可以被直接用作系统时钟源或者PLL输入时钟。

将控制寄存器RCU_CTL的HXTALBPS和HXTALEN位置'1'可以设置外部时钟旁路模式。旁路输入时,信号接至OSCIN,OSCOUT保持悬空状态,如*图5-4. 旁路模式下HXTAL时钟源*所示。此时,CK HXTAL等于驱动OSCIN管脚的外部时钟。

图5-4. 旁路模式下HXTAL时钟源

内部 8M RC 振荡器时钟(IRC8M)

内部8MHz RC振荡器时钟,简称IRC8M时钟,拥有8MHz的固定频率,设备上电后CPU默认选择其做为系统时钟源。IRC8M RC振荡器能够在不需要任何外部器件的条件下为用户提供更低成本类型的时钟源。IRC8M RC振荡器可以通过设置控制寄存器(RCU_CTL)中的IRC8MEN位被启动和关闭。控制寄存器RCU_CTL中的IRC8MSTB位用来指示IRC8M内部RC振荡器是否稳定。IRC8M振荡器的启动时间比HXTAL晶体振荡器要更短。如果中断寄存器RCU_INT中的相应中断使能位IRC8MSTBIE被置'1',在IRC8M稳定以后,将产生一个中断。IRC8M时钟也可用作系统时钟源或PLL输入时钟。

工厂会校准IRC8M时钟频率的精度,但是它的精度仍然比HXTAL时钟要差。用户可以根据需求、环境条件和成本决定选择哪个时钟作为系统时钟源。

如果HXTAL或者PLL被选择为系统时钟源,为了最大程度减小系统从深度睡眠模式恢复的时间, 当系统从深度睡眠模式初始唤醒时,硬件会强制IRC8M时钟作为系统时钟。

内部 48M RC 振荡器时钟 (IRC48M)

内部48MHz RC振荡器时钟,简称IRC48M时钟,拥有48MHz的固定频率,当使用USBFS模块时,IRC48M振荡器在不需要任何外部器件的条件下为用户提供了一种成本更低的时钟源选择。IRC48M RC振荡器可以通过设置RCU_ADDCTL寄存器中的IRC48MEN位被启动和关闭。RCU_ADDCTL寄存器中的IRC48MSTB位用来指示内部48MHz RC振荡器是否稳定。如果RCU_ADDINT寄存器中的相应中断使能位IRC48MSTBIE被置'1',在IRC48M稳定以后,将产生一个中断。IRC48M时钟可做为USBFS的系统时钟。

工厂会校准IRC48M时钟频率的精度,但是它的精度仍然不够精准。因为USB模块需要的时钟频率必须满足48MHz(500ppm)。CTC单元提供了一种硬件自动执行动态调整的功能将IRC48M时钟调整到需要的频率。

Phase locked loop (PLL)

CL系列的芯片,内部有三个锁相环,PLL,PLL1,PLL2。

PLL可以通过设置RCU_CTL寄存器中的PLLEN位被启动和关闭。RCU_CTL寄存器中的PLLSTB位用来指示PLL时钟是否稳定。如果RCU_INT寄存器中的相应中断使能位PLLSTBIE被置'1',在PLL稳定以后,将产生一个中断。

PLL1可以通过设置RCU CTL寄存器中的PLL1EN位被启动和关闭。RCU CTL寄存器中的

PLL1STB位用来指示PLL1时钟是否稳定。如果RCU_INT寄存器中的相应中断使能位 PLL1STBIE被置'1',在PLL1稳定以后,将产生一个中断。

PLL2可以通过设置RCU_CTL寄存器中的PLL2EN位被启动和关闭。RCU_CTL寄存器中的PLL2STB位用来指示PLL2时钟是否稳定。如果RCU_INT寄存器中的相应中断使能位PLL2STBIE被置'1',在PLL2稳定以后,将产生一个中断。

当进入Deepsleep/Standby模式或者HXTAL监视器检测到时钟阻塞时(HXTAL做为锁相环的输入时钟),三个PLL将被关闭。

外部低速晶体振荡器时钟(LXTAL)

LXTAL是一个频率为32.768kHz的外部低速晶体或陶瓷谐振器。它为实时时钟电路提供一个低功耗且高精准的时钟源。LXTAL振荡器可以通过设置备份域控制寄存器(RCU_BDCTL)中的LXTALEN位被启动和关闭。备份域控制寄存器RCU_BDCTL中的LXTALSTB位用来指示LXTAL时钟是否稳定。如果中断寄存器RCU_INT中的相应中断使能位LXTALSTBIE被置'1',在LXTAL稳定以后,将产生一个中断。

将备份域控制寄存器RCU_BDCTL的LXTALBPS和LXTALEN位置'1'可以选择外部时钟旁路模式。CK LXTAL与连到OSC32IN脚上外部时钟信号一致。

内部 40K RC 振荡器时钟 (IRC40K)

IRC40K内部RC振荡器时钟担当一个低功耗时钟源的角色,不需要外部器件,它的时钟频率大约40kHz,为独立看门狗和实时时钟电路提供时钟。IRC40K RC振荡器可以通过设置复位源/时钟寄存器RCU_RSTSCK中的IRC40KEN位被启动和关闭。复位源/时钟寄存器RCU_RSTSCK中的IRC40KSTB位用来指示IRC40K时钟是否已稳定。如果复位源/时钟寄存器RCU_RSTSCK中的相应中断使能位IRC40KSTBIE被置'1',在IRC40K稳定以后,将产生一个中断。

系统时钟(CK SYS)选择

系统复位后,IRC8M时钟默认做为CK_SYS的时钟源,改变配置寄存器0(RCU_CFG0)中的系统时钟变换位SCS可以切换系统时钟源为HXTAL或CK_PLL。当SCS的值被改变,系统时钟将使用原来的时钟源继续运行直到转换的目标时钟源稳定。当一个时钟源被直接或通过PLL间接作为系统时钟时,它将不能被停止。

HXTAL 时钟监视器 (CKM)

设置控制寄存器RCU_CTL中的HXTAL时钟监视使能位CKMEN,HXTAL可以使能时钟监视功能。该功能必须在HXTAL启动延迟完毕后使能,在HXTAL停止后禁止。一旦监测到HXTAL故障,HXTAL将自动被禁止,中断寄存器RCU_INT中的HXTAL时钟阻塞中断标志位CKMIF将被置'1',产生HXTAL故障事件。这个故障引发的中断和Cortex-M4的不可屏蔽中断NMI相连。如果HXTAL被选作系统,PLL或是RTC的时钟源,HXTAL故障将促使选择IRC8M为系统时钟源,PLL将被自动禁止,RTC的时钟源需要重新配置。

时钟输出功能

时钟输出功能输出从3MHz到168MHz的时钟。通过设置时钟配置寄存器0(RCU_CFG0)中的CK_OUT0时钟源选择位域CKOUT0SEL能够选择不同的时钟信号。相应的GPIO引脚应该被配置成备用功能I/O(AFIO)模式来输出选择的时钟信号。

表5-1. 时钟输出0的时钟源选择

时钟输出 0 的时钟源选择位域	时钟源
00xx	NO CLK
0100	CK_SYS
0101	CK_IRC8M
0110	CK_HXTAL
0111	CK_PLL/2
1000	CK_PLL1
1001	CK_PLL2/2
1010	EXT1
1011	CK_PLL2

电压控制

深度睡眠模式电压寄存器(RCU_DSV)中的DSLPVS[2:0]位域可以控制1.2V域在深度睡眠模式下的电压。

表5-2. 深度睡眠模式下1.2V域电压选择

DSLPVS[2:0]	深度睡眠模式电压(V)
000	1.0
001	0.9
010	0.8
011	0.7

5.3. RCU 寄存器

RCU 基地址: 0x4002 1000

5.3.1. 控制寄存器 (RCU_CTL)

地址偏移: 0x00

复位值: 0x0000 xx83 x表示未定义

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Ita ska	DLLOCTD	DUATN	PLL1STB	DUITEN	PLLSTB	PLL		/12	ika		CKMEN	HXTALB	HXTALST	HXTALE
	保留	PLL251B	PLLZEN	PLLISIB	PLLIEN	PLLSIB	EN		保	Ħ		CKMEN	PS	В	N
		r	rw	r	rw	r	rw					rw	rw	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			IDCOMO	:ALIB[7:0]					ID	C8MADJ[4	.01		保留	IRC8MST	IRC8MEN
			INCONIC	ALID[7:0]					ire	ColviADJ[4	.0]		体田	В	INCOMEN
				r						rw				r	rw

位/位域	名称	描述
31:30	保留	必须保持复位值。
29	PLL2STB	PLL2 时钟稳定标志位 硬件置 1 来表示 PLL2 输出时钟是否稳定待用 0: PLL2 未稳定 1: PLL2 已稳定
28	PLL2EN	PLL2 使能 软件置位或复位,当 PLL2 时钟做为系统时钟时该位不能被复位。当进入深度睡眠或待机模式时由硬件复位 0: PLL2 被关闭 1: PLL2 被打开
27	PLL1STB	PLL1 时钟稳定标志位 硬件置 1 来表示 PLL1 输出时钟是否稳定待用 0: PLL1 未稳定 1: PLL1 已稳定
26	PLL1EN	PLL1 使能 软件置位或复位,当 PLL1 时钟做为系统时钟时该位不能被复位。当进入深度睡眠或待机模式时由硬件复位。 0: PLL1 被关闭 1: PLL1 被打开
25	PLLSTB	PLL 时钟稳定标志位 硬件置 1 来表示 PLL 输出时钟是否稳定待用

Gigabevice		GD32F4U3XX 用户于册
		0: PLL 未稳定 1: PLL 已稳定
24	PLLEN	PLL 使能 软件置位或复位,当 PLL 时钟做为系统时钟时该位不能被复位。当进入深度睡眠或 待机模式时由硬件复位。 0: PLL 被关闭 1: PLL 被打开
23:20	保留	必须保持复位值。
19	CKMEN	HXTAL 时钟监视器使能 0: 禁止高速 4~32 MHz 晶体振荡器(HXTAL)时钟监视器 1: 使能高速 4~32 MHz 晶体振荡器(HXTAL)时钟监视器 当硬件检测到 HXTAL 时钟被阻塞在低或高状态时,内部硬件自动切换系统时钟到 IRC8M 时钟。恢复原来系统时钟的方式有以下几种: 外部复位,上电复位,软件清 CKMIF 位。 注意: 使能 HXTAL 时钟监视器以后,硬件无视控制位 IRC8MEN 的状态,自动使能 IRC8M 时钟。
18	HXTALBPS	高速晶体振荡器(HXTAL)时钟旁路模式使能 只有在 HXTALEN 位为 0 时 HXTALBPS 位才可写 0:禁止 HXTAL 旁路模式 1:使能 HXTAL 旁路模式 HXTAL 输出时钟等于输入时钟
17	HXTALSTB	高速晶体振荡器(HXTAL)时钟稳定标志位 硬件置'1'来指示 HXTAL 振荡器时钟是否稳定待用 0: HXTAL 振荡器未稳定 1: HXTAL 振荡器已稳定
16	HXTALEN	高速晶体振荡器(HXTAL)使能 软件置位或复位,如果 HXTAL 时钟作为系统时钟或者当 PLL 时钟做为系统时钟 时,其做为 PLL 的输入时钟,该位不能被复位。进入深度睡眠或待机模式时硬件自 动复位。 0: 高速 4 ~ 32 MHz 晶体振荡器被关闭 1: 高速 4 ~ 32 MHz 晶体振荡器被打开
15:8	IRC8MCALIB[7:0]	内部 8MHz RC 振荡器校准值寄存器 上电时自动加载这些位
7:3	IRC8MADJ[4:0]	内部 8MHz RC 振荡器时钟调整值 这些位由软件置位,最终调整值为 IRC8MADJ[4:0]位域的当前值加上 IRC8MCALIB[7:0]位域的值。最终调整值应该调整 IRC8M 到 8MHz ± 1%。
2	保留	必须保持复位值。
1	IRC8MSTB	IRC8M 内部 8MHz RC 振荡器稳定标志位 硬件置'1'来指示 IRC8M 振荡器时钟是否稳定待用 0: IRC8M 振荡器未稳定

1: IRC8M 振荡器已稳定

0 IRC8MEN 内部 8MHz RC 振荡器使能

软件置位或复位,如果 IRC8M 时钟做为系统时钟时,该位不能被复位。当从深度睡眠或待机模式返回,或当 CKMEN 置位同时用作系统时钟的 HXTAL 振荡器发生

故障时,该位由硬件置 1 来启动 IRC8M 振荡器。

内部 8MHz RC 振荡器被关闭
 内部 8MHz RC 振荡器被打开

5.3.2. 时钟配置寄存器 0(RCU_CFG0)

地址偏移: 0x04

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
USBFSP			ADCPSC[PREDV0	
SC[2]	PLLM	F[5:4]	2]		CKOUT	SEL[3:0]		USBESE	PSC[1:0]		PLLM	F[3:0]		_LSB	PLLSEL
rw	n	N	rw		r	N		r	N		n	N		rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCPS	SC[1:0]	[1:0] APB2PSC[2:0]			APB1PSC[2:0]			AHBPSC[(SC[3:0]		SCSS[1:0]		scs	6[1:0]
rw	v		rw	I		rw			rw	,			r	r	w

位/位域	名称	描述
31	USBFSPSC[2]	USBFSPSC 的第 2 位
		参考寄存器 RCU_CFG0 的 22 到 23 位
30:29	PLLMF[5:4]	PLLMF 的第 5 位和第 4 位
		参考寄存器 RCU_CFG0 的 18 到 21 位
28	ADCPSC[2]	ADCPSC 的第 2 位
		参考寄存器 RCU_CFG0 的 14 到 15 位
27:24	CKOUT0SEL[3:0]	CKOUT0 时钟源选择
		由软件置位或清零
		00xx: 无时钟输出
		0100: 选择系统时钟 CK_SYS
		0101: 选择内部 8M RC 振荡器时钟
		0110: 选择高速晶体振荡器时钟 (HXTAL)
		0111: 选择(CK_PLL/2)时钟
		1000: 选择 CK_PLL1 时钟
		1001: 选择(CK_PLL2/2)时钟
		1010: 选择 EXT1 时钟
		1011: 选择 CK_PLL2 时钟
23:22	USBFSPSC[1:0]	USBFS 的时钟分频系数

由软件置位或清零。USBFS 的时钟必须为 48MHz, 当 USBFS 时钟使能的时候, 这些位无法修改

000: CK_USBFS = CK_PLL / 1.5

001: CK_USBFS = CK_PLL

010: CK_USBFS = CK_PLL / 2.5

011: CK_USBFS = CK_PLL / 2

100: CK_USBFS = CK_PLL / 3

101: CK USBFS = CK PLL / 3.5

11x: CK_USBFS = CK_PLL / 4

21:18 PLLMF[3:0] PLL 时钟倍频因子

与寄存器 RCU_CFG0 的 27,30 位共同构成倍频因子,由软件置位或清零

注意: PLL 输出时钟频率不能超过 168MHz

000000: (PLL 源时钟 x 2)

000001: (PLL 源时钟 x 3)

000010: (PLL 源时钟 x 4)

000011: (PLL 源时钟 x 5)

000100: (PLL 源时钟 x 6)

000101: (PLL 源时钟 x 7)

000110: (PLL 源时钟 x 8)

000111: (PLL 源时钟 x 9)

001000: (PLL 源时钟 x 10)

001001: (PLL 源时钟 x 11)

001010: (PLL 源时钟 x 12)

001011: (PLL 源时钟 x 13)

001100: (PLL 源时钟 x 14) 001101: (PLL 源时钟 x 6.5)

001110: (PLL 源时钟 x 16)

001111: (PLL 源时钟 x 16)

010000: (PLL 源时钟 x 17)

010001: (PLL 源时钟 x 18)

010010: (PLL 源时钟 x 19)

010011: (PLL 源时钟 x 20)

010100: (PLL 源时钟 x 21)

010101: (PLL 源时钟 x 22)

010110: (PLL 源时钟 x 23)

010111: (PLL 源时钟 x 24)

011000: (PLL 源时钟 x 25)

011001: (PLL 源时钟 x 26)

011010: (PLL 源时钟 x 27)

011011: (PLL 源时钟 x 28)

011100: (PLL 源时钟 x 29)

011101: (PLL 源时钟 x 30)

011110: (PLL 源时钟 x 31)

digubevice		GD32F403XX 用户于加
17	PREDV0_LSB	011111: (PLL 源时钟 x 32) 100000: (PLL 源时钟 x 33) 100001: (PLL 源时钟 x 34) 111110: (PLL 源时钟 x 63) 111111: (PLL 源时钟 x 63) PREDV0 分频因子的最低位
		与寄存器 RCU_CFG1 位 PREDV0 第 0 位相同,通过寄存器 RCU_CFG1 来改变 PREDV0 的值,此位也会一同改。当 PREDV0 的第 1 到 3 位未修改时,此位决定 PREDV0 的输入时钟是否二分频。
16	PLLSEL	PLL 时钟源选择 由软件置位或复位,控制 PLL 时钟源 0: (IRC8M / 2) 被选择为 PLL 时钟的时钟源 1: HXTAL 时钟或者 IRC48M 时钟(寄存器 RCU_CFG1 位 PLLPRESEL 决定)被 选择为 PLL 时钟的时钟源
15:14	ADCPSC[1:0]	ADC 的时钟分频系数 与寄存器 RCU_CFG0 的 28 位,寄存器 RCU_CFG1 的 29 位共同构成分频因子,由软件置位或清零 0000: CK_ADC = CK_APB2 / 2 0001: CK_ADC = CK_APB2 / 4 0010: CK_ADC = CK_APB2 / 6 0011: CK_ADC = CK_APB2 / 8 0100: CK_ADC = CK_APB2 / 2 0101: CK_ADC = CK_APB2 / 12 0110: CK_ADC = CK_APB2 / 18 0111: CK_ADC = CK_APB2 / 16 1x00: CK_ADC = CK_APB2 / 16 1x00: CK_ADC = CK_AHB / 5 1x01: CK_ADC = CK_AHB / 6 1x10: CK_ADC = CK_AHB / 10 1x11: CK_ADC = CK_AHB / 20
13:11	APB2PSC[2:0]	APB2 预分频选择 由软件置位或清零,控制 APB2 时钟分频因子 0xx: CK_APB2 = CK_AHB 100: CK_APB2 = CK_AHB / 2 101: CK_APB2 = CK_AHB / 4 110: CK_APB2 = CK_AHB / 8 111: CK_APB2 = CK_AHB / 16
10:8	APB1PSC[2:0]	APB1 预分频选择 由软件置位或清零,控制 APB1 时钟分频因子. 0xx: CK_APB1 = CK_AHB 100: CK_APB1 = CK_AHB / 2

101: CK_APB1 = CK_AHB / 4110: CK_APB1 = CK_AHB / 8111: CK_APB1 = CK_AHB / 16

7:4 AHBPSC[3:0] AHB 预分频选择

由软件置位或清零,控制 AHB 时钟分频因子.

0xxx: CK_AHB = CK_SYS 1000: CK_AHB = CK_SYS / 2 1001: CK_AHB = CK_SYS / 4 1010: CK_AHB = CK_SYS / 8 1011: CK_AHB = CK_SYS / 16 1100: CK_AHB = CK_SYS / 64 1101: CK_AHB = CK_SYS / 128

1110: CK_AHB = CK_SYS / 256

1111: CK_AHB = CK_SYS / 512

3:2 SCSS[1:0] 系统时钟选择状态

由硬件置位或清零,标识当前系统时钟的时钟源00:选择 CK_IRC8M 时钟作为 CK_SYS 时钟源01:选择 CK_HXTAL 时钟作为 CK_SYS 时钟源10:选择 CK_PLL 时钟作为 CK_SYS 时钟源

11: 保留

1:0 SCS[1:0] 系统时钟选择

由软件配置选择系统时钟源。由于 CK_SYS 的改变存在固有的延迟,因此软件应当读 SCSS 位来确保时钟源切换是否结束。在从深度睡眠或待机模式中返回时,以及当 HXTAL 直接或间接作为系统时钟同时 HXTAL 时钟监视器检测到 HXTAL 故障

时,强制选择 IRC8M 作为系统时钟。

00:选择 CK_IRC8M 时钟作为 CK_SYS 时钟源01:选择 CK_HXTAL 时钟作为 CK_SYS 时钟源10:选择 CK_PLL 时钟作为 CK_SYS 时钟源

11: 保留

5.3.3. 时钟中断寄存器(RCU_INT)

地址偏移: 0x08

复位值: 0x0000 0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				/¤	留				CKMIC	PLL2	PLL1	PLL	HXTAL	IRC8M	LXTAL	IRC40K
				冰	Ħ				CKIVIIC	STBIC						
									w	w	w	w	w	w	w	w
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
,	保留	PLL2	PLL1	PLL	HXTAL	IRC8M	LXTAL	IRC40K	CKMIF	PLL2	PLL1	PLL	HXTAL	IRC8M	LXTAL	IRC40K

STBIE STBIE STBIE STBIE STBIE STBIE STBIE STBIE STBIE STBIF STBIF STBIF STBIF STBIF STBIF

位/位域	名称	描述
31:24	保留	必须保持复位值。
23	СКМІС	HXTAL 时钟阻塞中断清零 软件写 1 复位 CKMIF 标志位. 0: 不复位 CKMIF 标志位 1: 复位 CKMIF 标志位
22	PLL2STBIC	PLL2 时钟稳定中断清零 软件写 1 复位 PLL2STBIF 标志位 0: 不复位 PLL2STBIF 标志位 1: 复位 PLL2STBIF 标志位
21	PLL1STBIC	PLL1 时钟稳定中断清零 软件写 1 复位 PLL1STBIF 标志位 0: 不复位 PLL1STBIF 标志位 1: 复位 PLL1STBIF 标志位
20	PLLSTBIC	PLL 时钟稳定中断清零 软件写 1 复位 PLLSTBIF 标志位 0: 不复位 PLLSTBIF 标志位 1: 复位 PLLSTBIF 标志位
19	HXTALSTBIC	HXTAL 时钟稳定中断清零 软件写 1 复位 HXTALSTBIF 标志位 0: 不复位 HXTALSTBIF 标志位 1: 复位 HXTALSTBIF 标志位
18	IRC8MSTBIC	IRC8M 时钟稳定中断清零 软件写 1 复位 IRC8MSTBIF 标志位 0: 不复位 IRC8MSTBIF 标志位 1: 复位 IRC8MSTBIF 标志位
17	LXTALSTBIC	LXTAL 时钟稳定中断清零 软件写 1 复位 LXTALSTBIF 标志位 0: 不复位 LXTALSTBIF 标志位 1: 复位 LXTALSTBIF 标志位
16	IRC40KSTBIC	IRC40K 时钟稳定中断清零 软件写 1 复位 IRC40KSTBIF 标志位 0: 不复位 IRC40KSTBIF 标志位 1: 复位 IRC40KSTBIF 标志位
15	保留	必须保持复位值。

3		
14	PLL2STBIE	PLL2 时钟稳定中断使能 软件置位和复位来使能/禁止 PLL2 时钟稳定中断 0:禁止 PLL2 时钟稳定中断 1:使能 PLL2 时钟稳定中断
13	PLL1STBIE	PLL1 时钟稳定中断使能 软件置位和复位来使能/禁止 PLL1 时钟稳定中断 0:禁止 PLL1 时钟稳定中断 1:使能 PLL1 时钟稳定中断
12	PLLSTBIE	PLL 时钟稳定中断使能 软件置位和复位来使能/禁止 PLL 时钟稳定中断 0:禁止 PLL 时钟稳定中断 1:使能 PLL 时钟稳定中断
11	HXTALSTBIE	HXTAL 时钟稳定中断使能 软件置位和复位来使能/禁止 HXTAL 时钟稳定中断 0:禁止 HXTAL 时钟稳定中断 1:使能 HXTAL 时钟稳定中断
10	IRC8MSTBIE	IRC8M 时钟稳定中断使能 软件置位和复位来使能/禁止 IRC8M 时钟稳定中断 0:禁止 IRC8M 时钟稳定中断 1:使能 IRC8M 时钟稳定中断
9	LXTALSTBIE	LXTAL 时钟稳定中断使能 软件置位和复位来使能/禁止 LXTAL 时钟稳定中断 0:禁止 LXTAL 时钟稳定中断 1:使能 LXTAL 时钟稳定中断
8	IRC40KSTBIE	IRC40K 时钟稳定中断使能 软件置位和复位来使能/禁止 IRC40K 时钟稳定中断 0:禁止 IRC40K 时钟稳定中断 1:使能 IRC40K 时钟稳定中断
7	CKMIF	HXTAL 时钟阻塞中断标志位 当 HXTAL 时钟被阻塞时由硬件置位 软件置位 CKMIC 位时清除该位 0: 时钟正常运行 1: HXTAL 时钟阻塞
6	PLL2STBIF	PLL2 时钟稳定中断标志位 当 PLL 时钟稳定且 PLL2STBIE 位被置 1 时由硬件置 1 软件置位 PLL2STBIC 位时清除该位 0: 无 PLL2 时钟稳定中断产生 1: 产生 PLL2 时钟稳定中断
5	PLL1STBIF	PLL1 时钟稳定中断标志位

当 PLL 时钟稳定且 PLL1STBIE 位被置 1 时由硬件置 1 软件置位 PLL1STBIC 位时清除该位 0: 无 PLL1 时钟稳定中断产生 1: 产生 PLL1 时钟稳定中断 **PLLSTBIF** PLL 时钟稳定中断标志位 当 PLL 时钟稳定且 PLLSTBIE 位被置 1 时由硬件置 1 软件置位 PLLSTBIC 位时清除该位 0: 无 PLL 时钟稳定中断产生 1: 产生 PLL 时钟稳定中断 HXTAL 时钟稳定中断标志位 3 **HXTALSTBIF** 当高速 3~25 MHz 晶体振荡器时钟稳定且 HXTALSTBIE 位被置 1 时由硬件置 1 软件置位 HXTALSTBIC 位时清除该位 0: 无 HXTAL 时钟稳定中断产生 1: 产生 HXTAL 时钟稳定中断 **IRC8MSTBIF** IRC8M 时钟稳定中断标志位 2 当内部 8MHz RC 振荡器时钟稳定且 IRC8MSTBIE 位被置 1 时由硬件置 1 软件置位 IRC8MSTBIC 位时清除该位 0: 无 IRC8M 时钟稳定中断产生 1: 产生 IRC8M 时钟稳定中断 **LXTALSTBIF** LXTAL 时钟稳定中断标志位 当低速晶体振荡器时钟稳定且 LXTALSTBIE 位被置 1 时由硬件置 1 软件置位 LXTALSTBIC 位时清除该位 0: 无 LXTAL 时钟稳定中断产生 1: 产生 LXTAL 时钟稳定中断 0 **IRC40KSTBIF** IRC40K 时钟稳定中断标志位 当内部 40kHz RC 振荡器时钟稳定且 IRC40KSTBIE 位被置 1 时由硬件置 1 软件置位 IRC40KSTBIC 位时清除该位 0: 无 IRC40K 时钟稳定中断产生 1: 产生 IRC40K 时钟稳定中断

5.3.4. APB2 复位寄存器(RCU APB2RST)

地址偏移: 0x0C

复位值: 0x0000 0000

٠.		20				20								• • •	
				保	囟					TIMER10	TIMER9	TIMER8		保留	
				IX.	Н					RST	RST	RST		休田	
										rw	rw	rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

ADC2RS	USART0	TIMER7R	SPIORST	TIMER0R	ADC1RS	ADC0RS	PGRST	PFRST	PERST	PDRST	PCRST	PBRST	PARST	保留	AFRST
Т	RST	ST	35101(31	ST	Т	Т	FGROT	FINOI	FLIXOT	FDRST	FCROT	FBROT	FARST	ΚШ	AINSI

位/位域	名称	描述
31:22	保留	必须保持复位值。
21	TIMER10RST	TIMER10 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER10
20	TIMER9RST	TIMER9 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER9
19	TIMER8RST	TIMER8 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER8
18:16	保留	必须保持复位值。
15	ADC2RST	ADC2 复位 由软件置位或复位 0: 无作用 1: 复位所有 ADC2
14	USART0RST	USART0 复位 由软件置位或复位 0: 无作用 1: 复位 USART0
13	TIMER7RST	TIMER7 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER7
12	SPI0RST	SPIO 复位 由软件置位或复位 0: 无作用 1: 复位 SPIO
11	TIMER0RST	TIMER0 复位 由软件置位或复位 0: 无作用

3			000.	100/00	4/	1 /4/1
		1:复位 TIMER0				
10	ADC1RST	ADC1 复位 由软件置位或复位 0: 无作用 1: 复位所有 ADC1				
9	ADC0RST	ADC0 复位 由软件置位或复位 0: 无作用 1: 复位所有 ADC0				
8	PGRST	GPIO 端口 G 复位由软件置位或复位0: 无作用1: 复位 GPIO 端口 G				
7	PFRST	GPIO 端口 F 复位由软件置位或复位0: 无作用1: 复位 GPIO 端口 F				
6	PERST	GPIO 端口 E 复位由软件置位或复位0: 无作用1: 复位 GPIO 端口 E				
5	PDRST	GPIO 端口 D 复位由软件置位或复位0: 无作用1: 复位 GPIO 端口 D				
4	PCRST	GPIO 端口 C 复位由软件置位或复位0: 无作用1: 复位 GPIO 端口 C				
3	PBRST	GPIO 端口 B 复位由软件置位或复位0: 无作用1: 复位 GPIO 端口 B				
2	PARST	GPIO 端口 A 复位由软件置位或复位0: 无作用1: 复位 GPIO 端口 A				
1	保留	必须保持复位值。				

) AFRST

复用功能 I/O 复位 由软件置位或复位

0: 无作用

1: 复位复用功能 I/O

5.3.5. APB1 复位寄存器(RCU_APB1RST)

地址偏移: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
In	ıtın	DAODOT	DMUDOT	DIVDIDOT	CAN1RS	CAN0RS	III	ı\$rı	1004D0T	I2C0RST	UART4R	UART3R	USART2	USART1	/m दिव
保	Ħ	DACRST	PMURST	BKPIKST	Т	Т	保留		I2C1RST	1200101	ST	ST	RST	RST	保留
		rw	rw	rw	rw	rw			rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODIODOT	ODIADOT	I	WWDGT		/11	保留		TIMER12	TIMER11	TIMER6R	TIMER5R	TIMER4R	TIMER3R	TIMER2R	TIMER1R
SPIZRST	PRST SPI1RST	保留		RST	1禾			RST	RST	ST	ST	ST	ST	ST	ST
保留	rw		•	rw		•	rw	rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:30	保留	必须保持复位值。
29	DACRST	DAC 复位 由软件置位或复位 0: 无作用 1: 复位 DAC
28	PMURST	PMU 复位 由软件置位或复位 0: 无作用 1: 复位 PMU
27	BKPIRST	BKPI 复位 由软件置位或复位 0: 无作用 1: 复位 BKP
26	CAN1RST	CAN1 复位 由软件置位或复位 0: 无作用 1: 复位 CAN1
25	CANORST	CAN0 复位 由软件置位或复位 0: 无作用

-		1: 复位 CAN0
24:23	保留	必须保持复位值。
22	I2C1RST	I2C1 复位 由软件置位或复位 0: 无作用 1: 复位 I2C1
21	I2C0RST	12C0 复位 由软件置位或复位 0: 无作用 1: 复位 I2C0
20	UART4RST	UART4 复位 由软件置位或复位 0: 无作用 1: 复位 UART4
19	UART3RST	UART3 复位 由软件置位或复位 0: 无作用 1: 复位 UART3
18	USART2RST	USART2 复位 由软件置位或复位 0: 无作用 1: 复位 USART2
17	USART1RST	USART1 复位 由软件置位或复位 0: 无作用 1: 复位 USART1
16	保留	必须保持复位值。
15	SPI2RST	SPI2 复位 由软件置位或复位 0: 无作用 1: 复位 SPI2
14	SPI1RST	SPI1 复位 由软件置位或复位 0: 无作用 1: 复位 SPI1
13:12	保留	必须保持复位值。
11	WWDGTRST	WWDGT 复位 由软件置位或复位

		0:无作用 1:复位 WWDGT
10:9	保留	必须保持复位值。
8	TIMER13RST	TIMER13 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER13
7	TIMER12RST	TIMER12 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER12
6	TIMER11RST	TIMER11 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER11
5	TIMER6RST	TIMER6 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER6
4	TIMER5RST	TIMER5 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER5
3	保留	必须保持复位值。
2	TIMER3RST	TIMER3 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER3
1	TIMER2RST	TIMER2 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER2
0	保留	必须保持复位值。

5.3.6. AHB 使能寄存器(RCU_AHBEN)

地址偏移: 0x14

复位值: 0x0000 0014

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		USBFSE N	保留	SDIOEN	保留	EXMCEN	保留	CRCEN	保留	FMCSPE N	保留	SRAMSP EN	DMA1EN	DMA0EN
			rw		rw		rw		rw		rw		rw	rw	rw

位/位域	名称	描述
31:13	保留	必须保持复位值。
12	USBFSEN	USBFS 时钟使能 由软件置位或复位 0: 关闭 USBFS 时钟 1: 开启 USBFS 时钟
11	保留	必须保持复位值。
10	SDIOEN	SDIO 时钟使能 由软件置位或复位 0: 关闭 SDIO 时钟 1: 开启 SDIO 时钟
9	保留	必须保持复位值。
8	EXMCEN	EXMC 时钟使能 由软件置位或复位 0: 关闭 EXMC 时钟 1: 开启 EXMC 时钟
7	保留	必须保持复位值。
6	CRCEN	CRC 时钟使能 由软件置位或复位 0: 关闭 CRC 时钟 1: 开启 CRC 时钟
5	保留	必须保持复位值。
4	FMCSPEN	在睡眠模式下 FMC 时钟使能由软件置位或复位 0: 在睡眠模式下关闭 FMC 时钟 1: 在睡眠模式下开启 FMC 时钟
3	保留	必须保持复位值。
2	SRAMSPEN	在睡眠模式下 SRAM 时钟使能 由软件置位或复位

 0: 在睡眠模式下美闭 SRAM 时钟

 1: 在睡眠模式下开启 SRAM 时钟

 I DMA1EN

 DMA1 时钟使能由软件置位或复位

 0: 美闭 DMA1 时钟

 1: 开启 DMA1 时钟

 DMA0EN

 DMA0 时钟使能由软件置位或复位

 0: 美闭 DMA0 时钟

 1: 开启 DMA0 时钟

 1: 开启 DMA0 时钟

5.3.7. APB2 使能寄存器(RCU_APB2EN)

地址偏移: 0x18

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				保	<u>60</u>					TIMER10	TIMER9E	TIMER8E		保留	
					н					EN	N	N			
										rw	rw	rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADC2EN	USART0	TIMER7E	SPI0EN	TIMER0E	ADC1EN	ADC0EN	PGEN	PFEN	PEEN	PDEN	PCEN	PBEN	PAEN	保留	AFEN
ADOZEN	EN	N	OF IUEN	N	ADCIEN	ADCUEN	FGEN	FIEN	FLEIN	FDEN	FOEN	FDEIN	FAEN	水田	ALEN
rw	rw/	nw	rw	rw	rw	rw	rw	rw.	rw	rw	rw/	rw	rw		rw

位/位域	名称	描述
31:22	保留	必须保持复位值。
21	TIMER10EN	TIMER10 时钟使能 由软件置位或复位 0: 关闭 TIMER10 时钟 1: 开启 TIMER10 时钟
20	TIMER9EN	TIMER9 时钟使能 由软件置位或复位 0: 关闭 TIMER9 时钟 1: 开启 TIMER9 时钟
19	TIMER8EN	TIMER8 时钟使能 由软件置位或复位 0: 关闭 TIMER8 时钟 1: 开启 TIMER8 时钟

_			
18:16	保留	必须保持复位值。	
15	ADC2EN	ADC2 时钟使能 由软件置位或复位 0:关闭 ADC2 时钟 1:开启 ADC2 时钟	
14	USART0EN	USART0 时钟使能 由软件置位或复位 0:关闭 USART0 时钟 1:开启 USART0 时钟	
13	TIMER7EN	TIMER7 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER7	
12	SPI0EN	SPI0 复位 由软件置位或复位 0: 无作用 1: 复位 SPI0	
11	TIMER0EN	TIMER0 复位 由软件置位或复位 0: 无作用 1: 复位 TIMER0	
10	ADC1EN	ADC1 时钟使能 由软件置位或复位 0:关闭 ADC1 时钟 1:开启 ADC1 时钟	
9	ADC0EN	ADC0 时钟使能 由软件置位或复位 0:关闭 ADC0 时钟 1:开启 ADC0 时钟	
8	PGEN	GPIO 端口 G 时钟使能 由软件置位或复位 0:关闭 GPIO 端口 G 时钟 1:开启 GPIO 端口 G 时钟	
7	PFEN	GPIO 端口 F 时钟使能 由软件置位或复位0: 关闭 GPIO 端口 F 时钟1: 开启 GPIO 端口 F 时钟	
6	PEEN	GPIO 端口 E 时钟使能 由软件置位或复位	

9			OD021 +00XX /11/ .	1 \1\1
		0: 关闭 GPIO 端口 E 时钟 1: 开启 GPIO 端口 E 时钟		
5	PDEN	GPIO 端口 D 时钟使能由软件置位或复位0: 关闭 GPIO 端口 D 时钟1: 开启 GPIO 端口 D 时钟		
4	PCEN	GPIO 端口 C 时钟使能由软件置位或复位0: 关闭 GPIO 端口 C 时钟1: 开启 GPIO 端口 C 时钟		
3	PBEN	GPIO 端口 B 时钟使能由软件置位或复位0: 关闭 GPIO 端口 B 时钟1: 开启 GPIO 端口 B 时钟		
2	PAEN	GPIO 端口 A 时钟使能由软件置位或复位0: 关闭 GPIO 端口 A 时钟1: 开启 GPIO 端口 A 时钟		
1	保留	必须保持复位值。		
0	AFEN	复用功能 IO 时钟使能由软件置位或复位 0: 关闭复用功能 IO 时钟 1: 开启复用功能 IO 时钟		

5.3.8. APB1 使能寄存器(RCU_APB1EN)

地址偏移: 0x1C

复位值: 0x0000 0000

该寄存器可以按字节(8位)、半字(16位)或字(32位)访问。

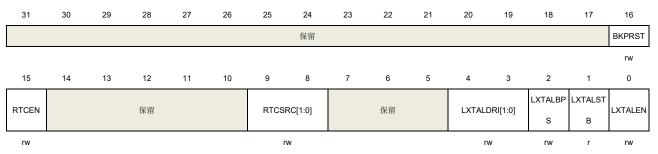
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
/12	:留	DACEN	PMUEN	DIZDIENI	CAN1EN	CAN0EN	保	i\$n	I2C1EN	IOCOEN	UART4E	UART3E	USART2	USART1	保留
沐	Ħ	DACEN	PIVIUEN	BKPIEN	CANTEN	CANUEN	沐	Ħ	IZC IEN	I2C0EN	Ν	Ν	EN	EN	休田
		rw	rw	rw	rw	rw			rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODIOEN	ODIAEN	I	r\$rr	WWDGT	-		TIMER13	TIMER12	TIMER11	TIMER6E	TIMER5E	TIMER4E	TIMER3E	TIMER2E	TIMER1E
SPI2EN	SPI1EN	保留		EN	1禾	保留		EN	EN	N	N	N	N	N	N
rw	rw			rw			rw								

位/位域 名称 描述

			OD CL.	10070()11)	1
31:30	保留	必须保持复位值。			
29	DACEN	DAC 时钟使能 由软件置位或复位 0: 关闭 DAC 时钟 1: 开启 DAC 时钟			
28	PMUEN	PMU 时钟使能 由软件置位或复位 0: 关闭 PMU 时钟 1: 开启 PMU 时钟			
27	BKPIEN	BKP 时钟使能 由软件置位或复位 0: 关闭 BKP 时钟 1: 开启 BKP 时钟			
26	CAN1EN	CAN1 时钟使能 由软件置位或复位 0: 关闭 CAN1 时钟 1: 开启 CAN1 时钟			
25	CAN0EN	CAN0 时钟使能 由软件置位或复位 0: 关闭 CAN0 时钟 1: 开启 CAN0 时钟			
24:23	保留	必须保持复位值。			
22	I2C1EN	I2C1 时钟使能 由软件置位或复位 0: 关闭 I2C1 时钟 1: 开启 I2C1 时钟			
21	I2C0EN	I2C0 时钟使能 由软件置位或复位 0:关闭 I2C0 时钟 1:开启 I2C0 时钟			
20	UART4EN	UART4 时钟使能 由软件置位或复位 0: 关闭 UART4 时钟 1: 开启 UART4 时钟			
19	UART3EN	UART3 时钟使能 由软件置位或复位 0: 关闭 UART3 时钟 1: 开启 UART3 时钟			

digubevice			GD32F4U3XX 用广于加
18	USART2EN	USART2 时钟使能 由软件置位或复位 0: 关闭 USART2 时钟 1: 开启 USART2 时钟	
17	USART1EN	USART1 时钟使能 由软件置位或复位 0:关闭 USART1 时钟 1:开启 USART1 时钟	
16	保留	必须保持复位值。	
15	SPI2EN	SPI2 时钟使能 由软件置位或复位 0:关闭 SPI2 时钟 1:开启 SPI2 时钟	
14	SPI1EN	SPI1 时钟使能 由软件置位或复位 0:关闭 SPI1 时钟 1:开启 SPI1 时钟	
13:12	保留	必须保持复位值。	
11	WWDGTEN	WWDGT 时钟使能 由软件置位或复位 0:关闭 WWDGT 时钟 1:开启 WWDGT 时钟	
10:9	保留	必须保持复位值。	
8	TIMER13EN	TIMER13 时钟使能 由软件置位或复位 0:关闭 TIMER13 时钟 1:开启 TIMER13 时钟	
7	TIMER12EN	TIMER12 时钟使能 由软件置位或复位 0:关闭 TIMER12 时钟 1:开启 TIMER12 时钟	
6	TIMER11EN	TIMER11 时钟使能 由软件置位或复位 0: 关闭 TIMER11 时钟 1: 开启 TIMER11 时钟	
5	TIMER6EN	TIMER6 时钟使能 由软件置位或复位 0: 关闭 TIMER6 时钟	

		1: 开启 TIMER6 时钟
4	TIMER5EN	TIMER5 时钟使能 由软件置位或复位 0: 关闭 TIMER5 时钟 1: 开启 TIMER5 时钟
3	保留	必须保持复位值。
2	TIMER3EN	TIMER3 时钟使能 由软件置位或复位 0: 关闭 TIMER3 时钟 1: 开启 TIMER3 时钟
1	TIMER2EN	TIMER2 时钟使能 由软件置位或复位 0: 关闭 TIMER2 时钟 1: 开启 TIMER2 时钟
0	保留	必须保持复位值。


5.3.9. 备份域控制寄存器(RCU_BDCTL)

地址偏移: 0x20

复位值: 0x0000 0018, 只能由备份域复位进行复位

该寄存器可以按字节(8位)、半字(16位)或字(32位)访问。

注意: 备份域控制寄存器(RCU_BDCTL)的LXTALEN、LXTALBPS、RTCSRC和RTCEN 位仅在备份域复位后才清0。只有在电源控制寄存器(PMU_CTL)中的BKPWEN位置1后才能对这些位进行改动。

位/位域	名称	描述
31:17	保留	必须保持复位值。
16	BKPRST	备份域复位 由软件置位或复位 0: 无作用 1: 复位备份域
15	RTCEN	RTC 时钟使能

digabevice		OD321 403XX /刊/ 1 ///
		由软件置位或复位 0: 关闭 RTC 时钟
		1: 开启 RTC 时钟
14:10	保留	必须保持复位值。
9:8	RTCSRC[1:0]	RTC 时钟源选择 由软件置位或清零来控制 RTC 的时钟源。一旦 RTC 的时钟源选择后,除了将备份域复位否则时钟源不能被改变。 00: 没有时钟 01: 选择 CK_LXTAL 时钟作为 RTC 的时钟源 10: 选择 CK_IRC40K 时钟作为 RTC 的时钟源 11: 选择 CK_HXTAL / 128 时钟作为 RTC 的时钟源
7:5	保留	必须保持复位值。
4:3	LXTALDRI[1:0]	LXTAL 驱动能力 由软件置位或复位。当备份域复位时将复位该值 00: 弱驱动能力 01: 中低驱动能力 10: 中高驱动能力 11: 强驱动能力 (复位后的缺省值) 注意: LXTALDRI 位在旁路模式下无效
2	LXTALBPS	LXTAL 旁路模式使能 由软件置位或复位 0: 禁止 LXTAL 旁路模式 1: 使能 LXTAL 旁路模式
1	LXTALSTB	低速晶体振荡器稳定标志位 硬件置'1'来指示 LXTAL 振荡器时钟是否稳定待用 0: LXTAL 未稳定 1: LXTAL 已稳定
0	LXTALEN	LXTAL 时钟使能 由软件置位或复位 0: 关闭 LXTAL 时钟 1: 使能 LXTAL 时钟

5.3.10. 复位源/时钟寄存器(RCU_RSTSCK)

地址偏移: 0x24

31

复位值: 0x0C00 0000, 所有复位标志位仅在电源复位时被清零,RSTFC/IRC40KEN在系统复位时被清零。

该寄存器可以按字节(8位)、半字(16位)或字(32位)访问。

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

														• / / / •	
LP	WWDGT	FWDGT	SW	POR	EP	保留	RSTFC				保	<u>₩</u>			
RSTF	RSTF	RSTF	RSTF	RSTF	RSTF						IX.	Н			
r	r	r	r	r	r		rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						/ □	留							IRC40K	IRC40KEN
						TA	· III							STB	IKC40KEN
															r14/

位/位域	名称	描述
31	LPRSTF	低功耗复位标志位 深度睡眠/待机复位发生时由硬件置位 向 RSTFC 位写 1 来清除该位 0: 无低功耗管理复位发生 1: 发生低功耗管理复位
30	WWDGTRSTF	窗口看门狗定时器复位标志位 窗口看门狗定时器复位发生时由硬件置 1 向 RSTFC 位写 1 来清除该位 0: 无窗口看门狗复位发生 1: 发生窗口看门狗复位
29	FWDGTRSTF	独立看门狗定时器复位标志位 独立看门狗复位发生时由硬件置 1 向 RSTFC 位写 1 来清除该位 0: 无独立看门狗定时器复位发生 1: 发生独立看门狗定时器复位
28	SWRSTF	软件复位标志位 软件复位发生时由硬件置 1 向 RSTFC 位写 1 来清除该位 0: 无软件复位发生 1: 发生软件复位
27	PORRSTF	电源复位标志位 电源复位发生时由硬件置 1 向 RSTFC 位写 1 来清除该位 0: 无电源复位发生 1: 发生电源复位
26	EPRSTF	外部引脚复位标志位 外部引脚复位发生时由硬件置 1 向 RSTFC 位写 1 来清除该位 0: 无外部引脚复位发生 1: 发生外部引脚复位
25	保留	必须保持复位值。

_		
24	RSTFC	清除复位标志位 由软件置 1 来清除所有复位标志位 0: 无作用 1: 清除所有复位标志位
23:2	保留	必须保持复位值。
1	IRC40KSTB	IRC40K 时钟稳定标志位 该位由硬件置 1 指示 IRC40K 输出时钟是否稳定待用 0: IRC40K 时钟未稳定 1: IRC40K 已稳定
0	IRC40KEN	IRC40K 使能 由软件置位和复位 0: 关闭 IRC40K 时钟 1: 开启 IRC40K 时钟

5.3.11. AHB 复位寄存器(RCU_AHBRST)

地址偏移: 0x28

复位值: 0x0000 0000

该寄存器可以按字节(8位)、半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		USBFSR						保	留					
保留 ST															

rw

位/位域	名称	描述
31:13	保留	必须保持复位值。
12	USBFSRST	USBFS 复位 由软件置位或复位 0: 无作用 1: 复位 USBFS
11:0	保留	必须保持复位值。

5.3.12. 时钟配置寄存器 1(RCU_CFG1)

地址偏移: 0x2C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
PLL2MF[PLLPRES	ADCPSC[/17	rộn.					1000051	1004051	PREDV0	
4]	EL	3]					1朱	留					I2S2SEL	I2S1SEL	SEL	
rw	rw	rw											rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	PLL2MF[3:0] PLL1MF[3:0]								PRED	V1[3:0]		PREDV0[3:0]				
rw rw								r	W			r	w			

位/位域	名称	描述
31	PLL2MF[4]	PLL2MF 的第 4 位 参考寄存器 RCU_CFG1 的 12 到 15 位
30	PLLPRESEL	PLL 时钟源预选择 由软件置位或复位,控制 PLL 时钟源。 0: HXTAL 被选择为 PLL 时钟的时钟源 1: CK_IRC48M 被选择为 PLL 时钟的时钟源
29	ADCPSC[3]	ADCPSC 的第 3 位 参考寄存器 RCU_CFG0 的 14 到 15 位
28:19	保留	必须保持复位值。
18	I2S2SEL	I2S2 时钟源选择 由软件置位或复位,控制 I2S2 时钟源。 0:系统时钟被选择为 I2S2 时钟的时钟源 1: (CK_PLL2 x 2)被选择为 I2S2 时钟的时钟源
17	I2S1SEL	I2S1 时钟源选择 由软件置位或复位,控制 I2S1 时钟源 0:系统时钟被选择为 I2S1 时钟的时钟源 1: (CK_PLL2 x 2)被选择为 I2S1 时钟的时钟源
16	PREDV0SEL	PREDV0 时钟源选择 由软件置位或复位 0: HXTAL 或 IRC48M 被选择为 PREDV0 的时钟源 1: CK_PLL1 被选择为 PREDV0 的时钟源
15:12	PLL2MF[3:0]	PLL2 时钟倍频因子 与寄存器 RCU_CFG1 的 31 位共同构成倍频因子,由软件置位或清零。 000xx: 保留 00110: (PLL2 源时钟 x 8) 00111: (PLL2 源时钟 x 9) 01000: (PLL2 源时钟 x 10) 01001: (PLL2 源时钟 x 11) 01010: (PLL2 源时钟 x 12) 01011: (PLL2 源时钟 x 13)


```
01100: (PLL2 源时钟 x 14)
                           01101: (PLL2 源时钟 x 15)
                           01110: (PLL2 源时钟 x 16)
                           01111: (PLL2 源时钟 x 20)
                           10000: (PLL2 源时钟 x 18)
                           10001: (PLL2 源时钟 x 19)
                           10010: (PLL2 源时钟 x 20)
                           10011: (PLL2 源时钟 x 21)
                           10100: (PLL2 源时钟 x 22)
                           10101: (PLL2 源时钟 x 23)
                           10110: (PLL2 源时钟 x 24)
                           10111: (PLL2 源时钟 x 25)
                           11000: (PLL2 源时钟 x 26)
                           11001: (PLL2 源时钟 x 27)
                           11010: (PLL2 源时钟 x 28)
                           11011: (PLL2 源时钟 x 29)
                           11100: (PLL2 源时钟 x 30)
                           11101: (PLL2 源时钟 x 31)
                           11110: (PLL2 源时钟 x 32)
                           11111: (PLL2 源时钟 x 40)
11:8
          PLL1MF[3:0]
                           PLL1 时钟倍频因子
                           由软件置位或清零
                           00xx: 保留
                           010x: 保留
                           0110: (PLL1 源时钟 x 8)
                           0111: (PLL1 源时钟 x 9)
                           1000: (PLL1 源时钟 x 10)
                           1001: (PLL1 源时钟 x 11)
                           1010: (PLL1 源时钟 x 12)
                           1011: (PLL1 源时钟 x 13)
                           1100: (PLL1 源时钟 x 14)
                           1101: (PLL1 源时钟 x 15)
                           1110: (PLL1 源时钟 x 16)
                           1111: (PLL1 源时钟 x 20)
          PREDV1[3:0]
7:4
                           PREDV1 分频因子
                           由软件置位或清零,PLL1和PLL2未使能时,可以修改这些位。
                           0000: PREDV1 输入源时钟未分频
                           0001: PREDV1 输入源时钟 2 分频
                           0010: PREDV1 输入源时钟 3 分频
                           0011: PREDV1 输入源时钟 4 分频
                           0100: PREDV1 输入源时钟 5 分频
                           0101: PREDV1 输入源时钟 6 分频
                           0110: PREDV1 输入源时钟 7 分频
```


0111: PREDV1 输入源时钟 8 分频

1000: PREDV1 输入源时钟 9 分频

1001: PREDV1 输入源时钟 10 分频

1010: PREDV1 输入源时钟 11 分频

1011: PREDV1 输入源时钟 12 分频

1100: PREDV1 输入源时钟 13 分频

1101: PREDV2 输入源时钟 14 分频

1110: PREDV2 输入源时钟 15 分频

1111: PREDV2 输入源时钟 16 分频

3:0 PREDV0[3:0]

PREDV0 分频因子

由软件置位或清零, PLL 未使能时, 可以修改这些位。

注意: PREDVO 的第 0 位与 RCU_CFGO 寄存器的 17 位相同,修改 RCU_CFGO

寄存器的 17 位, PREDVO 的第 0 位也会进行相同的修改

0000: PREDVO 输入源时钟未分频

0001: PREDV0 输入源时钟 2 分频

0010: PREDV0 输入源时钟 3 分频

0011: PREDV0 输入源时钟 4 分频

0100: PREDV0 输入源时钟 5 分频

0101: PREDV0 输入源时钟 6 分频

0110: PREDV0 输入源时钟 7 分频

0111: PREDV0 输入源时钟 8 分频

1000: PREDV0 输入源时钟 9 分频

1001: PREDV0 输入源时钟 10 分频

1010: PREDV0 输入源时钟 11 分频

1011: PREDV0 输入源时钟 12 分频

1100: PREDV0 输入源时钟 13 分频

1101: PREDV0 输入源时钟 14 分频

1110: PREDV0 输入源时钟 15 分频

1111: PREDV0 输入源时钟 16 分频

5.3.13. 深度睡眠模式电压寄存器(RCU_DSV)

地址偏移: 0x34

复位值: 0x0000 0000

该寄存器可以按字节(8位)、半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	• • • • • • • • • • • • • • • • • • • •							•			•			•	
						保留								OSLPVS[2:0)]

rw

位/位域	名称	描述
31:3	保留	必须保持复位值。
2:0	DSLPVS[2:0]	深度睡眠模式电压选择
		由软件置位和清零这些位
		000: 在深度睡眠模式下内核电压为缺省值
		001: 在深度睡眠模式下内核电压为(缺省值-0.1)V(不建议客户使用)
		010: 在深度睡眠模式下内核电压为(缺省值-0.2)V(不建议客户使用)
		011: 在深度睡眠模式下内核电压为(缺省值-0.3)V(不建议客户使用)
		1xx: 保留

5.3.14. 附加时钟控制寄存器(RCU_ADDCTL)

地址偏移: 0xC0

复位值: 0x8000 0000

该寄存器可以按字节(8位)、半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1001011							/I	ión			IRC48MS	IRC48ME
			IRC48MC	CALIB[7:0]						1宋	留			ТВ	N
•			1	r										r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							les con								CK48MS
							保留								EL

rw

位/位域	名称	描述
31:24	IRC48MCALIB [7:0]	内部48MHz RC振荡器校准值寄存器 上电时自动加载这些位
23:18	保留	必须保持复位值。
17	IRC48MSTB	内部48MHz RC振荡器时钟稳定标志位 硬件置'1'来指示IRC48M振荡器时钟是否稳定待用 0: IRC48M未稳定 1: IRC48M已稳定
16	IRC48MEN	内部48MHz RC 振荡器使能 由软件置位和复位。当进入深度睡眠或待机模式后由硬件复位。 0: 关闭IRC48M时钟 1: 打开IRC48M时钟
15:2	保留	必须保持复位值。
0	CK48MSEL	48MHz时钟源选择 由软件置位和复位。该位用于选择IRC48M时钟或PLL48M时钟作为CK48M时钟源。 CK48M时钟用于:

0: 不选择IRC48M时钟(使用CK PLL/USBFSPSC时钟)

1: 选择IRC48M时钟

5.3.15. 附加时钟中断寄存器(RCU_ADDINT)

地址偏移: 0xCC

复位值: 0x0000 0000

该寄存器可以按字节(8位)、半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				保留					IRC48MS			保	<u>69</u>		
				体田					TBIC			1.4	н		
									w						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	IRC48MS				保留				IRC48MS			保	işir.		
休田	TBIE				休田				TBIF			180	Ħ		
	rw								r						

位/位域 名称 31:23 保留 必须保持复位值。 22 IRC48MSTBIC 内部 48 MHz RC 振荡器稳定中断清零 软件写 1 复位 IRC48MSTBIF 标志位 0: 不复位 IRC48MSTBIF 标志位 1: 复位 IRC48MSTBIF 标志位 21:15 保留 必须保持复位值。 IRC48MSTBIE 内部 48 MHz RC 振荡器稳定中断使能 14 由软件置位和复位来使能/禁止 IRC48M 时钟稳定中断 0: 禁止 IRC48M 时钟稳定中断 1: 使能 IRC48M 时钟稳定中断 13:7 保留 必须保持复位值。 **IRC48MSTBIF** IRC48M 时钟稳定中断标志位 当内部 48 MHz RC 振荡器时钟稳定且 IRC48MSTBIE 位被置 1 时由硬件置 1 软件置位 IRC48MSTBIC 位时清除该位 0: 无 IRC48M 时钟稳定中断产生 1: 产生 IRC48M 时钟稳定中断 5:0 保留 必须保持复位值。

5.3.16. APB1 附加复位寄存器(RCU_ADDAPB1RST)

地址偏移: 0xE0

复位值: 0x0000 0000

该寄存器可以按字节(8位)、半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留									In da					
	1朱	: 笛		RST						保留					
				rw											'
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保	留							

位/位域	名称	描述
31:28	保留	必须保持复位值。
27	CTCRST	CTC 复位 由软件置位或复位 0: 无作用 1: 复位 CTC
26:0	保留	必须保持复位值。

5.3.17. APB1 附加使能寄存器 (RCU_ADDAPB1EN)

地址偏移: 0xE4

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	le-s	i rive		СТС						les etc					
	保留									保留					
				rw											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保	留							

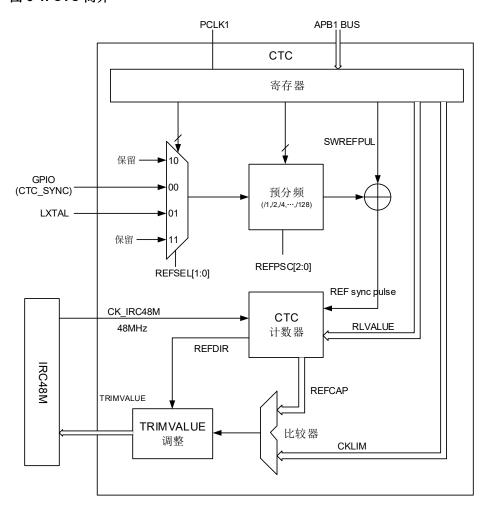
位/位域	名称	描述
31:28	保留	必须保持复位值。
27	CTCEN	CTC 时钟使能 由软件置位或复位 0: 关闭 CTC 时钟 1: 开启 CTC 时钟
26:0	保留	必须保持复位值。

6. 时钟校准控制器(CTC)

6.1. 简介

时钟校准控制器(CTC)采用硬件的方式,自动校准内部48MHz RC晶振(IRC48M)。CTC模块基于外部高精度的参考信号源来校准IRC48M的时钟频率,通过自动的或手动的调整校准值,以得到一个精准的IRC48M时钟。

6.2. 主要特性


- 两个外部参考信号源: GPIO(CTC_SYNC), LXTAL时钟;
- 提供软件参考同步脉冲;
- 硬件自动校准,无需软件操作;
- 具有参考信号源捕获和重载功能的16 bits校准计数器;
- 用于频率评估和自动校准的8 bits时钟校准基值;
- 标志位和中断,用于指示时钟校准的状态:校准成功状态(CKOKIF),警告状态(CKWARNIF)和错误状态(ERRIF)。

6.3. 功能描述

CTC模块的内部结构图如图6-1. CTC简介。

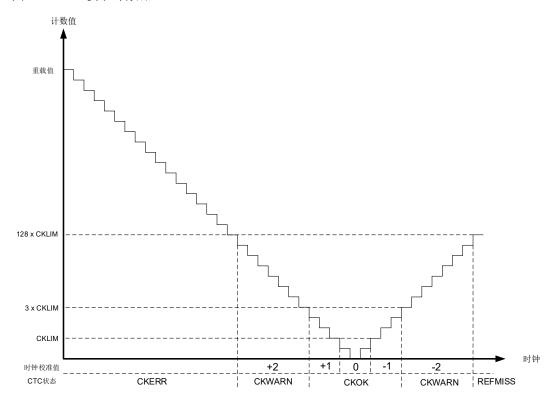
图 6-1. CTC 简介

6.3.1. REF 同步脉冲发生器

首先,通过设置CTC_CTL1寄存器中的REFSEL位来选择参考信号源: GPIO(CTC_SYNC), LXTAL时钟输出。

然后,可以通过设置CTC_CTL1寄存器中的REFPOL位来配置参考信号源同步时的信号极性,通过设置CTC CTL1寄存器中的REFPSC位来产生一个合适的同步时钟频率信号。

如果需要使用软件参考脉冲信号,则需要设置CTC_CTL0寄存器中的SWREFPUL位为1。软件参考脉冲信号与外部参考脉冲信号最后进行逻辑或操作。


6.3.2. CTC 校准计数器

CTC时钟校准计数器由CK_IRC48M提供时钟。在置位CTC_CTL0寄存器中的CNTEN位后,当检测到第一个REF同步脉冲信号,计数器开始从RLVALUE值(RLVALUE在CTC_CTL1寄存器中定义)开始向下计数。每次检测到REF同步脉冲信号时,计数器重载RLVALUE值,同时重新开始向下计数。如果始终检测不到REF同步脉冲信号,计数器会向下计数到零,然后再向上计数到128 x CKLIM(CKLIM在CTC_CTL1中定义),最后停止,直到检测到下一个REF同步脉冲信号。一旦检测到REF同步脉冲信号,当前CTC校准计数器的计数值被捕获存入CTC STAT寄

存器中的REFCAP位,同时,当前计数器的计数方向被存入CTC_STAT寄存器中的REFDIR位。 详细内容如*图6-2. CTC校准计数器*所示。

图 6-2. CTC 校准计数器

6.3.3. 频率评估和自动校准过程

当REF同步脉冲信号出现时,时钟频率评估功能开始执行。如果REF同步脉冲信号出现在计数器向下计数的过程中,说明当前时钟频率比期望时钟频率(频率为48M)慢,需要增大CTC_CTL0中的TRIMVALUE值(时钟校准值)。如果REF同步脉冲信号出现在计数器向上计数的过程中,说明当前时钟频率比期望时钟频率快,需要减小TRIMVALUE值。CTC_STAT中的CKOKIF位,CKWARNIF位,CKERR位和REFMISS位反映了频率评估的状态。

如果CTC_CTL0中的AUTOTRIM(硬件自动校准模式)位置1,硬件自动校准模式使能。在这个模式中,如果REF同步脉冲信号出现在计数器向下计数的过程中,说明当前时钟频率比期望时钟频率慢,CTC_CTL0中的TRIMVALUE值会自动增大,来提高当前的时钟频率。反之,如果REF同步脉冲信号出现在计数器向上计数的过程中,说明当前时钟频率比期望时钟频率快,TRIMVALUE值会自动减小,从而减小当前的时钟频率。

■ Counter < CKLIM时, 检测到REF同步脉冲信号;

CTC_STAT中的CKOKIF位(时钟校准成功标志位)被置位,同时,如果CTC_CTL0中的CKOKIE位(时钟校准完成中断使能位)置1,将会产生一个中断。如果CTC_CTL0中的AUTOTRIM置1,CTC_CTL0中的TRIMVALUE值不变。

■ CKLIM ≤ Counter < 3 x CKLIM时,检测到REF同步脉冲信号;

CTC STAT中的CKOKIF位被置位,同时,如果CTC CTL0中的CKOKIE位置1,将会产生

一个中断。

如果CTC_CTL0中的AUTOTRIM位置1,在计数器向下计数过程中,CTC_CTL0中的TRIMVALUE值将加1,而在向上计数过程中将减1。

■ 3 x CKLIM ≤ Counter < 128 x CKLIM时, 检测到REF同步脉冲信号;

CTC_STAT中的CKWARNIF位(时钟校准警告中断位)被置位,同时,如果CTC_CTL0中的CKWARNIE位(时钟校准警告中断使能位)置1,将会产生一个中断。如果CTC_CTL0中的AUTOTRIM位置1,在计数器向下计数过程中,CTC_CTL0中的TRIMVALUE值将加2,而在向上计数过程中将减2。

■ Counter ≥ 128 x CKLIM, 计数器在向下计数过程中, 检测到REF同步脉冲信号;

CTC_STAT中的CKERR位(时钟校准错误位)被置位,同时,如果CTC_CTL0中的ERRIE位(错误中断使能位)置1,将会产生一个中断。CTC_CTL0中的TRIMVALUE值不变。

■ Counter = 128 x CKLIM, 计数器在向上计数过程中;

CTC_STAT中的REFMISS位(REF同步脉冲丢失位)被置位,同时,如果CTC_CTL0中的ERRIE位置1,将会产生一个中断。 CTC_CTL0中的TRIMVALUE值不变。

如果CTC_CTL0中的TRIMVALUE的校准值大于63,将会发生上溢事件,同时,若TRIMVALUE的校准值小于0,将会发生下溢事件。TRIMVALUE的取值范围为0~63(上溢事件发生时,TRIMVALUE值为63;下溢事件发生时,TRIMVALUE值为0)。然后,CTC_STAT中的TRIMERR位(校准值错误位)将会被置位,如果CTC_CTL0中的ERRIE位置1,将会产生一个中断。

6.3.4. 软件编程指南

CTC_CTL1中RLVALUE位和CKLIM位是时钟频率评估和硬件自动校准的关键。它们的数值由期望时钟的频率(IRC48M: 48 MHz)和REF同步脉冲信号的频率计算得到。理想状态是REF同步脉冲信号在CTC计数器计数到零时出现,所以RLVALUE的值为:

$$RLVALUE = (F_{clock} \div F_{REzF}) - 1 \tag{6-1}$$

CKLIM的值由用户根据时钟的精度来设置,一般建议设为步长的一半,所以CKLIM的值为:

$$CKLIM = (F_{clock} \div F_{REF}) \times 0.12\% \div 2$$
 (6-2)

典型的步长值是0.12%, F_{clock} 是期望时钟的频率(IRC48M), F_{REF} 是REF同步脉冲信号的频率。

6.4. CTC 寄存器

CTC基地址: 0x4000 C800

6.4.1. 控制寄存器 0 (CTC_CTL0)

地址偏移: 0x00

复位值: 0x0000 2000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							货	R留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
/r	T1 (ŠT)			TD11.41./A				SWREF	AUTO	ONTEN	/m da		FDDIE	CKWARN	
17	呆留		TRIMVALUE[5:0]						TRIM	CNTEN	保留	EREFIE	ERRIE	IE	CKOKIE
		rw						w	rw	rw		rw	rw	rw	rw

D. D. I.B.	en me	The D
位/位域	名称	描述
31:14	保留	必须保持复位值。
13:8	TRIMVALUE[5:0]	IRC48M 校准值 当 CTC_CTL0 中的 AUTOTRIM 值为 0 时,该位由软件置位和清除,该模式用于软件校准过程。 当 CTC_CTL0 中的 AUTOTRIM 值为 1 时,该位只读,由硬件自动修改,该模式用于硬件校准过程。 TRIMVALUE 的中间值是 32,当 TRIMVALUE 值加 1 时,IRC48M 时钟频率增加大约 57KHz。当 TRIMVALUE 值减 1 时,IRC48M 时钟频率的减少大约 57KHz。
7	SWREFPUL	软件生成同步参考信号脉冲 该位由软件置位,并为 CTC 计数器提供一个同步参考脉冲信号。该位由硬件自动 清除,读操作时返回 0。 0:没有影响 1:软件产生一个同步参考脉冲信号
6	AUTOTRIM	硬件自动校准模式 该位由软件置位或清除。当该位置 1 时,硬件自动校准模式使能,通过硬件不断的 自动修改 CTC_CTL0 中的 TRIMVALUE 值,直到 IRC48M 的时钟频率达到 48MHz。 0:禁止硬件自动校准模式 1:使能硬件自动校准模式
5	CNTEN	CTC 计数器使能 该位由软件置位或清除,用于使能或禁止 CTC 计数器。当该位置 1 时,不能修改 CTC_CTL1 的值。

0: 禁止 CTC 计数器

_			0 = 0 = 1 1 0 0 1 = 1 / 14 /	4 /4/4
		1: 使能 CTC 计数器		
4	保留	必须保持复位值。		
3	EREFIE	期望参考信号中断使能		
		0:禁止期望参考信号产生中断 1:使能期望参考信号产生中断		
2	ERRIE	错误中断使能		
		0: 禁止错误中断		
		1: 使能错误中断		
1	CKWARNIE	时钟校准警告中断使能		
		0: 禁止时钟校准警告中断		
		1: 使能时钟校准警告中断		
0	CKOKIE	时钟校准完成中断使能		
		0:禁止时钟校准完成中断		
		1: 使能时钟校准完成中断		

6.4.2. 控制寄存器 1(CTC_CTL1)

地址偏移: 0x04

复位值: 0x2022 BB7F

该寄存器只能按字(32位)访问。

注意: 当CNTEN为1时,不能修改该寄存器的值。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
REF				Part 100			_								
POL	保留	REFSE	EL[1:0]	保留	F	REFPSC[2:0	1]				CKLI	И[7:0]			
rw		n	w			rw		•			n	W			
5	4.4	13	12	11	10	9	8	7	6	5	4	3	2	1	0
O	14	13	12			Ü	ŭ	-	ŭ	Ü	•	Ū	-		·

rw

位/位域	名称	描述
31	REFPOL	参考信号源极性
		该位由软件置位或清除,用于选择参考信号源的同步极性
		0: 选择上升沿
		1: 选择下降沿
30	保留	必须保持复位值。
29:28	REFSEL[1:0]	参考信号源选择
		该位由软件置位或清除,用于选择参考信号源
		00:选择 GPIO (CTC_SYNC) 输入信号
		01: 选择 LXTAL 时钟

digabevice		
		10: 保留 11: 保留
27	保留	必须保持复位值。
26:24	REFPSC[2:0]	参考信号源预分频 该位由软件置位或清除 000: 参考信号不分频 001: 参考信号 2 分频 010: 参考信号 4 分频 011: 参考信号 8 分频 100: 参考信号 16 分频 101: 参考信号 32 分频 110: 参考信号 64 分频 111: 参考信号 128 分频
23:16	CKLIM[7:0]	时钟校准时基限值 该位由软件置位或清除,用于定义时钟校准时基限值。该位用于频率评估和自动校 准过程,详细情况请参考"频率评估和自动校准过程。
15:0	RLVALUE[15:0]	CTC 计数器重载值 该位由软件置位或清除,用于定义 CTC 计数器的重载值,当检测到一个同步参考 脉冲时,该值将重载到 CTC 校准计数器中。

6.4.3. 状态寄存器 (CTC_STAT)

地址偏移: 0x08

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							REFCA	P[15:0]							
							1	r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DEEDID		In	rian		TRIM	REF	OKEDD		/m	·····································		FDFFIF	EDDIE	CKWARN	СКОК
REFDIR		1末	:留		ERR	MISS	CKERR		1禾	田		EREFIF	ERRIF	IF	IF
r					r	r	r					r	r	r	r

位/位域	名称	描述
31:16	REFCAP[15:0]	CTC 计数器捕获值 当检测到一个同步参考脉冲信号时,CTC 校准计数器中的计数值被存入到 REFCAP 位中。
15	REFDIR	CTC 校准时钟计数方向 当检测到一个同步参考脉冲信号时,CTC 校准计数器的计数方向被存入 REFDIR 位中。

digubevice		GD32F403XX 用广宁加
		0: 向上计数 1: 向下计数
14:11	保留	必须保持复位值。
10	TRIMERR	校准值错误位 当 CTC_CTL0 中的 TRIMVALUE 值发生上溢或下溢时,该位由硬件置位。若 CTC_CTL0 中的 ERRIE 位置 1,则会产生一个中断。通过写 1 到 CTC_INTC 中的 ERRIC 位,可以将 TRIMERR 位清零。 0: 无校准值错误发生 1: 发生校准值错误
9	REFMISS	同步参考脉冲信号丢失 当同步参考脉冲信号丢失时,该位由硬件置位。当 CTC 校准计数器在增计数的过程中计数到 128 x CKLIM 都没有检测到同步参考脉冲信号时,REFMISS 位置位。说明当前时钟太快,无法校准到期望频率值,或者有其他错误产生。通过写 1 到 CTC_INTC 中的 ERRIC 位,可以将 REFMISS 位清零。 0: 无同步参考脉冲信号丢失 1: 同步参考脉冲信号丢失
8	CKERR	时钟校准错误位 当时钟校准错误产生时,该位由硬件置位。当 CTC 校准计数器计数值在减计数的 过程中大于或等于 128 x CKLIM,并检测到同步参考脉冲信号时,CKERR 置位, 说明当前时钟太慢,无法校准到期望频率值。当 CTC_CTLO 中的 ERRIE 置 1 时, 产生一个中断。通过写 1 到 CTC_INTC 中的 ERRIC 位,可以将 CKERR 位清零。 0: 无时钟校准错误发生 1: 发生时钟校准错误
7:4	保留	必须保持复位值。
3	EREFIF	期望参考中断标志位 当 CTC 校准时钟计数器计数到 0 时,该位由硬件置位。当 CTC_CTL0 中的 EREFIE 置 1 时,产生一个中断。通过写 1 到 CTC_INTC 中的 EREFIC 位,可以 将 EREFIF 位清零。 0: 无期望参考信号产生 1: 期望参考信号产生
2	ERRIF	错误中断标志位 当发生一个错误时,该位由硬件置位。只要有 TRIMERR,REFMISS 或者 CKERR 错误发生时,该位置位。当 CTC_CTL0 中的 ERRIE 置位时,产生一个中断。通过 写 1 到 CTC_INTC 中的 ERRIC 位,可以将 ERRIF 位清零。 0: 无错误发生 1: 发生错误
1	CKWARNIF	时钟校准警告中断标志位 当时钟校准警告产生时,该位由硬件置位。当 CTC 校准计数器计数值大于或等于 3 x CKLIM 且小于 128 x CKLIM,并检测到同步参考脉冲信号时,CKWARNIF 置位。这说明当前时钟频率太慢或者太快,但可以通过校准达到期望频率值。当时钟

校准警告产生时,TRIMVALUE 值加 2 或者减 2。当 CTC_CTL0 中的 CKWARNIE 置 1 时,产生一个中断。通过写 1 到 CTC_INTC 中的 CKWARNIC 位,可以将 CKWARNIF 位清零。

0: 无时钟校准警告发生

1: 有时钟校准警告发生

0 CKOKIF 时钟校准成功中断标志位

当时钟校准成功时,该位由硬件置位。若在 CTC 校准计数器计数值小于 3 x CKLIM 时,检测当同步参考脉冲信号,CKOKIF 置位。说明当前时钟频率正常,可以使用,不需要通过 TRIMVALUE 值进行时钟校准。当 CTC_CTL0 中的 CKOKIE 置 1时,产生一个中断。通过写 1 到 CTC_INTC 中的 CKOKIC 位,可以将 CKOKIF 位清零。

0: 时钟校准未成功

1: 时钟校准成功

6.4.4. 中断清除寄存器(CTC_INTC)

地址偏移: 0x0C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					/m	r\$rr						EDEEIO		CKWARN	скок
					保	笛						EREFIC	ERRIC	IC	IC

位/位域	名称	描述
31:4	保留	必须保持复位值。
3	EREFIC	EREFIF 中断清除位 该位只能由软件写,读操作返回 0。写 1 可以清除 CTC_STAT 中的 EREFIF 位,写 0 没影响。
2	ERRIC	ERRIF 中断清除位 该位只能由软件写,读操作返回 0。写 1 可以清除 CTC_STAT 中的 ERRIF 位, TRIMERR 位,REFMISS 位和 CKERR 位,写 0 没影响。
1	CKWARNIC	CKWARNIF 中断清除位 该位只能由软件写,读操作返回 0。写 1 可以清除 CTC_STAT 中的 CKWARNIF 位,写 0 没影响。
0	CKOKIC	CKOKIF 中断清除位 该位只能由软件写,读操作返回 0。写 1 可以清除 CTC_STAT 中的 CKOKIF 位,

写0没影响。

7. 中断/事件控制器(EXTI)

7.1. 简介

Cortex®-M4集成了嵌套式矢量型中断控制器(Nested Vectored Interrupt Controller(NVIC))来实现高效的异常和中断处理。NVIC实现了低延迟的异常和中断处理,以及电源管理控制。它和内核是紧密耦合的。更多关于NVIC的说明请参考《Cortex-M4®技术参考手册》。

EXTI(中断/事件控制器)包括19个相互独立的边沿检测电路并且能够向处理器内核产生中断请求或唤醒事件。EXTI有三种触发类型:上升沿触发、下降沿触发和任意沿触发。EXTI中的每一个边沿检测电路都可以独立配置和屏蔽。

7.2. 主要特性

- Cortex®-M4 系统异常;
- 多达 68 种可屏蔽的外设中断;
- 4 位中断优先级配置位—可配置 16 个中断优先等级:
- 高效的中断处理;
- 支持异常抢占和咬尾中断;
- 将系统从省电模式唤醒;
- EXTI 中有多达 19 个相互独立的边沿检测电路;
- 3种触发类型:上升沿触发,下降沿触发和任意沿触发;
- 软件中断或事件触发;
- 可配置的触发源。

7.3. 功能说明

Arm Cortex®-M4处理器和嵌套式矢量型中断控制器(NVIC)在处理(Handler)模式下对所有异常进行优先级区分以及处理。当异常发生时,系统自动将当前处理器工作状态压栈,在执行完中断服务子程序(ISR)后自动将其出栈。

取向量是和当前工作态压栈并行进行的,从而提高了中断入口效率。处理器支持咬尾中断,可实现背靠背中断,大大削减了反复切换工作态所带来的开销。<u>表7-1. Cortex®-M4 中的NVIC异</u>常类型和表7-2. 中断向量表列出了Cotrex®-M4中的NVIC异常类型。

表 7-1. Cortex®-M4 中的 NVIC 异常类型

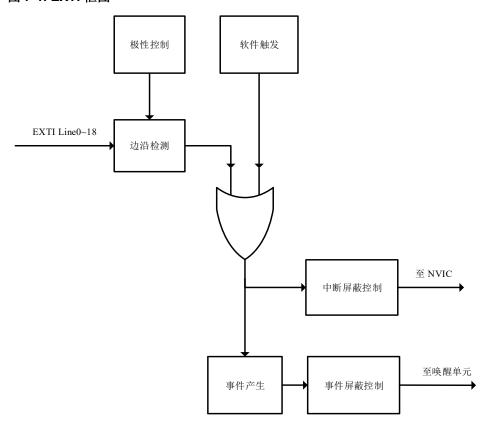
异常类型	向量编号	 优先级(a) 	向量地址	描述
-	0	-	0x0000_0000	保留
复位	1	-3	0x0000_0004	复位
NMI	2	-2	0x0000_0008	不可屏蔽中断
硬件故障	3	-1	0x0000_000C	各种硬件级别的故障

GD32F403xx 用户手册

异常类型	向量编号	优先级(a)	向量地址	描述					
存储器管理	4	可编程设置	0x0000_0010	存储器管理					
总线故障	5	可编程设置	0x0000_0014	预取指故障,存储器访问故障					
用法故障	6	可编程设置	0x0000_0018	未定义的指令或非法状态					
	7-10		0x0000_001C -	保留					
-	7-10	-	0x0000_002B						
SVCall 服务调	11	可编程设置	0x0000 002C	通过 SWI 指令实现系统服务					
用	11	均無性以且	0x0000_002C	调用					
调试监控	12	可编程设置	0x0000_0030	调试监视器					
-	13	-	0x0000_0034	保留					
PendSV 挂起 服务	14	可编程设置	0x0000_0038	可挂起的系统服务请求					
SysTick	15	可编程设置	0x0000_003C	系统节拍定时器					

表 7-2. 中断向量表

中断编号	向量编号	外设中断描述	向量地址
IRQ 0	16	窗口看门狗中断	0x0000_0040
IRQ 1	17	连接到 EXTI 线的 LVD 中断	0x0000_0044
IRQ 2	18	侵入检测中断	0x0000_0048
IRQ 3	19	RTC 全局中断	0x0000_004C
IRQ 4	20	FMC 全局中断	0x0000_0050
IRQ 5	21	RCU 和 CTC 中断	0x0000_0054
IRQ 6	22	EXTI 线 0 中断	0x0000_0058
IRQ 7	23	EXTI 线 1 中断	0x0000_005C
IRQ 8	24	EXTI 线 2 中断	0x0000_0060
IRQ 9	25	EXTI 线 3 中断	0x0000_0064
IRQ 10	26	EXTI 线 4 中断	0x0000_0068
IRQ 11	27	DMA0 通道 0 全局中断	0x0000_006C
IRQ 12	28	DMA0 通道 1 全局中断	0x0000_0070
IRQ 13	29	DMA0 通道 2 全局中断	0x0000_0074
IRQ 14	30	DMA0 通道 3 全局中断	0x0000_0078
IRQ 15	31	DMA0 通道 4 全局中断	0x0000_007C
IRQ 16	32	DMA0 通道 5 全局中断	0x0000_0080
IRQ 17	33	DMA0 通道 6 全局中断	0x0000_0084
IRQ 18	34	ADC0 和 ADC1 全局中断	0x0000_0088
IRQ 19	35	CANO 发送中断	0x0000_008C
IRQ 20	36	CAN0 接收 0 中断	0x0000_0090
IRQ 21	37	CAN0 接收 1 中断	0x0000_0094
IRQ 22	38	CAN0 EWMC 中断	0x0000_0098
IRQ 23	39	EXTI 线[9:5] 中断	0x0000_009C
IRQ 24	40	TIMER0 中止中断和 TIMER8 全局中断	0x0000_00A0
IRQ 25	41	TIMER0 更新中断和 TIMER9 全局中断	0x0000_00A4


中断编号	向量编号	外设中断描述	向量地址
100.00	40	TIMER0 触发与通道换相中断和 TIMER10	0.0000.0040
IRQ 26	42	全局中断	0x0000_00A8
IRQ 27	43	TIMER0 通道捕获比较中断	0x0000_00AC
IRQ 28	44	TIMER1 全局中断	0x0000_00B0
IRQ 29	45	TIMER2 全局中断	0x0000_00B4
IRQ 30	46	TIMER3 全局中断	0x0000_00B8
IRQ 31	47	I2C0 事件中断	0x0000_00BC
IRQ 32	48	I2C0 错误中断	0x0000_00C0
IRQ 33	49	I2C1 事件中断	0x0000_00C4
IRQ 34	50	I2C1 错误中断	0x0000_00C8
IRQ 35	51	SPI0 全局中断	0x0000_00CC
IRQ 36	52	SPI1 全局中断	0x0000_00D0
IRQ 37	53	USART0 全局中断	0x0000_00D4
IRQ 38	54	USART1 全局中断	0x0000_00D8
IRQ 39	55	USART2 全局中断	0x0000_00DC
IRQ 40	56	EXTI 线[15:10]中断	0x0000_00E0
IRQ 41	57	连接 EXTI 线的 RTC 闹钟中断	0x0000_00E4
IRQ 42	58	连接 EXTI 线的 USBFS 唤醒中断	0x0000_00E8
IRQ 43	59	TIMER7 中止中断和 TIMER11 全局中断	0x0000_00EC
IRQ 44	60	TIMER7 更新中断和 TIMER12 全局中断	0x0000_00F0
IRQ 45	61	TIMER7 触发与通道换相中断和 TIMER13	0x0000_00F4
		全局中断	
IRQ 46	62	TIMER7 通道捕获比较中断	0x0000_00F8
IRQ 47	63	ADC2 全局中断	0x0000_00FC
IRQ 48	64	EXMC 全局中断	0x0000_0100
IRQ 49	65	SDIO 全局中断	0x0000_0104
IRQ50	66	TIMER4 全局中断	0x0000_0108
IRQ51	67	SPI2 全局中断	0x0000_010C
IRQ52	68	UART3 全局中断	0x0000_0110
IRQ53	69	UART4 全局中断	0x0000_0114
IRQ54	70	TIMER5 全局中断	0x0000_0118
IRQ55	71	TIMER6 全局中断	0x0000_011C
IRQ56	72	DMA1 通道 0 全局中断	0x0000_0120
IRQ57	73	DMA1 通道 1 全局中断	0x0000_0124
IRQ58	74	DMA1 通道 2 全局中断	0x0000_0128
IRQ59	75	DMA1 通道 3 全局中断	0x0000_012C
IRQ60	76	DMA1 通道 4 全局中断	0x0000_0130
IRQ61	77	保留	0x0000_0134
IRQ62	78	保留	0x0000_0138
IRQ63	79	CAN1 发送中断	0x0000_013C
IRQ64	80	CAN1 接收 0 中断	0x0000_0140

中断编号	向量编号	外设中断描述	向量地址
IRQ65	81	CAN1 接收 1 中断	0x0000_0144
IRQ66	82	CAN1 EWMC 中断	0x0000_0148
IRQ67	83	USBFS 全局中断	0x0000_014C

7.4. 外部中断及事件(EXTI) 框图

图 7-1. EXTI 框图

7.5. 外部中断及事件功能概述

EXTI包含多达19个相互独立的边沿检测电路并且可以向处理器产生中断请求或事件唤醒。 EXTI提供3种触发类型:上升沿触发,下降沿触发和任意沿触发。EXTI中每个边沿检测电路都可以分别予以配置或屏蔽。

EXTI触发源包括来自I/O管脚的16根线以及来自内部模块的4根线。具体细节参考<u>表7-3. EXTI</u> <u>触发源</u>。通过配置GPIO模块的AFIO_EXTISSx寄存器,所有的GPIO管脚都可以被选作EXTI的 触发源,具体细节请参考<u>通用和备用输入I输出接口(GPIO和AFIO)</u>章节。

除了中断,EXTI还可以向处理器提供事件信号。The Cortex®-M4内核完全支持等待中断(WFI),等待事件(WFE)和发送事件(SEV)指令。芯片内部有一个唤醒中断控制器(WIC),用户可以放心的让处理器和NVIC进入功耗极低的省电模式,由WIC来识别中断和事件以及判断优先级。当某些预期的事件发生时,例如一个特定的I/O管脚电平翻转或者RTC闹钟动作,EXTI

能唤醒处理器及整个系统。

表 7-3. EXTI 触发源

EXTI 线编号	触发源
0	PA0 / PB0 / PC0 / PD0 / PE0 / PF0 / PG0
1	PA1 / PB1 / PC1 / PD1 / PE1 / PF1 / PG1
2	PA2 / PB2 / PC2 / PD2 / PE2 / PF2 / PG2
3	PA3 / PB3 / PC3 / PD3 / PE3 / PF3 / PG3
4	PA4 / PB4 / PC4 / PD4 / PE4 / PF4 / PG4
5	PA5 / PB5 / PC5 / PD5 / PE5 / PF5 / PG5
6	PA6 / PB6 / PC6 / PD6 / PE6 / PF6 / PG6
7	PA7 / PB7 / PC7 / PD7 / PE7 / PF7 / PG7
8	PA8 / PB8 / PC8 / PD8 / PE8 / PF8 / PG8
9	PA9 / PB9 / PC9 / PD9 / PE9 / PF9 / PG9
10	PA10 / PB10 / PC10 / PD10 / PE10 / PF10 / PG10
11	PA11 / PB11 / PC11 / PD11 / PE11 / PF11 / PG11
12	PA12 / PB12 / PC12 / PD12 / PE12 / PF12 / PG12
13	PA13 / PB13 / PC13 / PD13 / PE13 / PF13 / PG13
14	PA14 / PB14 / PC14 / PD14 / PE14 / PF14 / PG14
15	PA15 / PB15 / PC15 / PD15 / PE15 / PF15 / PG15
16	LVD
17	RTC 闹钟
18	USB 唤醒

7.6. EXTI 寄存器

EXTI 基地址: 0x4001 0400

7.6.1. 中断使能寄存器 (EXTI_INTEN)

地址偏移: 0x00

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保留							INTEN18	INTEN17	INTEN16
													rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
INTEN15	INTEN14	INTEN13	INTEN12	INTEN11	INTEN10	INTEN9	INTEN8	INTEN7	INTEN6	INTEN5	INTEN4	INTEN3	INTEN2	INTEN1	INTEN0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:19	保留	必须保持复位值。
18: 0	INTENx	中断使能位 x (x = 018) 0 : 第 x 线中断被禁用
		1: 第x线中断被使能

7.6.2. 事件使能寄存器 (EXTI_EVEN)

地址偏移: 0x04

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保留							EVEN18	EVEN17	EVEN16
													rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EVEN15	EVEN14	EVEN13	EVEN12	EVEN11	EVEN10	EVEN9	EVEN8	EVEN7	EVEN6	EVEN5	EVEN4	EVEN3	EVEN2	EVEN1	EVEN0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:19	保留	必须保持复位值。
18: 0	EVENx	事件使能位x (x = 018) 0: 第x线事件被禁用. 1: 第x线事件被使能

7.6.3. 上升沿触发使能寄存器 (EXTI_RTEN)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保留							RTEN18	RTEN17	RTEN16
													rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RTEN15	RTEN14	RTEN13	RTEN12	RTEN11	RTEN10	RTEN9	RTEN8	RTEN7	RTEN6	RTEN5	RTEN4	RTEN3	RTEN2	RTEN1	RTEN0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:19	保留	必须保持复位值。
18: 0	RTENx	上升沿触发使能 x (x = 018)
		0: 第x线上升沿触发无效
		1: 第x线上升沿触发有效(中断/事件请求)

7.6.4. 下降沿触发使能寄存器 (EXTI_FTEN)

地址偏移: 0x0C

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保留							FTEN18	FTEN17	FTEN16
													rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FTEN15	FTEN14	FTEN13	FTEN12	FTEN11	FTEN10	FTEN9	FTEN8	FTEN7	FTEN6	FTEN5	FTEN4	FTEN3	FTEN2	FTEN1	FTEN0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:19	保留	必须保持复位值。
18: 0	FTENx	下降沿触发使能 x (x = 018)
		0: 第x线下降沿触发无效
		1. 第x线下降沿触发有效(中断/事件请求)

7.6.5. 软件中断事件寄存器 (EXTI_SWIEV)

地址偏移: 0x10

复位值: 0x0000 0000

GD32F403xx 用户手册

		该寄存	E 器只能	έ接字 ((32位)	访问。									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保留							SWIEV18	SWIEV17	SWIEV16
													rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SWIEV15	SWIEV14	SWIEV13	SWIEV12	SWIEV11	SWIEV10	SWIEV9	SWIEV8	SWIEV7	SWIEV6	SWIEV5	SWIEV4	SWIEV3	SWIEV2	SWIEV1	SWIEV0

位/位域	名称	描述
31:19	保留	必须保持复位值。
18: 0	SWIEVx	中断/事件软件触发x (x = 018)
		0: 禁用EXTI线x软件中断/事件请求
		1: 激活EXTI线x软件中断/事件请求

7.6.6. 挂起寄存器 (EXTI_PD)

地址偏移: 0x14

复位值: 0xXXXXX XXXX, X表示未定义

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保留							PD18	PD17	PD16
													rc_w1	rc_w1	rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
rc w1															

位/位域	名称	描述
31:19	保留	必须保持复位值。
18: 0	PDx	中断挂起状态 x (x = 018) 0 : EXTI 线 x 没有被触发
		1: EXTI线x被触发
		对这些位写1,可将其清0。

8. 通用和备用输入/输出接口(GPIO和 AFIO)

8.1. 简介

最多可支持 112 个通用 I/O 引脚(GPIO),分别为 PAO ~ PA15,PBO ~ PB15,PCO ~ PC15,PD0 ~ PD15,PEO ~ PE15,PF0 ~ PF15 和 PGO ~ PG15,各片上设备用其来实现逻辑输入/输出功能。每个 GPIO 端口有相关的控制和配置寄存器以满足特定应用的需求。外设 GPIO 引脚上的外部中断在中断/事件控制器(EXIT)中有相关的控制和配置寄存器。

GPIO 端口和其他的备用功能(AFs)共用引脚,在特定的封装下获得最大的灵活性。GPIO 引脚通过配置相关的寄存器可以用作备用功能输入/输出。

每个 GPIO 引脚可以由软件配置为输出(推挽或开漏)、输入、外设备用功能或者模拟模式。每个 GPIO 引脚都可以配置为上拉、下拉或浮空。除模拟模式外,所有的 GPIO 引脚都具备大电流驱动能力。

8.2. 主要特性

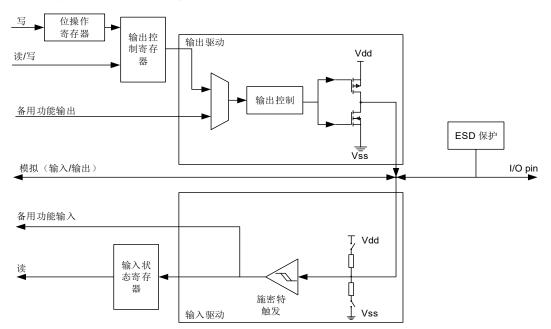
- 输入/输出方向控制;
- 施密特触发器输入功能使能控制;
- 每个引脚都具有弱上拉/下拉功能;
- 推挽/开漏输出使能控制;
- 置位/复位输出使能;
- 可编程触发沿的外部中断—使用EXTI配置寄存器
- 模拟输入/输出配置;
- 备用功能输入/输出配置;
- 端口锁定配置;

8.3. 功能描述

每个通用 I/O 端口都可以通过两个 32 位的控制寄存器(GPIOx_CTL0/ GPIOx_CTL1)和一个 32 位的数据寄存器(GPIOx_OCTL)配置为 8 种模式:模拟输入,浮空输入,上拉输入,下拉输入,GPIO 推挽输出,GPIO 开漏输出,AFIO 推挽输出和 AFIO 开漏输出。详情请见表8-1. GPIO配置表。

表 8-1. GPIO 配置表

配置模式		CTL[1:0]	SPDy: MD[1:0]	OCTL
	模拟	00		不使用
输入	浮空输入	01	v 00	不使用
和八	下拉输入	10	x 00	0
	上拉输入	10		1



配置模式		CTL[1:0]	SPDy: MD[1:0]	OCTL
普通输出	推挽		x 00: 保留 x 01: 最大速度到 10MHz	0 或 1
(GPIO)	开漏	01	x 10: 最大速度到 2MHz	0 或 1
备用功能	推挽	10	0 11: 最大速度到 50MHz 1 11: 最大速度到 168MHz ⁽¹⁾	不使用
输出 (AFIO)	开漏	11	(同时设置SPDy值为1)	不使用

1、当 GPIO 输出速度超过 50MHz 时,需要使能 GPIO 的补偿单元,参考 IO 补偿控制寄存器 (AFIO CPSCTL)。

图8-1. 标准 I/O 端口位的基本结构为标准 I/O 端口位的基本结构图。

图 8-1. 标准 I/O 端口位的基本结构

8.3.1. GPIO 引脚配置

在复位期间或复位之后,备用功能并未激活,所有 GPIO 端口都被配置成输入浮空模式,这种输入模式禁用上拉(PU)/下拉(PD)电阻。但是复位后,串行线调试端口(JTAG/Serial-Wired Debug pins)为输入 PU/PD 模式:

PA15: JTDI 为上拉模式;

PA14: JTCK / SWCLK 为下拉模式;

PA13: JTMS / SWDIO 为上拉模式;

PB4: NJTRST 为上拉模式。

PB3: JTDO 为浮空模式。

GPIO 引脚可以配置为输入或输出模式,当 GPIO 引脚可配置为输入引脚时,所有的 GPIO 引脚内部都有一个可选择的弱上拉和弱下拉电阻。外部引脚上的数据在每个 APB2 时钟周期时都会装载到数据输入寄存器(GPIOx ISTAT)。

当 GPIO 引脚配置为输出引脚,用户可以配置端口的输出速度和选择输出驱动模式:推挽或开漏模式,输出寄存器(GPIOx_OCTL)的值将会从相应 I/O 引脚上输出。

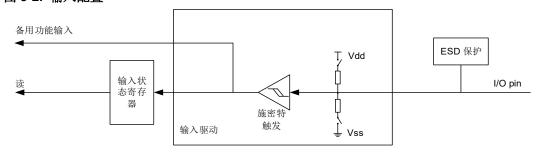
当对 GPIOx_OCTL 进行位操作时,不需要先读再写,用户可以通过写'1'到位操作寄存器 (GPIOx_BOP,或用于清 0 的 GPIOx_BC)修改一位或几位,该过程仅需要一个最小的 APB2 写访问周期,而其他位不受影响。

8.3.2. 外部中断/事件线

所有的端口都有外部中断能力, 为了使用外部中断线, 端口必须配置为输入模式。

8.3.3. 备用功能(AF)

当端口配置为AFIO(设置GPIOx_CTL0/GPIOx_CTL1寄存器中的CTLy值为"0b10"或"0b11",MDy位值为"0b01","0b10"或"0b11")时,该端口用作外设备用功能。端口备用功能分配的详细介绍见芯片数据手册。


8.3.4. 输入配置

当 GPIO 引脚配置为输入时:

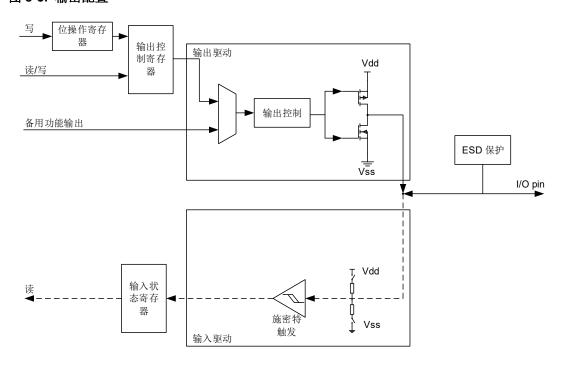
- 施密特触发输入使能;
- 可选择的弱上拉和下拉电阻;
- 当前I/O引脚上的数据在每个APB2时钟周期都会被采样并存入端口输入状态寄存器;
- 输出缓冲器禁用。

图 8-2. 输入配置显示 I/O 引脚的输入配置。

图 8-2. 输入配置

8.3.5. 输出配置

当 GPIO 配置为输出时:


- 施密特触发输入使能;
- 弱上拉和下拉电阻禁用;
- 输出缓冲器使能;
- 开漏模式:输出控制寄存器设置为"0"时,相应引脚输出低电平;输出控制寄存器设置为"1",相应管脚处于高阻状态;

- 推挽模式:输出控制寄存器设置为"0"时,相应引脚输出低电平;输出控制寄存器设置为"1",相应引脚输出高电平;
- 对端口输出控制寄存器进行读操作,将返回上次写入的值;
- 对端口输入状态寄存器进行读操作,将获得当前I/O口的状态。

图 8-3. 输出配置是 I/O 端口的输出配置。

图 8-3. 输出配置

8.3.6. 模拟配置

当 GPIO 引脚用于模拟模式时:

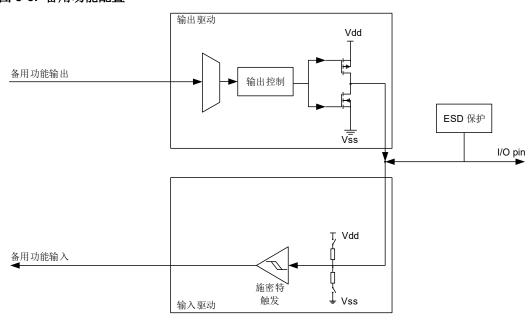
- 弱上拉和下拉电阻禁用;
- 输出缓冲器禁用;
- 施密特触发输入禁用;
- 端口输入状态寄存器相应位为"0"。

图 8-4. 模拟配置是 I/O 端口的模拟模式配置。

图 8-4. 模拟配置

8.3.7. 备用功能(AF)配置

为了适应不同的器件封装,GPIO 端口支持软件配置将一些备用功能应用到其他引脚上。



当引脚配置为备用功能时:

- 使用开漏或推挽功能时,可使能输出缓冲器;
- 输出缓冲器由外设驱动;
- 施密特触发输入使能;
- 在输入配置时,可选择弱上拉/下拉电阻;
- I/O引脚上的数据在每个APB2时钟周期采样并存入端口输入状态寄存器;
- 对端口输入状态寄存器进行读操作,将获得I/O口的状态;
- 对端口输出控制寄存器进行读操作,将返回上次写入的值。

图 8-5. 备用功能配置是 I/O 端口备用功能配置图。

图 8-5. 备用功能配置

8.3.8. GPIO 锁定功能

GPIO 的锁定机制可以保护 I/O 端口的配置。

被保护的寄存器有 GPIOx_CTL0 和 GPIOx_CTL1。通过配置 32 位锁定寄存器(GPIOx_LOCK)可以锁定 I/O 端口的配置。通过特定的锁定序列配置 GPIOx_LOCK 中的 LKK 位和 LKy 位,相应的端口位被锁定,直到下一个复位前,相应端口位的配置都不能修改。建议在电源驱动模块的配置中使用锁定功能。

8.3.9. GPIO I/O 补偿单元

当 I/O 端口输出速度大于 50MHz 时,建议使用 I/O 补偿单元对 I/O 端口进行斜率控制,从而降低 I/O 端口噪声对工作电源的影响。

I/O 补偿单元在系统复位后,默认是关闭状态,需要用户根据需要开启。

在使能 I/O 补偿单元后,将产生一个准备完成标志位 CPS_RDY,用于指示补偿单元已经准备好,可以使用。如果电源电压超过 2.4V~3.6V,不能使用 I/O 补偿单元,必须关闭该功能。

8.4. I/O 重映射功能和调试配置

8.4.1. 介绍

为了扩展 GPIO 的灵活性或外设功能使用,通过配置 AFIO 端口配置寄存器(AFIO_PCF0/AFIO_PCF1),每个 I/O 引脚都可以配置多达 4 种不同的功能。通过使用外设 IO 的重映射功能可以选择合适的引脚位置。另外,通过配置相应的 EXTI 源选择寄存器(AFIO_EXTISSx)选择触发中断或事件,GPIO 引脚可以用作 EXTI 中断线。

8.4.2. 主要特性

- EXTI 源选择
- 每个引脚具有多达4种备用功能的配置

8.4.3. JTAG/SWD 备用功能重映射

调试接口信号映射在 GPIO 端口的情况如下表所示。

表 8-2. 调试接口信号

7C 0 2: 1/3 1/3 1/3 1/3					
GPIO 端口	备用功能				
PA13	JTMS / SWDIO				
PA14	JTCK / SWCLK				
PA15	JTDI				
PB3	JTDO / TRACESWO				
PB4	NJTRST				
PE2	TRACECK				
PE3	TRACED0				
PE4	TRACED1				
PE5	TRACED2				
PE6	TRACED3				

为了减少用于调试的 GPIO 端口,用户可以配置 AFIO_PCF0 寄存器中的 SWJ_CFG [2:0]位为不同的值。具体情况参照下表。

表 8-3. 调试端口映射

SWJ_CFG	JTAG-DP and SW-DP	Pin availability						
[2:0]		PA13	PA14	PA15	PB3	PB4		
	JTAG-DP 开启							
000	SW-DP 开启	Х	Х	Χ	X	Х		
	(复位状态)							
	JTAG-DP 开启							
001	SW-DP 开启	X	Х	X	Х	√		
	没有 NJTRST							
010	JTAG-DP 美闭	Х	Х	√	√	√		

SWJ_CFG	JTAG-DP and SW-DP	Pin availability						
[2:0]		PA13	PA14	PA15	PB3	PB4		
	SW-DP 开启							
100	JTAG-DP 关闭	,	V	,	,	,		
100	SW-DP 关闭	√	√	√	√	√		
Other	禁用							

- 1, 只有在不使用异步跟踪时, I/O才能使用。
- 2, "√"指示相应的引脚可被用作通用 IO 引脚
- 3, "X" 指示相应的引脚不可被用作通用 IO 引脚

8.4.4. ADC AF 重映射

参考 AFIO 端口配置寄存器 0(AFIO_ PCF0)。

表 8-4. ADC 常规转换外部触发备用功能重映射⁽¹⁾

寄存器	ADC0	ADC1
ADC0_ETRGRER_REMA	ADC0 外部信号触发常规转换连	
P = 0	接到 EXTI11	•
ADC0_ETRGRER_REMA	ADC0 外部信号触发常规转换连	
P = 1	接到 TIMER7_TRGO	-
ADC1_ETRGRER_REMA		ADC1 外部信号触发常规转换连
P = 0	-	接到 EXTI11
ADC1_ETRGRER_REMA		ADC1 外部信号触发常规转换连
P = 1	<u>-</u>	接到 TIMER7_TRGO

8.4.5. TIMER AF 重映射

表 8-5. TIMERx 备用功能重映射

	TIMERx_REMAP [1:0](x = 0, 1, 2)							
备用功能		r(x = 3, 8, 9, 10, , 13)	-					
	"0" /"00" (没有映射)	"1" /"01" (部分映射)	"10" (部分映射)	"11" (全映射)				
TIMER0_ETI	Р	A12	-	PE7				
TIMER0_CH0	F	PA8	-	PE9				
TIMER0_CH1	F	PA9	-	PE11				
TIMER0_CH2	PA10		-	PE13				
TIMER0_CH3	P	A11	-	PE14				
TIMER0_BRKI	PB12	PA6	_	PE15				

	TIMERx_REMAP [1:0](x = 0, 1, 2)			
备用功能	_	(x = 3, 8, 9, 10, , 13)		-
	"0" /"00" (没有映射)	"1" /"01" (部分映射)	"10" (部分映射)	"11" (全映射)
N				
TIMER0_CH0_ ON	PB13	PA7	-	PE8
TIMER0_CH1_ ON	PB14	PB0	-	PE10
TIMER0_CH2_ ON	PB15	PB1	-	PE12
TIMER1_CH0/T IMER1_ETI (1)	PA0	PA15	PA0	PA15
TIMER1_CH1	PA1	PB3	PA1	PB3
TIMER1_CH2	PA2		PB10	
TIMER1_CH3	PA3		PB11	
TIMER2_CH0	PA6	-	PB4	PC6
TIMER2_CH1	PA7	-	PB5	PC7
TIMER2_CH2	PB0	-	PB0	PC8
TIMER2_CH3	PB1	-	PB1	PC9
TIMER3_CH0	PB6	PD12	-	-
TIMER3_CH1	PB7	PD13	-	-
TIMER3_CH2	PB8	PD14	-	-
TIMER3_CH3	PB9	PD15	-	-
TIMER8_CH0	PA2	PE5	-	-
TIMER8_CH1	PA3	PE6	-	-
TIMER9_CH0	PB8	PF6	-	-
TIMER10_CH0	PB9	PF7	-	-
TIMER12_CH0	PA6	PF8	-	-
TIMER13_CH0	PA7	PF9	-	-

- 1. TIMER0 重映射仅仅适用于 100 引脚和 144 引脚的封装
- 2. TIMER1_CHO 和 TIMER1_ETI 共用一个引脚,但不能同时使用。
- 3. TIMER2 重映射仅仅适用于 64 引脚, 100 引脚和 144 引脚的封装.
- 4. TIMER3 重映射仅仅适用于 100 引脚和 144 引脚的封装.
- 5. TIMER8/9/10/12/13 参考备用功能映射和调试 I/O 配置寄存器 1(AFIO_ PCF1).

表 8-6. TMER4 备用功能重映射

|--|

		IRC40K 内部时钟与
TIMER4_CH3	TIMER4_CH3 与 PA3 相连	TIMER4_CH3 输入相连,用于校
		正

8.4.6. USART AF 重映射

参考 AFIO 端口配置寄存器 0 (AFIO_ PCF0)。

表 8-7. USART 备用功能重映射

寄存器	USART0	USART1	USART2
LICADTO DEMAD - O	PA9(USART0_TX)		
USART0_REMAP = 0	PA10(USART0_RX)		-
LICADTO DEMAD - 4	PB6(USART0_TX)		
USART0_REMAP = 1	PB7(USART0_RX)		-
		PA0(USART1_CTS)	
		PA1(USART1_RTS)	
USART1_REMAP = 0	-	PA2(USART1_TX)	_
		PA3(USART1_RX)	-
		PA4(USART1_CK)	
		PD3(USART1_CTS)	
USART1_REMAP = 1		PD4(USART1_RTS)	
(1)	-	PD5(USART1_TX)	
(-)		PD6(USART1_RX)	-
		PD7(USART1_CK)	
			PB10(USART2_TX)
USART2_REMAP[1:0]			PB11(USART2_RX)
= "00" (没有映射)	-	-	PB12(USART2_CK)
- 00 (权有权别)			PB13(USART2_CTS)
			PB14(USART2_RTS)
			PC10(USART2_TX)
USART2_REMAP			PC11(USART2_RX)
[1:0] ="01" (部分映射)	-	-	PC12(USART2_CK)
(2)			PB13(USART2_CTS)
			PB14(USART2_RTS)
			PD8(USART2_TX)
LICADTO DEMAD			PD9(USART2_RX)
USART2_REMAP [1:0] ="11" (全映射) ⁽³⁾	-	-	PD10(USART2_CK)
[[1.0] - 11 (主妖豹)(**)			PD11(USART2_CTS)
			PD12(USART2_RTS)

- 1. 重映射仅仅适用于 100 引脚和 144 引脚的封装
- 2. 重映射仅仅适用于64引脚,100引脚和144引脚的封装。
- 3. 重映射仅仅适用于 100 引脚和 144 引脚的封装

8.4.7. I2C0 备用功能重映射

参考 AFIO 端口配置寄存器 0 (AFIO_ PCF0)。

表 8-8. I2C0 备用功能重映射

寄存器	I2C0_SCL	I2C0_SDA
I2C0_REMAP = 0	PB6	PB7
I2C0_REMAP = 1	PB8	PB9

8.4.8. SPI/I2S 备用功能重映射

参考 AFIO 端口配置寄存器 0 (AFIO_ PCF0)。

表 8-9. SPI/I2S 备用功能重映射

寄存器	SPI0	SPI2/I2S
	PA4(SPI0_NSS)	
	PA5(SPI0_SCK)	
SPI0_REMAP = 0	PA6(SPI0_MISO)	
SFIO_NEWAF - 0	PA7(SPI0_MOSI)	-
	PA2(SPI0_IO2)	
	PA3(SPI0_IO3)	
	PA15(SPI0_NSS)	
	PB3(SPI0_SCK)	
SPI0 REMAP = 1	PB4(SPI0_MISO)	
SFIO_NEWAF - I	PB5(SPI0_MOSI)	-
	PB6(SPI0_IO2)	
	PB7(SPI0_IO3)	
		PA15(SPI2_NSS/ I2S2_WS)
SPI2_REMAP = 0	-	PB3(SPI2_SCK/ I2S2_CK)
SFIZ_REWAF - U		PB4(SPI2_MISO)
		PB5(SPI2_MOSI/I2S2_SD)
		PA4(SPI2_NSS/ I2S2_WS)
SDI2 DEMAD - 1	-	PC10(SPI2_SCK/ I2S2_CK)
SPI2_REMAP = 1		PC11(SPI2_MISO)
		PC12(SPI2_MOSI/I2S2_SD)

8.4.9. CAN 备用功能重映射

如下表所示,CANO 的信号引脚可以映射到端口 A,端口 B 或端口 D。对于端口 D,重映射不适用与 64 引脚的封装中。

表 8-10. CAN0 备用功能重映射

寄存器 ⁽¹⁾	CAN0	CAN1
CAN0_REMAP[1:0]	PA11(CAN0_RX)	
="00"	PA12(CAN0_TX)	-

寄存器 ⁽¹⁾	CAN0	CAN1
CAN0_REMAPI[1:0]	PB8(CAN0_RX)	
="10"	PB9(CAN0_TX)	-
CAN0_REMAP[1:0]	PD0(CAN0_RX)	
="11" ⁽²⁾	PD1(CAN0_TX)	-
CANA DEMAD - "O"		PB12(CAN1_RX)
CAN1_REMAP = "0"	-	PB13(CAN1_TX)
CANA DEMAD - "1"		PB5(CAN1_RX)
CAN1_REMAP = "1"	-	PB6(CAN1_TX)

- 1. CANO_RX 和 CANO_TX 用于互联型产品中; CAN_RX 在 CAN_TX 用于其他具有单个 CAN 接口的产品线中。
- 2. 该重映射仅适用于 100 引脚的封装。

8.4.10. ENET 备用功能重映射

表 8-11. ENET 备用功能重映射

· · · · · · · · · · · · · · · · · · ·	713 32 10 10 10 10 10 10 10 10 10 10 10 10 10		
寄存器	ENET		
	PA7(RX_DV-CRS_DV)		
	PC4(RXD0)		
ENET_REMAP = "0"	PC5(RXD1)		
	PB0(RXD2)		
	PB1(RXD3)		
	PD8(RX_DV-CRS_DV)		
	PD9(RXD0)		
ENET_REMAP = "1"	PD10(RXD1)		
	PD11(RXD2)		
	PD12(RXD3)		

8.4.11. CTC 备用功能重映射

参考 AFIO 端口配置寄存器 1(AFIO_PCF1)。

表 8-12. CTC 备用功能重映射

寄存器	CTC_SYNC
CTC_REMAP [1:0] = "00"	PA8
CTC_REMAP [1:0] = "01"	PD15
CTC_REMAP [1:0] = "10" or "11"	PF0

8.4.12. CLK 引脚 AF 重映射

当 LXTAL 关闭的时候,OSC32_IN 和 OSC32_OUT 分别可以用做普通的 I/O 端口 PC14 和 PC15。HXTAL 的优先级比其他普通 IO 功能高。

注意:

1.当 1.8V 区域关掉(进入待机模式)或备份区域由 VBAT 供电(不使用 VDD 供电),PC14/PC15 不能用于普通 IO 功能,将会被设置为模拟模式。

2.参考 3.3.1 电池备份域章节中的 IO 口用法。

表 8-13. OSC32 引脚配置

备用功能	LXTAL= ON	LXTAL= OFF
PC14	OSC32_IN	PC14
PC15	OSC32_OUT	PC15

HXTAL 晶振引脚 OSC_IN/OSC_OUT 可以用做普通的 I/O 端口 PD0/PD1。

表 8-14. OSC 引脚配置

备用功能	HXTAL= ON	HXTAL= OFF
PD0	OSC_IN	PD0
PD1	OSC_OUT	PD1

8.5. GPIO 寄存器

GPIOA 基地址: 0x4001 0800 GPIOB 基地址: 0x4001 0C00 GPIOC 基地址: 0x4001 1000 GPIOD 基地址: 0x4001 1400 GPIOE 基地址: 0x4001 1800 GPIOF 基地址: 0x4001 1C00 GPIOG 基地址: 0x4001 2000 AFIO 基地址: 0x4001 0000

8.5.1. 端口控制寄存器 0 (GPIOx_CTL0, x=A..G)

地址偏移: 0x00

复位值: 0x4444 4444 (x= A, C..G) / 0x4448 4444 (x=B)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CTL	CTL7[1:0]		MD7[1:0]		CTL6[1:0]		[1:0]	CTL	5[1:0]	MD5	[1:0]	CTL4[1:0]		MD4[1:0]	
r	rw		rw		rw		rw		rw		rw		rw		w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CTL	CTL3[1:0]		MD3[1:0] CTL2[1:0]		MD2	MD2[1:0]		CTL1[1:0]		[1:0]	CTL0[1:0]		MDC	0[1:0]	
r	w	n	M	r	N	n	M	rw		rw		rw		r	w

位/位域	名称	描述
31:30	CTL7[1:0]	Pin 7 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
29:28	MD7[1:0]	Pin 7 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
27:26	CTL6[1:0]	Pin 6 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
25:24	MD6[1:0]	Pin 6 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
23:22	CTL5[1:0]	Pin 5 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述

-			0002.	100707
21:20	MD5[1:0]	Pin 5 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述		
19:18	CTL4[1:0]	Pin 4 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述		
17:16	MD4[1:0]	Pin 4 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述		
15:14	CTL3[1:0]	Pin 3 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述		
13:12	MD3[1:0]	Pin 3 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述		
11:10	CTL2[1:0]	Pin 2 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述		
9:8	MD2[1:0]	Pin 2 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述		
7:6	CTL1[1:0]	Pin 1 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述		
5:4	MD1[1:0]	Pin 1 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述		
3:2	CTL0[1:0]	Pin 0 配置位 该位由软件置位和清除。 输入模式 (MD[1:0] =00) 00:模拟输入 01: 浮空输入 10: 上拉输入 /下拉输入 11: 保留 输出模式 (MD[1:0] >00) 00: GPIO 推挽输出 01: GPIO 开漏输出 10: AFIO 推挽输出		
		- > - A144 FM4 FM4		

1:0 MD0[1:0] Pin 0 模式位

该位由软件置位和清除。

00: 输入模式 (复位状态)

01:输出模式,最大速度 10MHz10:输出模式,最大速度 2 MHz11:输出模式,最大速度 50MHz

8.5.2. 端口控制寄存器 1 (GPIOx_CTL1, x=A..G)

地址偏移: 0x04

复位值: 0x4444 4444 (x= B..G) / 0x8884 4444 (x=A)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CTL1	CTL15[1:0]		MD15[1:0]		CTL14[1:0]		I[1:0]	CTL1	3[1:0]	MD13	3[1:0]	CTL12[1:0]		MD12[1:0]	
rv	rw		rw		rw		rw		rw		rw		rw		W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CTL1	1[1:0]	MD11[1:0] CTL10[1:0]		MD10	MD10[1:0]		CTL9[1:0]		[1:0]	CTL8[1:0]		MD8[1:0]			
r.	rw		DW DW		n	v	r.	M	n	v	r	N	r	W	

位/位域	名称	描述
31:30	CTL15[1:0]	Pin 15 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
29:28	MD15[1:0]	Pin 15 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
27:26	CTL14[1:0]	Pin 14 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
25:24	MD14[1:0]	Pin 14 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
23:22	CTL13[1:0]	Pin13 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
21:20	MD13[1:0]	Pin 13 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
19:18	CTL12[1:0]	Pin 12 配置位

algabevice		
		该位由软件置位和清除。 参考 CTL0[1:0]的描述
17:16	MD12[1:0]	Pin 12 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
15:14	CTL11[1:0]	Pin 11 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
13:12	MD11[1:0]	Pin 11 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
11:10	CTL10[1:0]	Pin 10 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
9:8	MD10[1:0]	Pin10 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
7:6	CTL9[1:0]	Pin 9 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
5:4	MD9[1:0]	Port 9 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述
3:2	CTL8[1:0]	Pin8 配置位 该位由软件置位和清除。 参考 CTL0[1:0]的描述
1:0	MD8[1:0]	Pin 8 模式位 该位由软件置位和清除。 参考 MD0 [1:0]的描述

8.5.3. 端口输入状态寄存器 (GPIOx_ISTAT, x=A..G)

地址偏移: 0x08

复位值: 0x0000 XXXX

该寄存器只能按字(32位)访问。

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

保留

GD32F403xx 用户手册

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ISTAT15	ISTAT14	ISTAT13	ISTAT12	ISTAT11	ISTAT10	ISTAT 9	ISTAT 8	ISTAT 7	ISTAT 6	ISTAT 5	ISTAT 4	ISTAT 3	ISTAT 2	ISTAT 1	ISTAT 0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	ISTATy	端口输入状态位(y=015)
		这些位由软件置位和清除。
		0: 引脚输入信号为低电平
		1: 引脚输入信号为高电平

8.5.4. 端口输出控制寄存器 (GPIOx_OCTL, x=A..G)

地址偏移: 0x0C

复位值: 0x0000 0000 (x= C..G) / 0x0000 a000 (x=A) / 0x0000 0010 (x=B)

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OCTL15	OCTL14	OCTL13	OCTL12	OCTL11	OCTL10	OCTL9	OCTL8	OCTL7	OCTL6	OCTL5	OCTL4	OCTL3	OCTL2	OCTL1	OCTL0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
		端口输出控制位(y=015)
		这些位由软件置位和清除。
15:0	OCTLy	0: 引脚输出低电平
		1: 引脚输出高电平

8.5.5. 端口位操作寄存器 (GPIOx_BOP, x=A..G)

地址偏移: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CR15	CR14	CR13	CR12	CR11	CR10	CR9	CR8	CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BOP15	BOP14	BOP13	BOP12	BOP11	BOP10	BOP9	BOP8	ВОР7	BOP6	BOP5	BOP4	BOP3	BOP2	BOP1	воро

 位/位域
 名称
 描述

 31:16
 CRy
 端口清除位 y(y=0..15)
这些位由软件置位和清除。

 0: 相应的 OCTLy 位没有改变
1: 清除相应的 OCTLy 位为 0

 15:0
 BOPy
 端口置位位 y(y=0..15)
这些位由软件置位和清除。

 0: 相应的 OCTLy 位没有改变
1: 设置相应的 OCTLy 位为 1

8.5.6. 位清除寄存器 (GPIOx_BC, x=A..G)

地址偏移: 0x14

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CR15	CR14	CR13	CR12	CR11	CR10	CR9	CR8	CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	CRy	端口清除位 y(y=015) 这些位由软件置位和清除。 0:相应 OCTLy 位没有改变 1:清除相应的 OCTLy 位

8.5.7. 端口配置锁定寄存器 (GPIOx_LOCK, x=A..G)

地址偏移: 0x18

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								LKK
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

GD32F403xx 用户手册

Ī	LK15	LK14	LK13	LK12	LK11	LK10	LK9	LK8	LK7	LK6	LK5	LK4	LK3	LK2	LK1	LK0

位/位域	名称	描述
31:17	保留	必须保持复位值。
16	LKK	锁定序列键
		该位只能通过使用 Lock Key 写序列设置,始终可读。
		0: GPIO_LOCK 寄存器和端口配置没有锁定
		1: 直到下一次 MCU 复位前,GPIO_LOCK 寄存器被锁定
		LOCK Key 写序列:
		写 1→写 0→写 1→读 0→读 1
		注意:在 LOCK Key 写序列期间,LK[15:0]的值必须保持。
15:0	LKy	端口锁定位 y(y=015)
		这些位由软件置位和清除。
		0: 相应的端口位配置没有锁定
		1: 当 LKK 位置 1 时,相应的端口位配置被锁定

8.5.8. 端口位速度寄存器 (GPIOx_SPD, x=A..G)

地址偏移: 0x3C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							伢	·留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPD15	SPD 14	SPD 13	SPD 12	SPD 11	SPD 10	SPD 9	SPD 8	SPD 7	SPD 6	SPD 5	SPD 4	SPD 3	SPD 2	SPD 1	SPD 0
nw.	rw.	rw.	rw.	rw	r\n/	rw.	rw	rw.	rw/						

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	SPDy	当 MDx 值为 0b11 时,设置相应端口速度为高速(168MHz)。 如果端口输出速度大于 50MHz,该位置 1,同时设置 MDx 值为 0b11。这些位由软
		件置位和清除。
		0: 没有影响
		1:最大输出速度大于 50MHz (同时,需要设置 MDx 值为 0b11)
		注意: 当端口输出速度大于 50MHz 时,需要使能 I/O 补偿单元。详见
		AFIO CPSCTI 寄存器中的 CPS FN 位说明。

8.5.9. 事件控制寄存器 (AFIO_EC)

地址偏移: 0x00

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

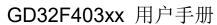
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							:留								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留								EOE		PORT[2:0]			PIN	[3:0]	
								rw		rw			r	W	

位/位域	名称	描述
31:8	保留	必须保持复位值。
7	EOE	事件输出使能 该位由软件置位和清除。当设置该位后,Cortex 的 EVENTOUT 输出将连接到由 PORT[2:0]和 PIN[3:0]位选择的 I/O 口。
6:4	PORT[2:0]	事件输出端口选择 这些位由软件置位和清除。选择用于输出 Cortex 的 EVENTOUT 信号的端口。 000: 选择端口 A 001: 选择端口 B 010: 选择端口 C 011: 选择端口 D 100: 选择端口 E
3:0	PIN[3:0]	事件输出引脚选择 这些位由软件置位和清除。选择用于输出 Cortex 的 EVENTOUT 信号的引脚。 0000: 选择引脚 0 0001: 选择引脚 1 0010: 选择引脚 2 1111: 选择引脚 15

8.5.10. AFIO 端口配置寄存器 0 (AFIO_ PCF0)

地址偏移: 0x04

复位值: 0x0000 0000


31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留		SPI2_	保留	SV	VJ CFG[2:	·01	保留	CAN1_	保留	ADC1	保留	ADC0	保留	TIMER4C
	冰田		REMAP	冰田	01	vo_	.0]	МН	REMAP	W.田	ADO1_	水田	ABOU_	В	H3_

GD32F403xx 用户手册

													, . • ,	• , , , •	
											ETRGRE		ETRGRE		IREMAP
											R		R		
											_REMAP		_REMAP		
			rw			w			rw		rw	rw	rw		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PD01_	CANO DEMA		TIMER3_	TIMER2_	_REMAP	TIMER1_	_REMAP	TIMER0_	_REMAP	USA	RT2_	USART1_	USART0_	I2C0_	SPI0_
REMAP	CAN0_REMAP [1:0]		REMAP	[1:	0]	[1:	0]	[1:	0]	REMA	AP[1:0]	REMAP	REMAP	REMAP	REMAP
rw	v rw rw rw		•	rw		rw	•	rw	rw	rw	rw				

rw	rw rw	nw nw nw nw nw nw
位/位域	名称	描述
31:29	保留	必须保持复位值。
28	SPI2_REMAP	SPI2/I2S2重映射 该位由软件置位和清除。 0: 没有重映射 (SPI2_NSS-I2S2_WS/PA15, SPI2_SCK-I2S2_CK/PB3, SPI2_MISO/PB4, SPI2_MOSI-I2S_SD/PB5) 1: 完全重映射 (SPI2_NSS-I2S2_WS/PA4, SPI2_SCK-I2S2_CK/PC10, SPI2_MISO/PC11, SPI2_MOSI-I2S_SD/PC12)
27	保留	必须保持复位值。
26:24	SWJ_CFG[2:0]	串行线 JTAG 配置这些位,将返回未定义值)。用于配置 SWJ 和跟踪复用功能的 I/O口。SWJ(串行线 JTAG) 支持 JTAG 或 SWD 访问 Cortex 调试端口。系统复位后的默认状态是启用 SWJ 但没有跟踪功能,这种状态下,可以通过在 JTMS/JTCK 引脚上的发送特定的信号使能 JTAG 或 SW(串行线)模式。000:完全 SWJ (JTAG-DP + SW-DP)复位状态001:完全 SWJ (JTAG-DP + SW-DP) 但没有 NJTRST010: JTAG-DP 禁用和 SW-DP 使能100: JTAG-DP 禁用和 SW-DP 禁用 其他组合:无作用
23	保留	必须保持复位值。
22	CAN1_REMAP	CAN1 I/O重映射 该位由软件置位和清除,控制着CAN1_TX和CAN1_RX引脚。 0: 没有重映射 (CAN1_RX/PB12,CAN_TX/PB13) 1: 重映射 (CAN1_RX/PB5,CAN_TX/PB6)
21	保留	必须保持复位值。
20	ADC1_ETRGREG _REMAP	ADC 1 常规转换外部触发重映射该位由软件置位和清除。该位控制着触发输入与 ADC1 常规转换外部触发连接。当该位复位时,ADC1 常规转换外部触发与 EXTI11 相连。当该位置位时,ADC1 常规转换外部触发与 TIMER7_TRGO 相连。
19	保留	必须保持复位值。

-		
18	ADC0_ETRGREG_R EMAP	ADC 0 常规转换外部触发重映射 该位由软件置位和清除。该位控制着触发输入与 ADC0 常规转换外部触发连接。当该位复位时,ADC0 常规转换外部触发与 EXTI11 相连。当该位置位时,ADC0 常规转换外部触发与 TIMER7_TRGO 相连。
17	保留	必须保持复位值。
16	TIMER4CH3_IREMA P	TIMER4 通道 3 内部重映射 该位由软件置位和清除,控制着 TIMER4_CH3 的内部重映射。当该位复位时,TIMER4_CH3 与 PA3 连接。当该位置位时,TIMER4_CH3 与 IRC40K 内部时钟连接,用于对 IRC40K 进行校准。注意:该位只在高密度产品线中可用。 0:没有重映射 1:重映射
15	PD01_REMAP	OSC_IN/OSC_OUT 重映射到 Port D0/Port D1 该位由软件置位和清除。 0: 没有重映射 1: OSC_IN 重映射到 PD0, OSC_OUT 重映射到 PD1
14:13	CAN0_REMAP[1:0]	CAN0 接口重映射 这些位由软件置位和清除。 00: 没有重映射(CAN0_RX/PA11, CAN0_TX/PA12) 01: 没有使用 10: 部分重映射(CAN0_RX/PB8, CAN0_TX/PB9) 11: 完全重映射(CAN0_RX/PD0, CAN0_TX/PD1)
12	TIMER3_REMAP	TIMER3 重映射 该位由软件置位和清除。 0: 没有重映射(TIMER3_CH0/PB6,TIMER3_CH1/PB7,TIMER3_CH2/PB8, TIMER3_CH3/PB9) 1: 完全重映射(TIMER3_CH0/PD12,TIMER3_CH1/PD13,TIMER3_CH2/PD14, TIMER3_CH3/PD15)
11:10	TIMER2_ REMAP[1:0]	TIMER2 重映射 这些位由软件置位和清除。 00: 没有重映射 (TIMER2_CH0/PA6,TIMER2_CH1/PA7,TIMER2_CH2/PB0, TIMER2_CH3/PB1) 01: 没有使用 10: 部分重映射 (TIMER2_CH0/PB4,TIMER2_CH1/PB5,TIMER2_CH2/PB0, TIMER2_CH3/PB1) 11: 完全重映射 (TIMER2_CH0/PC6,TIMER2_CH1/PC7,TIMER2_CH2/PC8, TIMER2_CH3/PC9)
9:8	TIMER1_REMAP [1:0]	TIMER1 重映射 这些位由软件置位和清除。 00: 没有重映射(TIMER1_CH0/ TIMER1_ETI/PA0,TIMER1_CH1/PA1,

TIMER1_CH2/PA2, TIMER1_CH3/PA3)

01: 部分重映射(TIMER1_CH0/TIMER1_ETI/PA15,TIMER1_CH1/PB3,

TIMER1_CH2/PA2, TIMER1_CH3/PA3)

10: 部分重映射(TIMER1_CH0/TIMER1_ETI/PA0,TIMER1_CH1/PA1,

TIMER1_CH2/PB10, TIMER1_CH3/PB11)

11: 完全重映射(TIMER1 CH0/TIMER1 ETI/PA15, TIMER1 CH1/PB3,

TIMER1_CH2/PB10, TIMER1_CH3/PB11)

TIMERO REMAP 7:6

TIMER0 重映射

[1:0]

这些位由软件置位和清除。

00: 没有重映射 (TIMERO ETI/PA12, TIMERO CH0/ PA8, TIMERO CH1/PA9,

TIMERO_CH2/PA10,TIMERO_CH3/PA11, TIMERO_BRKIN/PB12,

TIMERO CHO ON/PB13, TIMERO CH1 ON/PB14, TIMERO CH2 ON/PB15)

01: 部分重映射 (TIMERO ETI/PA12, TIMERO CH0/ PA8, TIMERO CH1/PA9,

TIMERO_CH2/PA10,TIMERO_CH3/PA11, TIMERO_BRKIN/PA6,

TIMERO_CHO_ON/PA7, TIMERO_CH1_ON/PB0, TIMERO_CH2_ON/PB1)

10:没有使用

11: 完全重映射 (TIMERO ETI/PE7, TIMERO CH0/ PE9, TIMERO CH1/PE11,

TIMERO_CH2/PE13,TIMERO_CH3/PE14, TIMERO_BRKIN/PE15,

TIMERO_CHO_ON/PE8, TIMERO_CH1_ON/PE10, TIMERO_CH2_ON/PE12)

5:4 USART2 REMAP[1: USART2 重映射

0]

这些位由软件置位和清除。

00:没有重映射(USART2_TX/PB10, USART2_RX /PB11, USART2_CK/PB12,

USART2 CTS/PB13, USART2 RTS/PB14)

01: 部分重映射(USART2_TX/PC10, USART2_RX /PC11, USART2_CK/PC12,

USART2 CTS/PB13, USART2 RTS/PB14)

10: 没有使用

11: 完全重映射(USART2_TX/PD8, USART2_RX /PD9, USART2_CK/PD10,

USART2_CTS/PD11, USART2_RTS/PD12)

USART1_REMAP

USART1 重映射

该位由软件置位和清除。

0:没有重映射(USART1_CTS/PA0, USART1_RTS/PA1,USART1_TX/PA2,

USART1 RX /PA3, USART1 CK/PA4)

1: 重映射(USART1 CTS/PD3, USART1 RTS/PD4, USART1 TX/PD5,

USART1_RX /PD6, USART1_CK/PD7)

2 USARTO REMAP USART0 重映射

该位由软件置位和清除。

0:没有重映射(USART0_TX/PA9, USART0_RX /PA10)

1: 重映射(USART0 TX/PB6, USART0 RX /PB7)

I2C0 REMAP 1

I2C0 重映射

该位由软件置位和清除。

0: 没有重映射(I2C0_SCL/PB6, I2C0_SDA /PB7)

1: 重映射(I2C0_SCL/PB8, I2C0_SDA /PB9)

0 SPI0_REMAP

SPI0 重映射 该位由软件置位和清除。

0:没有重映射(SPI0_NSS/PA4, SPI0_SCK /PA5, SPI0_MISO /PA6,

SPI0_MOSI /PA7, SPI0_IO2 /PA2, SPI0_IO3 /PA3)

1: 重映射(SPI0_NSS/PA15, SPI0_SCK /PB3, SPI0_MISO /PB4,

SPI0_MOSI /PB5, SPI0_IO2 /PB6, SPI0_IO3 /PB7)

8.5.11. EXTI 源选择寄存器 0 寄存器 (AFIO_ EXTISS0)

地址偏移: 0x08

复位值: 0x0000 0000

-	DW .		TW .				n	M		rw						
Ī	EXTI3_SS [3:0]				EXTI2_SS [3:0]					EXTI1_	SS [3:0]		EXTI0_SS [3:0]			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:12	EXTI3_SS[3:0]	EXTI 3 源选择
	_,o_c c[o.o]	0000: PA3 引脚
		0001: PB3 引脚
		0010: PC3 引脚
		0011: PD3 引脚
		0100: PE3 引脚
		0101: PF3 引脚
		0110: PG3 引脚
		其他配置保留。
		八尼尼亞水田。
11:8	EXTI2_SS[3:0]	EXTI 2 源选择
		0000: PA2 引脚
		0001: PB2 引脚
		0010: PC2 引脚
		0011: PD2 引脚
		0100: PE2 引脚
		0101: PF2 引脚
		0110: PG2 引脚

其他配置保留。 7:4 EXTI1_SS[3:0] EXTI1 源选择 0000: PA1 引脚 0001: PB1 引脚 0010: PC1 引脚 0011: PD1 引脚 0100: PE1 引脚 0101: PF1 引脚 0110: PG1 引脚 其他配置保留。 EXTI0_SS[3:0] EXTIO 源选择 3:0 0000: PA0 引脚 0001: PB0 引脚 0010: PC0 引脚 0011: PD0 引脚 0100: PE0 引脚 0101: PF0 引脚 0110: PG0 引脚 其他配置保留。

8.5.12. EXTI 源选择寄存器 1 寄存器 (AFIO_ EXTISS1)

地址偏移: 0x0C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI7_SS [3:0]			EXTI6_SS [3:0]					EXTI5_	SS [3:0]		EXTI4_SS [3:0]			
	rw		rw				n	W	'	rw					

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:12	EXTI7_SS[3:0]	EXTI 7 源选择
		0000: PA7 引脚
		0001: PB7 引脚
		0010: PC7 引脚
		0011: PD7 引脚
		0100: PE7 引脚

digubevice			GD3ZF4U3XX 用广宁测
		0101: PF7 引脚	
		0110: PG7 引脚	
		其他配置保留。	
11:8	EXTI6_SS[3:0]	EXTI 6 源选择	
		0000: PA6 引脚	
		0001: PB6 引脚	
		0010: PC6 引脚	
		0011: PD6 引脚	
		0100: PE6 引脚	
		0101: PF6 引脚	
		0110: PG6 引脚	
		其他配置保留。	
7:4	EXTI5_SS[3:0]	EXTI 5 源选择	
		0000: PA5 引脚	
		0001: PB5 引脚	
		0010: PC5 引脚	
		0011: PD5 引脚	
		0100: PE5 引脚	
		0101: PF5 引脚	
		0110: PG5 引脚	
		其他配置保留。	
3:0	EXTI4_SS[3:0]	EXTI 4 源选择	
		0000: PA4 引脚	
		0001: PB4 引脚	
		0010: PC4 引脚	
		0011: PD4 引脚	
		0100: PE4 引脚	
		0101: PF4 引脚	
		0110: PG4 引脚	
		其他配置保留。	

8.5.13. EXTI 源选择寄存器 2 寄存器 (AFIO_ EXTISS2)

地址偏移: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

GD32F403xx 用户手册

	EXTI11_SS [3:0]	EXTI10_SS [3:0]	EXTI9_SS [3:0]	EXTI8_SS [3:0]
--	-----------------	-----------------	----------------	----------------

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:12	EXTI11_SS[3:0]	EXTI 11 源选择
		0000: PA11 引脚
		0001: PB11 引脚
		0010: PC11 引脚
		0011: PD11 引脚
		0100: PE11 引脚
		0101: PF11 引脚
		0110: PG11 引脚
		其他配置保留。
11:8	EXTI10_SS[3:0]	EXTI 10 源选择
		0000: PA10 引脚
		0001: PB10 引脚
		0010: PC10 引脚
		0011: PD10 引脚
		0100: PE10 引脚
		0101: PF10 引脚
		0110: PG10 引脚
		其他配置保留。
7:4	EXTI9_SS[3:0]	EXTI 9 源选择
		0000: PA9 引脚
		0001: PB9 引脚
		0010: PC9 引脚
		0011: PD9 引脚
		0100: PE9 引脚
		0101: PF9 引脚
		0110: PG9 引脚
		其他配置保留。
3:0	EXTI8_SS[3:0]	EXTI 8 源选择
		0000: PA8 引脚
		0001: PB8 引脚
		0010: PC8 引脚
		0011: PD8 引脚
		0100: PE8 引脚
		0101: PF8 引脚
		0110: PG8 引脚
		其他配置保留。

8.5.14. EXTI 源选择寄存器 3 寄存器 (AFIO_ EXTISS3)

地址偏移: 0x14

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11 10 9 8				7	6	5	4	3	2	1	0
	EXTI15_	_SS [3:0]		EXTI14_SS [3:0]					EXTI13_	SS [3:0]		EXTI12_SS [3:0]			
	rw rw						n	W		rw					

描述 位/位域 名称 31:16 保留 必须保持复位值。 15:12 EXTI15_SS[3:0] EXTI 15 源选择 0000: PA15 引脚 0001: PB15 引脚 0010: PC15 引脚 0011: PD15 引脚 0100: PE15 引脚 0101: PF15 引脚 0110: PG15 引脚 其他配置保留。 11:8 EXTI14_SS[3:0] EXTI 14 源选择 0000: PA14 引脚 0001: PB14 引脚 0010: PC14 引脚 0011: PD14 引脚 0100: PE14 引脚 0101: PF14 引脚 in 0110: PG14 引脚 其他配置保留。 EXTI13_SS[3:0] 7:4 EXTI 13 源选择 0000: PA13 引脚 0001: PB13 引脚 0010: PC13 引脚 0011: PD13 引脚 0100: PE13 引脚 0101: PF13 引脚 0110: PG13 引脚

其他配置保留。

3:0 EXTI12_SS[3:0] EXTI 12 源选择

0000: PA12 引脚 0001: PB12 引脚 0010: PC12 引脚 0011: PD12 引脚 0100: PE12 引脚 0101: PF12 引脚 0110: PG12 引脚 其他配置保留。

8.5.15. AFIO 端口配置寄存器 1 (AFIO_ PCF1)

地址偏移: 0x1C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4.	3	2	1	0
	tri sim				EXMC_	TIMER13_	TIMER12_	TIMER10_	TIMER9_	TIMER8_		/ru skr			
	保留		CTC_REMAP[1:0]		NADV	REMAP	REMAP	REMAP	REMAP	REMAP		保留			

位/位域	名称	描述
31:13	保留	必须保持复位值。
12:11	CTC_REMAP [1:0]	CTC 重映射 这些位由软件置位和清除,控制着将 CTC_SYNC 备用功能重映射到 GPIO 端口。 00:没有重映射 (PA8) 01: 重映射 0 (PD15) 10/11: 重映射 1(PF0)
10	EXMC_NADV	EXMC_NADV 连接/不连接 该位由软件置位和清除,控制着可选的 EXMC_NADV 信号 0: NADV 信号连接到输出(默认值) 1: NADV 信号没有连接, I/O 引脚可以用于其他外设。
9	TIMER13_REMAP	TIMER13 重映射 该位由软件置位和清除,控制着将 TIMER13_CH0 备用功能重映射到 GPIO 端口。 0:没有重映射 (PA7) 1: 重映射 (PF9)

		7 147 4 144
8	TIMER12_REMAP	TIMER12 重映射 该位由软件置位和清除,控制着将 TIMER12_CH0 备用功能重映射到 GPIO 端口。 0:没有重映射 (PA6) 1: 重映射 (PF8)
7	TIMER10_REMAP	TIMER10 重映射 该位由软件置位和清除,控制着将 TIMER10_CH0 备用功能重映射到 GPIO 端口。 0:没有重映射 (PB9) 1: 重映射 (PF7)
6	TIMER9_REMAP	TIMER9 重映射 该位由软件置位和清除,控制着将 TIMER9_CH0 备用功能重映射到 GPIO 端口。 0:没有重映射 (PB8) 1: 重映射 (PF6)
5	TIMER8_REMAP	TIMER8 重映射 该位由软件置位和清除,控制着将 TIMER8_CH0 和 TIMER8_CH1 备用功能重映射到 GPIO 端口。 0:没有重映射 (TIMER8_CH0 连接到 PA2 和 TIMER8_CH1 连接到 PA3) 1: 重映射 (TIMER8_CH0 重映射到 PE5 和 TIMER8_CH1 重映射到 PE6)
4:0	保留	必须保持复位值。

8.5.16. IO 补偿控制寄存器 (AFIO_CPSCTL)

地址偏移: 0x20

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
<u>, </u>															<u>.</u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留				CPS_RDY				保留				CPS_EN

位/位域	名称	描述
31:9	保留	必须保持复位值。
8	CPS_RDY	I/O 补偿单元是否准备好,该位只读。 0: I/O 补偿单元没有准备好 1: I/O 补偿单元准备好
7:1	保留	必须保持复位值。
0	CPS_EN	I/O 补偿单元使能

当端口输出速度大于 50MHz 时,需要使能 I/O 补偿单元。

0: I/O 补偿单元掉电

1: I/O 补偿单元使能

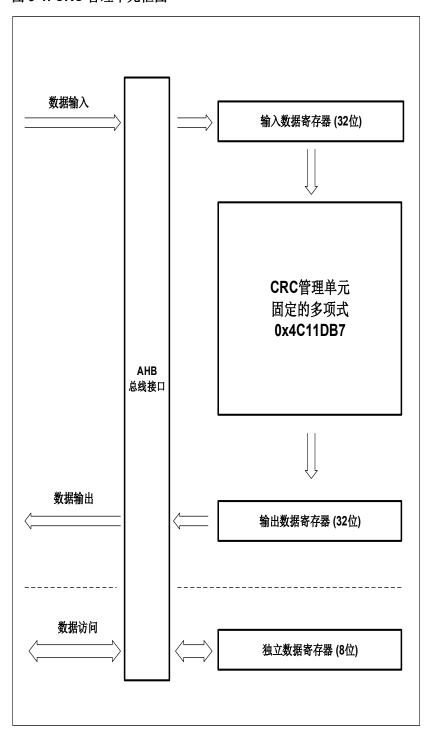
9. 循环冗余校验管理单元(CRC)

9.1. 简介

循环冗余校验码是一种用在数字网络和存储设备上的差错校验码,可以校验原始数据的偶然差错。

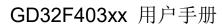
CRC 管理单元使用固定多项式计算 32 位 CRC 校验码。

9.2. 主要特征


- 32位数据输入/输出寄存器。对于32位的输入数据,从数据输入到得出计算结果,需要4个 AHB的时钟周期;
- 配有与计算无关的独立8位寄存器,可以供其他任何外设使用;
- 固定的计算多项式: 0x4C11DB7:

 $X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$

该 32 位 CRC 多项式与以太网 CRC 计算多项式相同。


图 9-1. CRC 管理单元框图

9.3. 功能说明

■ CRC管理单元可以用来计算32位的原始数据,CRC_DATA寄存器接收原始数据并存储计算结果。

如果不通过软件设置CRC_CTL寄存器的方式来清除CRC_DATA寄存器,CRC管理单元将基于新输入的原始数据和前一次CRC_DATA寄存器中的结果进行计算。

对于32位的数据长度的CRC计算,因为32位输入缓存的原因,AHB总线将不会被挂起。

■ 此模块提供了一个8位的独立数据寄存器CRC_FDATA。

CRC_FDATA与CRC计算无关,任何时候都可以进行独立的读写操作。

CRC 寄存器 9.4.

CRC 基地址: 0x4002 3000

数据寄存器(CRC_DATA) 9.4.1.

地址偏移: 0x00

复位值: 0xFFFF FFFF

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DATA[31:16]							
	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATA	[15:0]							

位/位域	名称	描述
31:0	DATA[31:0]	CRC计算结果位
		软件可读可写
		该寄存器用于接收待计算的新数据,直接将其写入即可。刚写入的数据不能被读出来,
		因为读取该寄存器得到的是上次CRC计算的结果。

独立数据寄存器(CRC_FDATA) 9.4.2.

地址偏移: 0x04

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	31 30 29 28 27 26 25 24									21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留							FDATA[7:0]							

位/位域 名称 描述 保留 31:8 必须保持复位值。 FDATA[7:0] 7:0 独立数据寄存器位 软件可读可写 这些位与CRC计算无关。该字节能被任何其他外设用于其他任何目的。该字节不受

CRC_CTL寄存器的影响。

9.4.3. 控制寄存器 (CRC_CTL)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留												RST		

 位/位域
 名称
 描述

 31:1
 保留
 必须保持复位值。

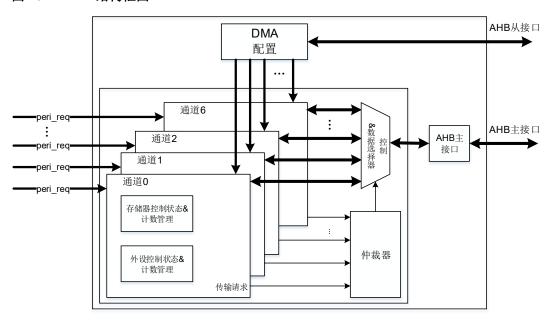
 0
 RST
 将该位置1可以复位CRC_DATA寄存器,并设置其值为0xFFFFFFFF,然后该位被硬件自动清零。该位对CRC_FDATA寄存器没有影响。软件可读可写。

10. 直接存储器访问控制器(DMA)

10.1. 简介

DMA 控制器提供了一种硬件的方式在外设和存储器之间或者存储器和存储器之间传输数据,而无需 CPU 的介入,从而使 CPU 可以专注在处理其他系统功能上。DMA 控制器有 12 个通道(DMAO 有 7 个通道,DMA1 有 5 个通道)。每个通道都是专门用来处理一个或多个外设的存储器访问请求的。DMA 控制器内部实现了一个仲裁器,用来仲裁多个 DMA 请求的优先级。

DMA 控制器和 Cortex®-M4 内核共享系统总线。当 DMA 和 CPU 访问同样的地址空间时, DMA 访问可能会阻挡 CPU 访问系统总线几个总线周期。总线矩阵中实现了循环仲裁算法来分配 DMA 与 CPU 的访问权,它可以确保 CPU 得到至少一半的系统总线带宽。


10.2. 主要特性

- 传输数据长度可编程配置,最大到65536;
- 12 个通道, 并且每个通道都可配置 (DMAO 有 7 个通道, DMA1 有 5 个通道);
- AHB 和 APB 外设, 片上闪存和 SRAM 都可以作为访问的源端和目的端;
- 每个通道连接固定的硬件 DMA 请求;
- 支持软件优先级(低、中、高、极高)和硬件优先级(通道号越低,优先级越高);
- 存储器和外设的数据传输宽度可配置:字节,半字,字;
- 存储器和外设的数据传输支持固定寻址和增量式寻址;
- 支持循环传输模式;
- 支持外设到存储器,存储器到外设,存储器到存储器的数据传输;
- 每个通道有3种类型的事件标志和独立的中断;
- 支持中断的使能和清除。

10.3. 结构框图

图 10-1. DMA 结构框图

由图 10-1. DMA 结构框图所示, DMA 控制器由 4 部分组成:

- AHB 从接口配置 DMA
- AHB 主接口进行数据传输
- 仲裁器进行 DMA 请求的优先级管理
- 数据处理和计数

10.4. 功能描述

10.4.1. DMA 操作

DMA 传输分为两步操作:从源地址读取数据,之后将读取的数据存储到目的地址。DMA 控制器基于 DMA_CHxPADDR、DMA_CHxMADDR、DMA_CHxCTL 寄存器的值计算下一次操作的源/目的地址。DMA_CHxCNT 寄存器用于控制传输的次数。DMA_CHxCTL 寄存器的PWIDTH 和 MWIDTH 位域决定每次发送和接收的字节数(字节/半字/字)。

假设 DMA_CHxCNT 寄存器的值为 4,并且 PNAGA 和 MNAGA 位均置位。结合 PWIDTH 和 MWIDTH 的各种配置,DMA 传输的操作详见 **表 10-1. DMA 传输操作**。

表 10-1. DMA 传输操作

传输		传输操作				
源	目标	源	目标			
32 bits	OZ DIG	2: Read B7B6B5B4[31:0] @0x4 3: Read BBBAB9B8[31:0] @0x8	1: Write B3B2B1B0[31:0] @0x0 2: Write B7B6B5B4[31:0] @0x4 3: Write BBBAB9B8[31:0] @0x8 4: Write BFBEBDBC[31:0] @0xC			

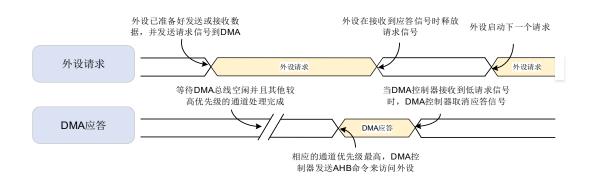
传输	前宽度	传输	 操作
源	目标	源	目标
32 bits	16 bits	1: Read B3B2B1B0[31:0] @0x0 2: Read B7B6B5B4[31:0] @0x4	1: Write B1B0[7:0] @0x0 2: Write B5B4[7:0] @0x2
		3: Read BBBAB9B8[31:0] @0x8 4: Read BFBEBDBC[31:0] @0xC	3: Write B9B8[7:0] @0x4 4: Write BDBC[7:0] @0x6
32 bits	8 bits	1: Read B3B2B1B0[31:0] @0x0 2: Read B7B6B5B4[31:0] @0x4 3: Read BBBAB9B8[31:0] @0x8 4: Read BFBEBDBC[31:0] @0xC	1: Write B0[7:0] @0x0 2: Write B4[7:0] @0x1 3: Write B8[7:0] @0x2 4: Write BC[7:0] @0x3
16 bits	32 bits	1: Read B1B0[15:0] @0x0 2: Read B3B2[15:0] @0x2 3: Read B5B4[15:0] @0x4 4: Read B7B6[15:0] @0x6	1: Write 0000B1B0[31:0] @0x0 2: Write 0000B3B2[31:0] @0x4 3: Write 0000B5B4[31:0] @0x8 4: Write 0000B7B6[31:0] @0xC
16 bits	16 bits	1: Read B1B0[15:0] @0x0 2: Read B3B2[15:0] @0x2 3: Read B5B4[15:0] @0x4 4: Read B7B6[15:0] @0x6	1: Write B1B0[15:0] @0x0 2: Write B3B2[15:0] @0x2 3: Write B5B4[15:0] @0x4 4: Write B7B6[15:0] @0x6
16 bits	8 bits	1: Read B1B0[15:0] @0x0 2: Read B3B2[15:0] @0x2 3: Read B5B4[15:0] @0x4 4: Read B7B6[15:0] @0x6	1: Write B0[7:0] @0x0 2: Write B2[7:0] @0x1 3: Write B4[7:0] @0x2 4: Write B6[7:0] @0x3
8 bits	32 bits	1: Read B0[7:0] @0x0 2: Read B1[7:0] @0x1 3: Read B2[7:0] @0x2 4: Read B3[7:0] @0x3	1: Write 000000B0[31:0] @0x0 2: Write 000000B1[31:0] @0x4 3: Write 000000B2[31:0] @0x8 4: Write 000000B3[31:0] @0xC
8 bits	16 bits	1: Read B0[7:0] @0x0 2: Read B1[7:0] @0x1 3: Read B2[7:0] @0x2 4: Read B3[7:0] @0x3	1, Write 00B0[15:0] @0x0 2, Write 00B1[15:0] @0x2 3, Write 00B2[15:0] @0x4 4, Write 00B3[15:0] @0x6
8 bits	8 bits	1: Read B0[7:0] @0x0 2: Read B1[7:0] @0x1 3: Read B2[7:0] @0x2 4: Read B3[7:0] @0x3	1, Write B0[7:0] @0x0 2, Write B1[7:0] @0x1 3, Write B2[7:0] @0x2 4, Write B3[7:0] @0x3

DMA_CHxCNT寄存器的CNT位域必须在CHEN位置位前被配置,其控制传输的次数。在传输过程中,CNT位域的值表示还有多少次数据传输将被执行。

将 DMA CHxCTL 寄存器的 CHEN 位清零,可以停止 DMA 传输

- 若 CHEN 位被清零时 DMA 传输还未完成,重新使能 CHEN 位将分两种情况:
 - 在重新使能 DMA 通道前,未对该通道的相关寄存器进行操作,则 DMA 将继续完成上次的传输。
 - 在重新使能 DMA 通道前,对任意相关寄存器进行了操作,则 DMA 将开始一次新的 传输。
- 若清零 CHEN 位时,DMA 传输已经完成,之后未对任意寄存器进行操作前便使能 DMA 通道,则不会触发任何 DMA 传输。

10.4.2. 外设握手


为了保证数据的有效传输,DMA控制器中引入了外设和存储器的握手机制,包括请求信号和应答信号:

- 请求信号: 由外设发出,表明外设已经准备好发送或接收数据;
- 应答信号:由 DMA 控制器响应,表明 DMA 控制器已经发送 AHB 命令去访问外设。

图10-2. 握手机制中详细描述了DMA控制器与外设之间的握手机制。

图 10-2. 握手机制

10.4.3. 仲裁

当DMA控制器在同一时间接收到多个外设请求时,仲裁器将根据外设请求的优先级来决定响应哪一个外设请求。优先级包括软件优先级和硬件优先级,优先级规则如下:

- 软件优先级:分为4级,低,中,高和极高。可以通过寄存器DMA_CHxCTL的PRIO位域来配置。
- 硬件优先级: 当通道具有相同的软件优先级时,编号低的通道优先级高。例: 通道0和通道2配置为相同的软件优先级时,通道0的优先级高于通道2。

10.4.4. 地址生成

存储器和外设都独立的支持两种地址生成算法:固定模式和增量模式。寄存器DMA_CHxCTL的PNAGA和MNAGA位用来设置存储器和外设的地址生成算法。

在固定模式中,地址一直固定为初始化的基地址(DMA_CHxPADDR,DMA_CHxMADDR)。 在增量模式中,下一次传输数据的地址是当前地址加1(或者2,4),这个值取决于数据传输宽度。

10.4.5. 循环模式

循环模式用来处理连续的外设请求(如ADC扫描模式)。将DMA_CHxCTL寄存器的CMEN位置位可以使能循环模式。

在循环模式中,当每次DMA传输完成后,CNT值会被重新载入,且传输完成标志位会被置1。 DMA会一直响应外设的请求,直到通道使能位(DMA_CHxCTL寄存器的CHEN位)被清0。

10.4.6. 存储器到存储器模式

将DMA_CHxCTL寄存器的M2M位置位可以使能存储器到存储器模式。在此模式下,DMA通道传输数据时不依赖外设的请求信号。一旦DMA_CHxCTL寄存器的CHEN位被置1,DMA通道就

立即开始传输数据,直到DMA_CHxCNT寄存器达到0,DMA通道才会停止。

10.4.7. 通道配置

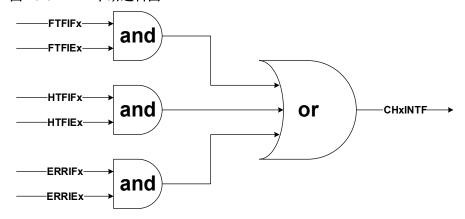
要启动一次新的 DMA 数据传输,建议遵循以下步骤进行操作:

- 1. 读取 CHEN 位,如果为 1 (通道已使能),清零该位。当 CHEN 为 0 时,请按照下列步骤 配置 DMA 开始新的传输;
- 2. 配置 DMA_CHxCTL 寄存器的 M2M 及 DIR 位,选择传输模式;
- 3. 配置 DMA_CHxCTL 寄存器的 CMEN 位,选择是否使能循环模式;
- 4. 配置 DMA CHxCTL 寄存器的 PRIO 位域,选择该通道的软件优先级;
- 5. 通过 DMA_CHxCTL 寄存器配置存储器和外设的传输宽度以及存储器和外设地址生成算法:
- 6. 通过 DMA_CHxCTL 寄存器配置传输完成中断,半传输完成中断,传输错误中断的使能位;
- 7. 通过 DMA_CHxPADDR 寄存器配置外设基地址;
- 8. 通过 DMA_CHxMADDR 寄存器配置存储器基地址;
- 9. 通过 DMA CHxCNT 寄存器配置数据传输总量;
- 10. 将 DMA_CHxCTL 寄存器的 CHEN 位置 1, 使能 DMA 通道。

10.4.8. 中断

每个DMA通道都有一个专用的中断。中断事件有三种类型:传输完成,半传输完成和传输错误。

每一个中断事件在DMA_INTF寄存器中有专用的标志位,在DMA_INTC寄存器中有专用的清除位,在DMA_CHxCTL寄存器中有专用的使能位。<u>表10-2.中断事件</u>描述了其对应关系。


表 10-2. 中断事件

中断事件	标志位	清除位	使能位
中國等件	DMA_INTF	DMA_INTC	DMA_CHxCTL
传输完成	FTFIF	FTFIFC	FTFIE
半传输完成	HTFIF	HTFIFC	HTFIE
传输错误	ERRIF	ERRIFC	ERRIE

DMA中断逻辑如<u>错误!未找到引用源。</u>所示,任何类型中断使能时,产生了相应中断事件均会产生中断。

图 10-3. DMA 中断逻辑图

注意: "x" 表示通道数 (DMA0对应x=0...6; DMA1对应x=0...4)

10.4.9. DMA 请求映射

多个外设请求被映射到同一个 DMA 通道。这些请求信号在经过逻辑或后进入 DMA。详情可见 **图 10-4. DMA0** 请求映射和

Peripheral	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	
				TIMER0_CH3				
TIMER0	•	TIMER0_CH0	TIMER0_CH1	TIMER0_TG	TIMER0_UP	TIMER0_CH2	•	
				TIMER0_CMT				
TIMER1	TIMER1 CH2	TIMER1 UP			TIMER1_CH0		TIMER1_CH1	
TIMENT	TIMERI_CH2 TIMERI_OP		•	•	TIMENI_CITO	•	TIMER1_CH3	
TIMER2	_	TIMER2 CH2	TIMER2_CH3			TIMER2_CH0	•	
TIIVIERZ	•	TIMERZ_CHZ	TIMER2_UP	•	•	TIMER2_TG		
TIMER3	TIMER3_CH0	•	•	TIMER3_CH1	TIMER3_CH2	•	TIMER3_UP	
ADC0	ADC0	•	•	•	•	•	•	
SPI/I2S	•	SPI0_RX	SPI0_TX	SPI1/I2S1_RX	SPI1/I2S1_TX	•	•	
USART	•	USART2_TX	USART2_RX	USART0_TX	USART0_RX	USART1_RX	USART1_TX	
I2C	•	•	•	I2C1_TX	I2C1_RX	I2C0_TX	I2C0_RX	

图 10-5. DMA1 请求映射。通过配置对应外设的寄存器,每个外设的请求均可以独立的开启或关闭。用户必须确保同一时间,在同一个通道上仅有一个外设的请求被开启。<u>错误!未找到引用源。</u>列举了 DMA0 的每个通道所支持的外设请求,<u>表 10-4. DMA1 各通道请求表</u>列举了 DMA1 的每个通道所支持的外设请求。

图 10-4. DMA0 请求映射

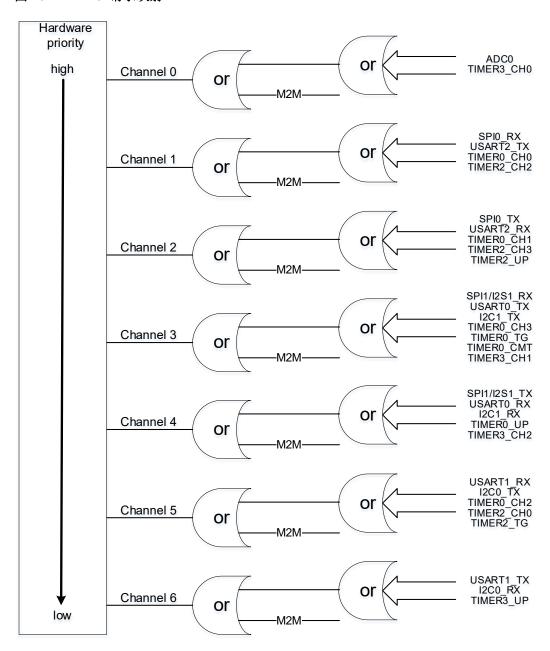


表10-3. DMA0各通道请求表

be to a primited Versenham							
Peripheral	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6
				TIMER0_CH3			
TIMER0	•	TIMER0_CH0	TIMER0_CH1	TIMER0_TG	TIMER0_UP	TIMER0_CH2	•
				TIMER0_CMT			
TIMEDA	TIMEDA CUO	TIMED4 LID	_	_	TIMED4 CUO	_	TIMER1_CH1
TIMER1	TIMER1_CH2	TIMER1_UP	•	•	TIMER1_CH0	•	TIMER1_CH3
TIMEDO		TIMEDO CUO	TIMER2_CH3	_	_	TIMER2_CH0	_
TIMER2	•	TIMER2_CH2	TIMER2_UP	•	•	TIMER2_TG	•
TIMER3	TIMER3_CH0	•	•	TIMER3_CH1	TIMER3_CH2	•	TIMER3_UP

GD32F403xx 用户手册

Peripheral	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6
ADC0	ADC0	•	•	•	•	•	•
SPI/I2S	•	SPI0_RX	SPI0_TX	SPI1/I2S1_RX	SPI1/I2S1_TX	•	•
USART	•	USART2_TX	USART2_RX	USART0_TX	USART0_RX	USART1_RX	USART1_TX
I2C	•	•	•	I2C1_TX	I2C1_RX	I2C0_TX	I2C0_RX

图10-5. DMA1请求映射

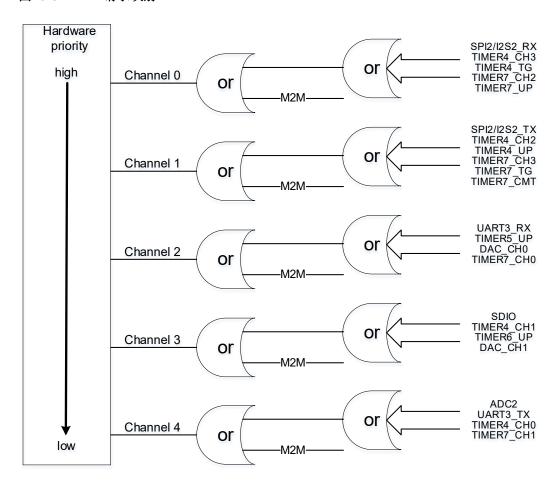


表10-4. DMA1各通道请求表

Peripheral	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4
TIMER4	TIMER4_CH3	TIMER4_CH2		TIMEDA CU1	TIMER4 CH0
TIVILITY	TIMER4_TG	TIMER4_UP	•	TIMEN4_CITT	TIMEN4_CITO
TIMER5	•	•	TIMER5_UP	•	•
TIMER6	•	•	•	TIMER6_UP	•
TIMER7	TIMER7_CH2 TIMER7_UP	TIMER7_CH3 TIMER7_TG TIMER7_CMT	TIMER7_CH0	•	TIMER7_CH1
ADC2	•	•	•	•	ADC2
DAC	•	•	DAC_CH0	DAC_CH1	•
SPI/I2S	SPI2/I2S2_RX	SPI2/I2S2_TX	•	•	•

GD32F403xx 用户手册

Peripheral	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	
USART	•	•	UART3_RX	•	UART3_TX	
SDIO	•	•	•	SDIO	•	

10.5. DMA 寄存器

DMA0 基地址: 0x4002 0000

DMA1 基地址: 0x4002 0400

注意: DMA1 仅有五个通道(0到4通道),所有相关寄存器中通道5和通道6相关标志位不

适用于 DMA1。

10.5.1. 中断标志位寄存器 (DMA_INTF)

地址偏移: 0x00

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	:留		ERRIF6	HTFIF6	FTFIF6	GIF6	ERRIF5	HTFIF5	FTFIF5	GIF5	ERRIF4	HTFIF4	FTFIF4	GIF4
				r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ERRIF3	HTFIF3	FTFIF3	GIF3	ERRIF2	HTFIF2	FTFIF2	GIF2	ERRIF1	HTFIF1	FTFIF1	GIF1	ERRIF0	HTFIF0	FTFIF0	GIF0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

位/位域	名称	描述
31:28	保留	必须保持复位值。
27/23/19/	ERRIFx	通道x错误标志位(x=06)
15/11/7/3		硬件置位,软件写DMA_INTC相应位为1清零
		0: 通道x未发生传输错误
		1: 通道x发生传输错误
26/22/18/	HTFIFx	通道 x 半传输完成标志位(x=0 6)
14/10/6/2		硬件置位,软件写DMA_INTC相应位为1清零
		0: 通道 x 半传输未完成
		1: 通道x半传输完成
25/21/17/	FTFIFx	通道x传输完成标志位(x=06)
13/9/5/1		硬件置位,软件写DMA_INTC相应位为1清零
		0: 通道x传输未完成
		1: 通道x传输完成
24/20/16/	GIFx	通道x全局中断标志位(x=06)
12/8/4/0		硬件置位,软件写DMA_INTC相应位为1清零
		0:通道x ERRIF, HTFIF或FTFIF标志位未置位
		1:通道x至少发生ERRIF,HTFIF或FTFIF之一置位

10.5.2. 中断标志位清除寄存器 (DMA_INTC)

地址偏移: 0x04

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	:留		ERRIFC6	HTFIFC6	FTFIFC6	GIFC6	ERRIFC5	HTFIFC5	FTFIFC5	GIFC5	ERRIFC4	HTFIFC4	FTFIFC4	GIFC4
				w	w	w	w	w	w	w	w	w	w	W	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ERRIF	C3 HTFIFC3	FTFIFC3	GIFC3	ERRIFC2	HTFIC2	FTFIFC2	GIFC2	ERRIFC1	HTFIFC1	FTFIFC1	GIFC1	ERRIFC0	HTFIFC0	FTFIFC0	GIFC0
w	W	w	w	W	w	W	w	W	W	w	w	w	w	w	w

位/位域	名称	描述
31:28	保留	必须保持复位值。
27/23/19/	ERRIFCx	清除通道x(x=06)的错误标志位
15/11/7/3		0: 无影响
		1:清零DMA_INTF寄存器的ERRIFx位
26/22/18/	HTFIFCx	清除通道x(x=06)的半传输完成标志位
14/10/6/2		0: 无影响
		1:清零DMA_INTF寄存器的HTFIFx位
25/21/17/	FTFIFCx	清除通道x(x=06)的传输完成标志位
13/9/5/1		0: 无影响
		1: 清零DMA_INTF寄存器的FTFIFx位
24/20/16/	GIFCx	清除通道x(x=06)的全局中断标志位
12/8/4/0		0: 无影响
		1:清零DMA INTF寄存器的GIFx,ERRIFx,HTFIFx和FTFIFx位

10.5.3. 通道 x 控制寄存器 (DMA_CHxCTL)

x = 0...6, x 为通道序号

地址偏移: 0x08 + 0x14 × x 复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								
								_	_	_					

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	图 M2M PRIO[1:0] MWIDTH[1:0]		PWIDT	ΓH[1:0]	MNAGA	PNAGA	CMEN	DIR	ERRIE	HTFIE	FTFIE	CHEN			
	rw	rv	/	r	w	n	w	rw	rw	rw	rw	rw	rw	rw	rw

位/位域 名称 描述

		OD 021 10	0101 111 1 111
31:15	保留	必须保持复位值	
14	М2М	存储器到存储器模式 软件置位和清零 0:禁止存储器到存储器模式 1:使能存储器到存储器模式 CHEN位为1时,该位不能被配置	
13:12	PRIO[1:0]	软件优先级 软件置位和清零 00: 低 01: 中 10: 高 11: 极高 CHEN位为1时,该位域不能被配置	
11:10	MWIDTH[1:0]	存储器的传输数据宽度 软件置位和清零 00: 8-bit 01: 16-bit 10: 32-bit 11: 保留 CHEN位为1时,该位域不能被配置	
9:8	PWIDTH[1:0]	外设的传输数据宽度 软件置位和清零 00: 8-bit 01: 16-bit 10: 32-bit 11: 保留 CHEN位为1时,该位域不能被配置	
7	MNAGA	存储器的地址生成算法 软件置位和清零 0:固定地址模式 1:增量地址模式 CHEN位为1时,该位不能被配置	
6	PNAGA	外设的地址生成算法 软件置位和清零 0:固定地址模式 1:增量地址模式 CHEN位为1时,该位不能被配置	
5	CMEN	循环模式使能 软件置位和清零 0:禁止循环模式	

			0502.	100707	/ 14 /	1 /1/1
		1: 使能循环模式 CHEN位为1时,该位不能被配置				
4	DIR	传输方向 软件置位和清零 0:从外设读出并写入存储器 1:从存储器读出并写入外设 CHEN位为1时,该位不能被配置				
3	ERRIE	通道错误中断使能位 软件置位和清零 0:禁止通道错误中断 1:使能通道错误中断				
2	HTFIE	通道半传输完成中断使能位 软件置位和清零 0:禁止通道半传输完成中断 1:使能通道半传输完成中断				
1	FTFIE	通道传输完成中断使能位 软件置位和清零 0. 禁止通道传输完成中断 1. 使能通道传输完成中断				
0	CHEN	通道使能 软件置位和清零 0:禁止该通道 1:使能该通道				

10.5.4. 通道 x 计数寄存器 (DMA_CHxCNT)

x = 0...6, x 为通道序号

地址偏移: 0x0C + 0x14 × x

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CNT[[15:0]							

rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	CNT[15:0]	传输计数

CHEN位为1时,该位域不能被配置

该寄存器表明还有多少数据等待被传输。一旦通道使能,该寄存器为只读的,并在每个DMA传输之后值减1。如果该寄存器的值为0,无论通道开启与否,都不会有数据传输。如果该通道工作在循环模式下,一旦通道的传输任务完成,该寄存器会被自动重装载为初始设置值。

10.5.5. 通道 x 外设基地址寄存器 (DMA_CHxPADDR)

x = 0...6, x 为通道序号

地址偏移: 0x10 + 0x14 × x 复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PADDF	R[31:16]							
	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PADDI	R[15:0]							

rw

 位/位域
 名称
 描述

 31:0
 PADDR[31:0]
 外设基地址

CHEN位为1时,该位域不能被配置

当PWIDTH位域的值为01 (16-bit), PADDR[0]被忽略,访问自动与16位地址对齐。当PWIDTH位域的值为10 (32-bit), PADDR[1:0]被忽略,访问自动与32位地址对齐。

10.5.6. 通道 x 存储器基地址寄存器 (DMA_CHxMADDR)

x = 0...6, x 为通道序号

地址偏移: 0x14 + 0x14 × x 复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MADDF	R[31:16]							
<u> </u>	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MADD	R[15:0]							

rw

 位/位域
 名称
 描述

 31:0
 MADDR[31:0]
 存储器基地址

CHEN位为1时,该位域不能被配置

当MWIDTH位域的值为01 (16-bit)时, MADDR [0]被忽略, 访问自动与16位地址对齐。

当MWIDTH位域的值为10 (32-bit)时,MADDR [1:0]被忽略,访问自动与32位地址对齐。

11. 调试 (DBG)

11.1. 简介

GD32F403xx 系列产品提供了各种各样的调试,跟踪和测试功能。这些功能通过 Arm® CoreSight 组件的标准配置和链状连接的 TAP 控制器来实现的。调试和跟踪功能集成在 Arm® Cortex®-M4 内核中。调试系统支持串行(SW)调试和跟踪功能,也支持 JTAG 调试。调试和跟踪功能请参考下列文档:

- Cortex®-M4技术参考手册;
- Arm®调试接口v5结构规范。

调试系统帮助调试者在低功耗模式下调试或者一些外设调试。当相应的位被置 1,调试系统会在低功耗模式下提供时钟,或者为一些外设保持当前状态,这些外设包括: TIMER、WWDGT、FWDGT、I2C 和 CAN。

11.2. JTAG/SW 功能描述

调试工具可以通过串行(SW)调试接口或者 JTAG 调试接口来访问调试功能。

11.2.1. 切换 JTAG / SW 接口

默认使用 JTAG 调试接口,可以通过下列软件序列从 JTAG 调试切换到 SW 调试:

- 发送50个以上TCK周期的TMS=1信号;
- 发送16位TMS = 1110011110011110 (0xE79E LSB)信号;
- 发送50个以上TCK周期的TMS=1信号。

切换 SW 调试到 JTAG 调试的软件序列:

- 发送50个以上TCK周期的TMS=1信号;
- 发送16位TMS = 11100111100111100 (0xE73C LSB)信号;
- 发送50个以上TCK周期的TMS=1信号。

11.2.2. 引脚分配

JTAG 调试提供五个引脚的接口: JTAG 时钟引脚(JTCK), JTAG 模式选择引脚(JTMS), JTAG 数据输入引脚(JTDI), JTAG 数据输出引脚(JTDO), JTAG 复位引脚(NJTRST,低电平有效)。串行调试(SWD)提供两个引脚的接口: 数据输入输出引脚(SWDIO)和时钟引脚(SWCLK)。SW 调试接口的两个引脚与 JTAG 调试接口的两个引脚复用, SWDIO 和 JTMS 复用, SWCLK和 JTCK 复用。

当异步跟踪功能开启时,JTDO 引脚也用作异步跟踪数据输出(TRACESWO)。

表 11-1. 调试引脚分配

引脚	调试接口
PA15	JTDI
PA14	JTCK/SWCLK
PA13	JTMS/SWDIO
PB4	NJTRST
PB3	JTDO

默认复位后使用五个引脚的 JTAG 调试,用户可以在不使用 NJTRST 引脚情况下正常使用 JTAG 功能,此时 PB4 可以用作普通 GPIO 功能(NJTRST 硬件拉高)。如果切换到 SW 调试 模式,PA15/PB4/PB3 释放作为普通 GPIO 功能。如果 JTAG 和 SW 调试功能都没有使用,这 五个引脚都释放作为普通 GPIO 功能。五个引脚具体配置请参考<u>通用和备用输入/输出接口</u> (GPIO 和 AFIO)。

11.2.3. JTAG 链状结构

Cortex®-M4 内核的 JTAG TAP 和边界扫描(BSD) TAP 串行连接。边界扫描(BSD)JTAG 的 IR(指令寄存器)是 5 位,而 Cortex®-M4 内核的 JTAG 的 IR(指令寄存器)是 4 位。所以当 JTAG 进行 IR 移位输入时,首先移位 5 位 BYPASS 指令给 BSD JTAG,然后移位 4 位标准指令给 Cortext®-M4 JTAG。当进行数据移位时,数据链只需要额外添加一位,因为 BSD JTAG已处在 BYPASS 模式。

BSD JTAG ID 代码是 0x790007A3。

11.2.4. 调试复位

JTAG-DP 和 SW-DP 寄存器位于上电复位域。系统复位初始化了 Cortex®-M4 的绝大部分组件,除了 NVIC,调试逻辑(FPB,DWT,ITM)。NJTRST 能复位 JTAG TAP 控制器。所以,可以在系统复位下实现调试功能。例如:复位后停止,用户在系统复位后配置相应停止位,系统复位释放后处理器会立即停止。

11.2.5. **JEDEC-106 ID code**

Cortex®-M4 集成了 JEDEC-106 ID 代码。位于 ROM 表中,映射地址为 0xE00FF000_0xE00FFFFF。

11.3. 调试保持功能描述

11.3.1. 低功耗模式调试支持

当 DBG 控制寄存器 0 (DBG_CTL0) 的 STB_HOLD 位置 1 并且进入待机模式,AHB 总线时钟和系统时钟由 CK_IRC8M 提供,可以在待机模式下调试。当退出待机模式后,产生系统复位。

当 DBG 控制寄存器 0(DBG_CTL0)的 DSLP_HOLD 位置 1 并且进入深度睡眠模式,AHB

总线时钟和系统时钟由 CK_IRC8M 提供,可以在深度睡眠模式下调试。

当 DBG 控制寄存器 0(DBG_CTL0)的 SLP_HOLD 位置 1 并且进入睡眠模式, AHB 总线时钟没有关闭,可以在睡眠模式下调试。

11.3.2. TIMER, I2C, WWDGT, FWDGT 和 CAN 外设调试支持

当内核停止,并且 DBG 控制寄存器 1 (DBG_CTL0) 中的相应位置 1。对于不同外设,有不同动作:

对于 TIMER 外设, TIMER 计数器停止并进行调试;

对于 I2C 外设, SMBUS 保持状态并进行调试;

对于 WWDGT 或者 FWDGT 外设, 计数器时钟停止并进行调试;

对于 CAN 外设,接收寄存器停止计数并进行调试。

11.4. DBG 寄存器

DEBUG 基地址: 0xE0042000U

11.4.1. ID 寄存器 (DBG_ID)

地址: 0xE004 2000

只读寄存器

该寄存器只能按字(32位)访问

ID_CODE[31:16]											
r											
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0										
ID_CODE[15:0]											

r

位/位域	名称	描述

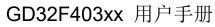
31:0 ID_CODE[31:0]

这些位由软件读取,这些位是不变的常数

DBG ID 寄存器

11.4.2. 控制寄存器 0 (DBG_CTL0)

地址偏移: 0x04


复位值: 0x0000 0000, 仅上电复位

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	TIMER10 _HOLD	TIMER9_ HOLD	TIMER8_ HOLD	TIMER13 _HOLD	TIMER12 _HOLD	TIMER11 _HOLD		保留.		CAN1_H OLD	TIMER6_ HOLD	TIMER5_ HOLD	TIMER4_ HOLD	TIMER7_ HOLD	I2C1_HO LD
	rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I2C0_HO LD	CAN0_H OLD	TIMER3_ HOLD	TIMER2_ HOLD	TIMER1_ HOLD	TIMER0_ HOLD	WWDGT _HOLD	FWDGT_ HOLD	保質	a.	TRACE _IOEN	保	留.	STB_ HOLD	DSLP_ HOLD	SLP_ HOLD
rw	rw	rw	rw	rw	rw	rw	rw			rw			rw	rw	rw

位/位域	名称	描述
31	保留	必须保持复位值。
30	TIMER10_HOLD	TIMER10 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时保持定时器 10 计数器不变,用于调试
29	TIMER9_HOLD	TIMER9 保持寄存器

_		· · · · · · · · · · · · · · · ·
		该位由软件置位和复位 0:无影响 1:当内核停止时保持定时器9计数器不变,用于调试
28	TIMER8_HOLD	TIMER8 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时保持定时器 8 计数器不变,用于调试
27	TIMER13_HOLD	TIMER13 保持寄存器 该位由软件置位和复位 0:无影响 1: 当内核停止时保持定时器 13 计数器不变,用于调试
26	TIMER12_HOLD	TIMER12 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时保持定时器 12 计数器不变,用于调试
25	TIMER11_HOLD	TIMER11 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时保持定时器 11 计数器不变,用于调试
24:22	保留	必须保持复位值。
21	CAN1_HOLD	CAN1 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时 CAN1 接收寄存器停止接收数据
20	TIMER6_HOLD	TIMER6 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时保持定时器 6 计数器不变,用于调试
19	TIMER5_HOLD	TIMER5 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时保持定时器 5 计数器不变,用于调试
18	TIMER4_HOLD	TIMER4 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时保持定时器 4 计数器不变,用于调试
17	保留	必须保持复位值。
16	I2C1_HOLD	I2C1 保持寄存器

		OB 021 100700
		该位由软件置位和复位 0: 无影响 1: 当内核停止时保持 I2C1 的 SMBUS 状态不变,用于调试
15	I2C0_HOLD	I2C0 保持寄存器 该位由软件置位和复位 0:无影响 1: 当内核停止时保持 I2C0 的 SMBUS 状态不变,用于调试
14	CAN0_HOLD	CANO 保持寄存器 该位由软件置位和复位 0: 无影响 1: 当内核停止时 CANO 接收寄存器停止接收数据
13	TIMER3_HOLD	TIMER3 保持寄存器 该位由软件置位和复位 0:无影响 1: 当内核停止时保持定时器 3 计数器不变,用于调试
12	TIMER2_HOLD	TIMER2 保持寄存器 该位由软件置位和复位 0:无影响 1: 当内核停止时保持定时器 2 计数器不变,用于调试
11	TIMER1_HOLD	TIMER1 保持寄存器 该位由软件置位和复位 0:无影响 1: 当内核停止时保持定时器 1 计数器不变,用于调试
10	TIMER0_HOLD	TIMERO 保持寄存器 该位由软件置位和复位 0:无影响 1: 当内核停止时保持定时器 0 计数器不变,用于调试
9	WWDGT_HOLD	WWDG 保持寄存器 该位由软件置位和复位 0:无影响 1:当内核停止时保持WWDGT计数器时钟,用于调试
8	FWDGT_HOLD	FWDGT 保持寄存器 该位由软件置位和复位 0:无影响 1:当内核停止时保持FWDGT计数器时钟,用于调试
7:6	保留	必须保持复位值。
5	TRACE_IOEN	跟踪引脚分配使能 该位由软件置位和复位 0: 跟踪引脚分配禁用

-		1: 跟踪引脚分配使能
4:3	保留	必须保持复位值
2	STB_HOLD	待机模式保持寄存器 该位由软件置位和复位 0:无影响 1:在待机模式下,系统时钟和 AHB 时钟由 CK_IRC8M 提供,当退出待机模式时,产生系统复位
1	DSLP_HOLD	深度睡眠模式保持寄存器 该位由软件置位和复位 0:无影响 1:在深度睡眠模式下,系统时钟和 AHB 时钟由 CK_IRC8M 提供
0	SLP_HOLD	睡眠模式保持寄存器 该位由软件置位和复位 0:无影响 1:在睡眠模式下,AHB时钟继续运行

12. 模数转换器 (ADC)

12.1. 简介

MCU 片上集成了 12 位逐次逼近式模数转换器模块(ADC),可以采样来自于 16 个外部通道和 2 个内部通道上的模拟信号。这 18 个 ADC 采样通道都支持多种运行模式,采样转换后,转换结果可以按照最低有效位对齐或最高有效位对齐的方式保存在相应的数据寄存器中。片上的硬件过采样机制可以通过减少来自 MCU 的相关计算负担来提高性能。

12.2. 主要特征

- 高性能:
 - ADC分辨率: 12位、10位、8位、或者6位分辨率;
 - 前置校准功能;
 - 可编程采样时间;
 - 数据存储模式:最高有效位对齐和最低有效位对齐;
 - DMA请求。
- 模拟输入通道:
 - 16个外部模拟输入通道;
 - 1个内部温度传感通道(V_{SENSE});
 - 1个内部参考电压输入通道(VREFINT)。
- 运行模式:
 - 软件:
 - 硬件触发。
- 转换模式:
 - 转换单个通道,或者扫描一序列的通道;
 - 单次运行模式,每次触发转换一次选择的输入通道;
 - 连续运行模式,连续转换所选择的输入通道;
 - 间断运行模式;
 - 同步模式(适用于具有两个或多个ADC的设备)。
- 转换结果阈值监测器功能:模拟看门狗。
- 中断的产生:
 - 常规序列转换结束;
 - 模拟看门狗事件。
- 过采样:
 - 16位的数据寄存器;
 - 可调整的过采样率,从2x到256x;
 - 高达8位的可编程数据移位。
- 模块供电要求: 2.6V到3.6V, 一般电源电压为3.3V。
- 通道输入范围: V_{REF-} ≤V_{IN} ≤V_{REF+}。

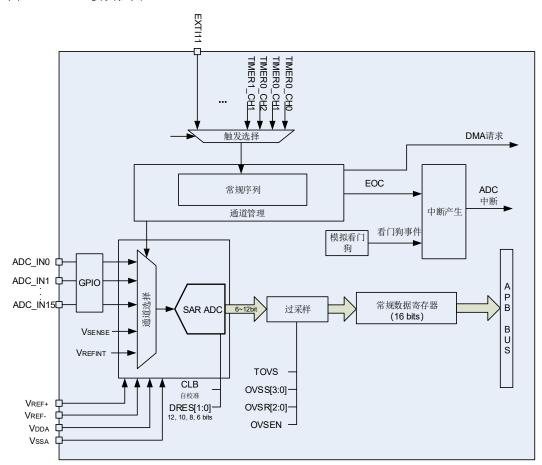
12.3. 引脚和内部信号

<u>图 12-1. ADC 模块框图</u>给出了 ADC 框图。<u>表 12-1. ADC 内部输入信号</u>给出了 ADC 内部信号。 <u>表 12-2. ADC 引脚输入定义</u>给出了 ADC 引脚说明。

表 12-1. ADC 内部输入信号

内部信号名称	说明
Vsense	内部温度传感器输出电压
V _{REFINT}	内部参考输出电压

表 12-2. ADC 引脚输入定义


名称	注释
V _{DDA}	模拟电源输入等于VDD, 2.6V≤VDDA≤3.6V
Vssa	模拟地,等于Vss
V _{REF+}	ADC正参考电压,2.6 V ≤ V _{REF+} ≤ V _{DDA}
V _{REF} -	ADC负参考电压,V _{REF-} = V _{SSA}
ADCx_IN[15:0]	多达16路外部模拟通道

注意: VDDA和Vssa必须分别连接到VDD和Vss。

12.4. 功能说明

图 12-1. ADC 模块框图

12.4.1. 前置校准功能

在前置校准期间,ADC 计算一个校准系数,这个系数是应用于 ADC 内部的,它直到 ADC 下次掉电才无效。在校准期间,应用不能使用 ADC,它必须等到校准完成。在 A/D 转换前应执行校准操作。通过软件设置 CLB=1 来对校准进行初始化,在校准期间 CLB 位会一直保持 1,直到校准完成,该位由硬件清 0。

当 ADC 运行条件改变(例如, VDDA、VREF+ 以及温度等),建议重新执行一次校准操作。

内部的模拟校准通过设置 ADC_CTL1 寄存器的 RSTCLB 位来重置。

软件校准过程:

- 1. 确保ADCON=1;
- 2. 延迟14个CK_ADC以等待ADC稳定;
- 3. 设置RSTCLB (可选的);
- 4. 设置CLB=1;
- 5. 等待直到CLB=0。

12.4.2. ADC 时钟

CK_ADC 时钟是由时钟控制器提供的,它和 AHB、APB2 时钟保持同步。ADC 时钟可以在 RCU 时钟控制器中进行分配和配置。

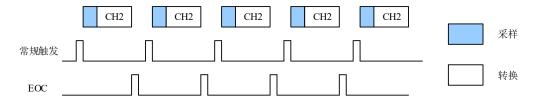
12.4.3. ADCON 使能

ADC_CTL1 寄存器中的 ADCON 位是 ADC 模块的使能开关。如果该位为 0,则 ADC 模块保持复位状态。为了省电,当 ADCON 位为 0 时,ADC 模拟子模块将会进入掉电模式。ADC 使能后需要等待 tus 时间后才能采样,tus 数值详见芯片数据手册。

12.4.4. 常规序列

通道管理电路可以将采样通道组织成一个序列:常规序列。常规序列支持最多16个通道,每个通道称为常规通道。

ADC_RSQ0寄存器的RL[3:0]位规定了整个常规序列的长度。ADC_RSQ0~ADC_RSQ2寄存器规定了常规序列的通道选择。


注意:尽管ADC支持18个通道,但常规序列一次最多转换16个通道。

12.4.5. 运行模式

单次运行模式

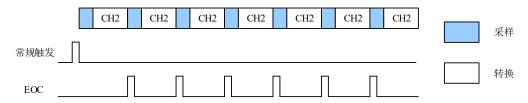
单次运行模式下,ADC_RSQ2 寄存器的 RSQ0[4:0]位规定了 ADC 的转换通道。当 ADCON 位被置 1,一旦相应软件触发或者外部触发发生,ADC 就会采样和转换一个通道。

图 12-2. 单次运行模式

常规通道单次转换结束后,转换数据将被存放于 ADC_RDATA 寄存器中,EOC 将会置 1。如果 EOCIE 位被置 1,将产生一个中断。

常规序列单次运行模式的软件流程:

- 1. 确保ADC_CTL0寄存器的DISRC和SM位以及ADC_CTL1寄存器的CTN位为0;
- 2. 用模拟通道编号来配置RSQ0;
- 3. 配置ADC SAMPTx寄存器;
- 4. 如果有需要,可以配置ADC_CTL1寄存器的ETERC和ETSRC位;
- 5. 设置SWRCST位,或者为常规序列产生一个外部触发信号;
- 6. 等到EOC置1;
- 7. 延迟一个CK ADC后,从ADC RDATA寄存器中读ADC转换结果;


8. 写0清除EOC标志位。

注意: 当EOC置1后,需延迟一个CK_ADC再读取ADC转换结果。

连续运行模式

对 ADC_CTL1 寄存器的 CTN 位置 1 可以使能连续运行模式。在此模式下,ADC 执行由 RSQ0[4:0]规定的转换通道。当 ADCON 位被置 1,一旦相应软件触发或者外部触发产生,ADC 就会采样和转换规定的通道。转换数据保存在 ADC_RDATA 寄存器中。

图 12-3. 连续运行模式

常规序列连续运行模式的软件流程:

- 1. 设置ADC CTL1寄存器的CTN位为1;
- 2. 根据模拟通道编号配置RSQ0;
- 3. 配置ADC_SAMPTx寄存器;
- 4. 如果有需要,配置ADC_CTL1寄存器的ETERC和ETSRC位;
- 5. 设置SWRCST位,或者给常规序列产生一个外部触发信号;
- 6. 等待EOC标志位置1;
- 7. 延迟一个CK ADC后,从ADC RDATA寄存器中读ADC转换结果;
- 8. 写0清除EOC标志位;
- 9. 只要还需要进行连续转换,重复步骤6~8。

注意: 当EOC置1后,需延迟一个CK_ADC再读取ADC转换结果。

由于要循环查询 EOC 标志位, DMA 可以被用来传输转换数据, 软件流程如下:

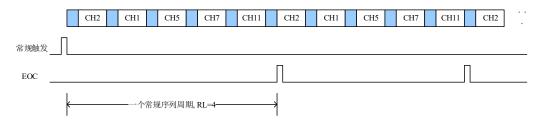
- 1. 设置ADC CTL1寄存器的CTN位为1;
- 2. 根据模拟通道编号配置RSQ0;
- 3. 配置ADC SAMPTx寄存器;
- 4. 如果有需要,配置ADC_CTL1寄存器的ETERC和ETSRC位;
- 5. 准备DMA模块,用于传输来自ADC_RDATA的数据;
- 6. 设置SWRCST位,或者给常规序列产生一个外部触发。

扫描运行模式

扫描运行模式可以通过将 ADC_CTL0 寄存器的 SM 位置 1 来使能。在此模式下,ADC 扫描转换所有被 ADC_RSQ0~ADC_RSQ2 寄存器选中的所有通道。一旦 ADCON 位被置 1,当相应软件触发或者外部触发产生,ADC 就会一个接一个的采样和转换常规序列通道。转换数据存储在 ADC_RDATA 寄存器中。常规序列转换结束后,EOC 位将被置 1。如果 EOCIE 位被置 1,将产生中断。当常规序列工作在扫描模式下时,ADC_CTL1 寄存器的 DMA 位必须设置为 1。

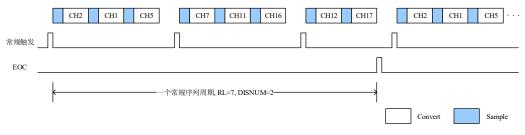
如果 ADC_CTL1 寄存器的 CTN 位也被置 1,则在常规序列转换完之后,这个转换自动重新开

始。


图 12-4. 扫描运行模式,且连续转换模式失能

常规序列扫描运行模式的软件流程:

- 1. 设置 ADC_CTL0 寄存器的 SM 位和 ADC_CTL1 寄存器的 DMA 位为 1;
- 2. 配置 ADC RSQx 和 ADC SAMPTx 寄存器;
- 3. 如果有需要,配置 ADC CTL1 寄存器中的 ETERC 和 ETSRC 位;
- 4. 准备 DMA 模块,用于传输来自 ADC RDATA 的数据;
- 5. 设置 SWRCST 位,或者给常规序列产生一个外部触发;
- 6. 等待 EOC 标志位置 1;
- 7. 写 0 清除 EOC 标志位。


图 12-5. 扫描运行模式,连续运行模式使能

间断运行模式

当 ADC_CTL0 寄存器的 DISRC 位置 1 时,常规序列使能间断运行模式。该模式下可以执行一次 n 个通道的短序列转换(n 不超过 8),该序列是 ADC_RSQ0~RSQ2 寄存器所选择的序列的一部分。数值 n 由 ADC_CTL0 寄存器的 DISCNUM[2:0]位配置。当相应的软件触发或外部触发发生,ADC 就会采样和转换在 ADC_RSQ0~RSQ2 寄存器所配置通道中接下来的 n 个通道,直到常规序列中所有的通道转换完成。每个常规序列转换周期结束后,EOC 位将被置 1。如果 EOCIE 位被置 1 将产生一个中断。

图 12-6. 间断转换模式

常规序列间断运行模式的软件流程:

- 1. 设置 ADC_CTL0 寄存器的 DISRC 位和 ADC_CTL1 寄存器的 DMA 位为 1;
- 2. 配置 ADC CTL0 寄存器的 DISNUM[2:0]位;

- 3. 配置 ADC RSQx 和 ADC SAMPTx 寄存器;
- 4. 如果有需要,配置 ADC CTL1 寄存器中的 ETERC 和 ETSRC 位;
- 5. 准备 DMA 模块,用于传输来自 ADC RDATA 的数据;
- 6. 设置 SWRCST 位,或者给常规序列产生一个外部触发;
- 7. 如果需要, 重复步骤 6;
- 8. 等待 EOC 标志位置 1;
- 9. 写 0 清除 EOC 标志位。

12.4.6. 转换结果阈值监测功能

ADC_CTL0 寄存器的 RWDEN 位置 1 将使能常规序列的模拟看门狗功能。该功能用于监测转换结果是否超过设定的阈值。如果 ADC 的模拟转换电压低于低阈值或高于高阈值时,ADC_STAT 状态寄存器的 WDE 位将被置 1。如果 WDEIE 位被置 1,将产生中断。ADC_WDHT和 ADC_WDLT寄存器用来设定高低阈值。内部数据的比较在对齐之前完成,因此阀值与ADC_CTL1寄存器的 DAL 位确定的对齐方式无关。ADC_CTL0寄存器的 RWDEN,WDSC和 WDCHSEL[4:0]位可以用来选择模拟看门狗监控单一通道或者多通道。

12.4.7. 数据存储模式

ADC CTL1 寄存器的 DAL 位确定转换后数据存储的对齐方式。

图 12-7. 12 位数据存储模式

常规通道数据 0 0 0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0DAL=0 D11 D10 D9 D8 D7 D4 D3 D2 D1 D0 0 0 0 D6 D5 0

DAL=1

6 位分辨率的数据存储模式不同于 12 位/10 位/8 位分辨率数据存储模式,如图 12-10 所示。

图 12-8.6 位数据存储模式

常规通道数据 0 0 0 0 0 0 0 0 0 0 D5 D4 D3 D2 D1 D0 DAL=0 D3 D2 0 0 0 0 0 0 D5 D4 D1 D00 0 0 0

DAL=1

12.4.8. 采样时间配置

ADC 使用多个 CK_ADC 周期对输入电压采样,采样周期数目可以通过 ADC_SAMPT0 和 ADC_SAMPT1 寄存器的 SPTn[2:0]位配置。每个通道可以用不同的采样时间。在 12 位分辨率的情况下,总转换时间=采样时间+12.5 个 CK_ADC 周期。

例如:

CK ADC = 30MHz, 采样时间为 1.5 个周期, 那么总的转换时间为: "1.5+12.5"个 CK ADC

周期,即 0.467us。

12.4.9. 外部触发配置

外部触发输入的上升沿可以触发常规序列的转换。常规序列的外部触发源由 ADC_CTL1 寄存器的 ETSRC[2:0]位控制。

表 12-3. ADC0 和 ADC1 的外部触发源

ETSRC[2:0]	触发源	触发类型
000	TIMER0_CH0	
001	TIMER0_CH1	
010	TIMER0_CH2	
011	TIMER1_CH1	硬件触发
100	TIMER2_TRGO	设计服仪
101	TIMER3_CH3	
110	EXTI11/	
110	TIMER7_TRGO	
111	SWRCST	软件触发

表 12-4. ADC2 的外部触发源

ETSRC[2:0]	触发源	触发类型			
000	TIMER2_CH0				
001	TIMER1_CH2				
010	TIMER0_CH2				
011	TIMER7_CH0 硬件触发				
100	TIMER7_TRGO				
101	TIMER4_CH0				
110	TIMER4_CH2				
111	SWRCST	软件触发			

12.4.10. DMA 请求

DMA 请求,可以通过设置 ADC_CTL1 寄存器的 DMA 位来使能,它用于常规序列多个通道的转换结果。ADC 在常规序列一个通道转换结束后产生一个 DMA 请求,DMA 接受到请求后可以将转换的数据从 ADC_RDATA 寄存器传输到用户指定的目的地址。

12.4.11. ADC 内部通道

将 ADC_CTL1 寄存器的 TSVREN 位置 1 可以使能温度传感器通道(ADC0_CH16)和 V_{REFINT}通道(ADC0_CH17)。温度传感器可以用来测量器件周围的温度。传感器输出电压能被 ADC 转换成数字量。建议温度传感器的采样时间至少设置为 ts_temp μs(具体数值请参考 datasheet 文档)。温度传感器不用时,复位 TSVREN 位可以将其置于掉电模式。

温度传感器的输出电压随温度线性变化,由于生产过程的多样化,温度变化曲线的偏移在不同的芯片上会有不同(最多相差 45°C)。内部温度传感器更适合于检测温度的变化,而不是测量绝

对温度。如果需要测量精确的温度,应该使用一个外置的温度传感器来校准这个偏移错误。

内部电压参考(VREFINT)提供了一个稳定的(带隙基准)电压输出给 ADC 和比较器。VREFINT 内部连接到 ADC0 CH17 输入通道。

使用温度传感器:

- 1. 配置温度传感器通道(ADC IN16)的转换序列和采样时间为 ts temp μs
- 2. 置位 ADC_CTL1 寄存器中的 TSVREN 位,使能温度传感器
- 3. 置位 ADC CTL1 寄存器的 ADCON 位,或者由外部触发启动 ADC 转换
- 4. 读取内部温度传感器输出电压 V_{temperature}, 并由下面公式计算出实际温度:

温度 (°C) =
$$\{(V_{25} - V_{temperature}) / Avg_Slope\} + 25$$

V25: 内部温度传感器在 25°C 下的电压,典型值请参考相关型号 datasheet。

Avg_Slope: 温度与内部温度传感器输出电压曲线的均值斜率,典型值请参考相关型号 datasheet。

12.4.12. 可编程分辨率(DRES)

ADC 分辨率可以通过寄存器 ADC_OVSAMPCTL 中的 DRES[1:0]位进行配置。对于那些不需要高精度数据的应用,可以使用较低的分辨率来实现更快速地转换。只有在 ADCON 比特为 0时,才能修改 DRES[1:0]的值。较低的分辨率能够减少转换时间。如表 12-5. 不同分辨率对应的 tCONV 时间所示,较低的分辨率能够减少逐次逼近步骤所需的转换时间 tadc。

DRES[1:0] bits	tconv (ADC clock cycles)	tconv(ns) at f _{ADC} =30MHz	t _{SMPL} (min) (ADC clock cycles)	t _{ADC} (ADC clock cycles)	t _{ADC} (ns) at f _{ADC} =30MHz	
12	12.5	417 ns	1.5	14	467 ns	
10	10.5	350 ns	1.5	12	400 ns	
8	8.5	283 ns	1.5	10	333 ns	

217 ns

表 12-5. 不同分辨率对应的 tconv 时间

6.5

12.4.13. 片上硬件过采样

6

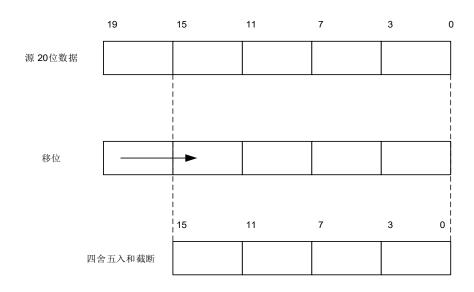
片上硬件过采样单元执行数据预处理以减轻 CPU 负担。它能够处理多个转换,并将多个转换的结果取平均,得出一个 16 位宽的数据。其结果值根据如下公式计算得出,其中 N 和 M 的值可以被调整,过采样单元可以通过设置 ADC_OVSAMPCTL 寄存器的 OVSEN 位来使能,它是以降低数据输出率为代价,换取较高的数据分辨率。Dout(n)是指 ADC 输出的第 n 个数字信号:

1.5

Result =
$$\frac{1}{M} * \sum_{n=0}^{N-1} D_{out}(n)$$
 (12-1)

8

267 ns


片上硬件过采样单元执行两个功能: 求和和位右移。过采样率 N 是在 ADC_OVSAMPCTL 寄存器的 OVSR[2:0]位定义,它的取值范围为 2x 到 256x。除法系数 M 定义一个多达 8 位的右移,它通过 ADC OVSAMPCTL 寄存器 OVSS[3:0]位进行配置。

求和单元能够生成一个多达 20 位(256*12 位)的值。首先,将这个值要进行右移,将移位后剩余的部分再通过取整转化一个近似值,最后将高位会被截断,仅保留最低 16 位有效位作为最

终值传入对应的数据寄存器中。

图 12-9. 20 位到 16 位的结果截断

注意: 如果移位后的中间结果还是超过 16 位,那么该结果的高位就会被直接截掉。

图 12-10. *右移 5 位和取整的数例*描述一个从原始 20 位的累积数值处理成 16 位结果值的例子。

图 12-10. 右移 5 位和取整的数例

	19	15	11	7	3 (
原20位的数据	2	А	С	D	6
		15	11	7	3 (
四舍五入取近似(右移5位之后的		1	5	6	6

<u>**表 12-6.**N 和 M 的最大输出值(灰色部分表示截断)</u>给出了 N 和 M 各种组合的数据格式,初始转换值为 <math>0xFFF。

表 12-6. N 和 M 的最大输出值(灰色部分表示截断)

	, , , ,	4-14-14		. — ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.4 . 134-21	•				
0.4	May	NIb:6	1-bit	2-bit	3-bit	4-bit	5-bit	6-bit	7-bit	8-bit
Oversa	Max	No-shift	shift	shift	shift	shift	shift	shift	shift	shift
mpling	Raw	OVSS=	OVSS=	OVSS=	OVSS=	OVSS=	OVSS=	OVSS=	OVSS=	OVSS=
ratio	data	0000	0001	0010	0011	0100	0101	0110	0111	1000
2x	0x1FFE	0x1FFE	0x0FFF	0x07FF	0x03FF	0x01FF	0x00FF	0x007F	0x003F	0x001F

Oversa	Max	No-shift	1-bit	2-bit	3-bit	4-bit	5-bit	6-bit	7-bit	8-bit
mpling	Raw	OVSS=	shift							
, ,		0000	OVSS=							
ratio	data	0000	0001	0010	0011	0100	0101	0110	0111	1000
4x	0x3FFC	0x3FFC	0x1FFE	0x0FFF	0x07FF	0x03FF	0x01FF	0x00FF	0x007F	0x003F
8x	0x7FF8	0x7FF8	0x3FFC	0x1FFE	0x0FFF	0x07FF	0x03FF	0x01FF	0x00FF	0x007F
16x	0xFFF0	0xFFF0	0x7FF8	0x3FFC	0x1FFE	0x0FFF	0x07FF	0x03FF	0x01FF	0x00FF
32x	0x1FFE0	0xFFE0	0xFFF0	0x7FF8	0x3FFC	0x1FFE	0x0FFF	0x07FF	0x03FF	0x01FF
64x	0x3FFC0	0xFFC0	0xFFE0	0xFFF0	0x7FF8	0x3FFC	0x1FFE	0x0FFF	0x07FF	0x03FF
128x	0x7FF80	0xFF80	0xFFC0	0xFFE0	0xFFF0	0x7FF8	0x3FFC	0x1FFE	0x0FFF	0x07FF
256x	0xFFF00	0xFF00	0xFF80	0xFFC0	0xFFE0	0xFFF0	0x7FF8	0x3FFC	0x1FFE	0x0FFF

和标准的转换模式相比,过采样模式的转换时间不会改变:在整个过采样序列的过程中采样时间仍然保持相等。每 N 个转换就会产生一个新的数据,一个等价的延迟为:

$$N^*t_{ADC} = N^*(t_{SMPL} + t_{CONV})$$
(3-1)

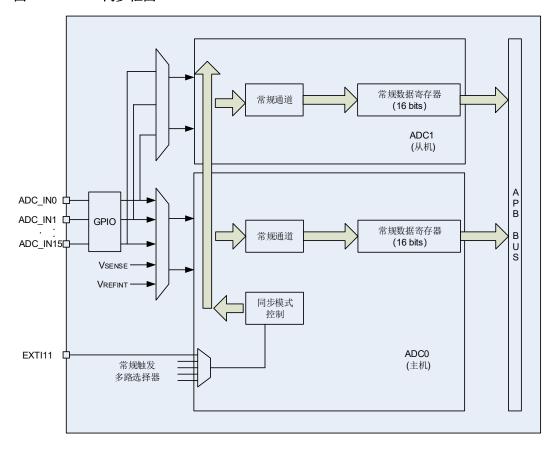
12.5. ADC 同步模式

在有多个ADC模块的产品中,可以使用ADC同步模式。在ADC同步模式下,根据ADC_CTL0寄存器中SYNCM[3:0]位所选的模式,转换的启动可以是ADC0和ADC1的交替触发或同步触发。

在同步模式下,当配置由外部事件触发的转换时,ADC1必须通过软件来配置触发来,从而避免错误的触发引起不必要的转换。此外,对于ADC0和ADC1的外部触发必须被使能。

ADC同步模式如表示。

表 12-7. ADC 同步模式表


SYNCM[3: 0]	模式
0000	独立模式
0110	常规并行模式
0111	常规快速交叉模式
1000	常规慢速交叉模式

在ADC同步模式下,即使DMA不用,也要将DMA置位,ADC1的转换数据可以通过ADC0数据寄存器读取。

ADC 同步框图如图 12-11. ADC 同步框图 所示。

图 12-11. ADC 同步框图

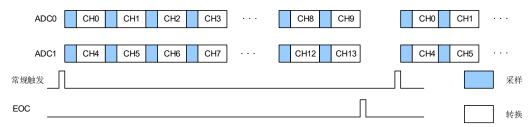
12.5.1. 独立模式

在这种模式下,每个 ADC 都独立工作,互不干扰。

12.5.2. 常规并行模式

此模式可并行转换常规序列,外部触发来源于 ADC0 常规序列触发(由 ADC_CTL1 寄存器的 ETSRC[2:0]决定),ADC1 常规序列配置为软件触发模式。

在 ADC0 或 ADC1 的转换事件结束时,即 ADC0 或 ADC1 的常规序列转换完毕,会产生一个 EOC 中断(如果某个 ADC 中断使能)。常规并行模式请参考图 12-12. 基于10 个通道的常规并行模式。

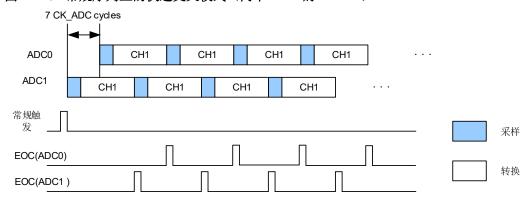

32 位 ADC_RDATA 寄存器 ([15: 0]位域用于保存 ADC0 常规通道采样数据, [31: 16]位域用于保存 ADC1 常规通道采样数据), 32 位的 DMA 被用来将 ADC_RDATA 中的数据传送到 SRAM。

注意:

- 1. 若两个 ADC 模块使用了相同的采样通道,应保证不在同一时间使用该通道。
- 2. 两个 ADC 在同一时刻采样的两个通道,应该配置相同的采样时间。

图 12-12. 基于 10 个通道的常规并行模式

12.5.3. 常规快速交叉模式


快速交叉模式适用于两个 ADC 的常规序列采样同一个通道, , 外部触发来源于 ADCO 常规序列(由 ADC_CTL1 寄存器的 ETSRC[2:0]决定)。当触发产生时, ADC1 立刻启动, 而 ADC0 在 7 个 ADC 时钟周期后启动。

如果 ADC0 和 ADC1 的 CTN 位被置位,所选的常规序列在两个 ADC 中被不停的转换。如<u>图</u> 12-13. *常规序列上的快速交叉模式*所示。

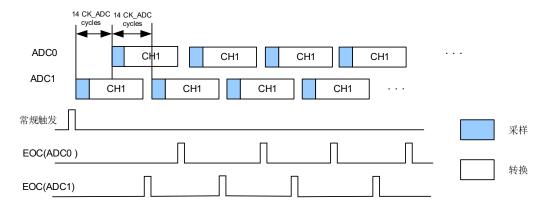
32 位 ADC_RDATA 寄存器([15:0]位域用于保存 ADC0 常规通道采样数据,[31:16]位域用于保存 ADC1 常规通道采样数据)。在 ADC0 产生 EOC 中断后(可通过置位 EOCIE 位),可通过 32 位 DMA 将 ADC RDATA 中数据传送到 SRAM。

注意: 两个 ADC 模块常规通道的采样时间都应小于 7 个 ADC 时钟周期。

图 12-13. 常规序列上的快速交叉模式(两个 ADC 的 CTN=1)

12.5.4. 常规慢速交叉模式

此模式应用于两个 ADC 的常规序列(通常一个常规通道),外部触发来源于 ADC0 常规序列(由 ADC_CTL1 寄存器的 ETSRC[2:0]决定)。当触发产生时,ADC1 立刻启动,而 ADC0 在14 个 ADC 时钟周期后启动,在 ADC0 启动后的 14 个时钟周期,ADC1 再次启动。


在这种模式下,不能使用连续转换模式,因为在这种模式下所选的常规通道在两个 ADC 中被不停的转换,如*图 12-14. 常规序列上的慢速交叉模式*所示。

32 位 ADC_RDATA 寄存器([15: 0]位域用于保存 ADC0 常规通道采样数据,[31: 16]位域用于保存 ADC1 常规通道采样数据)。在 ADC0 产生 EOC 中断后(可通过置位 EOCIE 位),可通过 32 位 DMA 将 ADC_RDATA 中数据传送到 SRAM。

注意: 可允许的最大采样时间必须小于 14 个 CK_ADC 采样时钟,从而避免 ADC0 和 ADC1 在转换相同通道时出现采样时钟重叠。

图 12-14. 常规序列上的慢速交叉模式

12.6. 中断

以下任一个事件发生都可以产生中断:

- 常规序列转换结束;
- 模拟看门狗事件;

12.7. ADC 寄存器

ADC0 基地址: 0x4001 2400

ADC1 基地址: 0x4001 2800

ADC2 基地址: 0x4001 3C00

12.7.1. 状态寄存器 (ADC_STAT)

地址偏移: 0x00

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	•			保留					•	STRC	保	留	EOC	WDE
											rc w0			rc w0	rc w0

位/位域	名称	说明
31:5	保留	必须保持复位值。
4	STRC	常规序列转换开始标志 0: 转换没有开始 1: 转换开始 常规序列转换开始时硬件置位,软件写0清除。
3:2	保留	必须保持复位值。
1	EOC	常规序列转换结束标志 0:转换没有结束 1:转换结束 常规序列转换结束时硬件置位,软件写 0 或读 ADC_RDATA 寄存器清除。
0	WDE	模拟看门狗事件标志 0: 没有模拟看门狗事件 1: 产生模拟看门狗事件 转换电压超过 ADC_WDLT 和 ADC_WDHT 寄存器设定的阈值时由硬件置 1, 软件 写 0 清除。

12.7.2. 控制寄存器 0 (ADC_CTL0)

地址偏移: 0x04

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			保	:留				RWDEN		保留		SYNCM[3:0]				
rw										n	N					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	DISNUM[2:0] 保留 DISRC 保留 WDSC SM						SM	保留	WDEIE	EOCIE	WDCHSEL[4:0]					
DV DV DV DV							ru.									

位/位域	名称	说明
31:24	保留	必须保持复位值。
23	RWDEN	常规序列看门狗使能 0: 常规序列看门狗禁止 1: 常规序列看门狗使能
22:20	保留	必须保持复位值
19: 16	SYNCM[3: 0]	同步模式选择 这些位用于运行模式选择 0000:独立模式 0001~0101:保留 0110:常规并行模式 0111:常规快速交叉模式 1000:常规慢速交叉模式 1001~1111:保留 注意:1)这些位只用于 ADCO;2)建议用户在任何配置之前关闭同步模式。
15:13	DISNUM[2:0]	间断模式下的转换数目 触发后即将被转换的通道数目将变成 DISNUM[2:0]+1
12	保留	必须保持复位值。
11	DISRC	常规序列间断模式 0: 间断运行模式禁止 1: 间断运行模式使能
10	保留	必须保持复位值。
9	WDSC	扫描模式下,模拟看门狗在通道配置 0:模拟看门狗在所有通道有效 1:模拟看门狗在单通道有效
8	SM	扫描模式 0: 扫描运行模式禁止 1: 扫描运行模式使能
7	保留	必须保持复位值。

		, · · · , · · · · · · · · · · · · · · ·
6	WDEIE	WDE 中断使能 0: 中断禁止 1: 中断使能
5	EOCIE	EOC 中断使能 0: 中断禁止 1: 中断使能
4:0	WDCHSEL[4:0]	模拟看门狗通道选择 00000: ADC 通道 0 00001: ADC 通道 1 00010: ADC 通道 2 00011: ADC 通道 3 00100: ADC 通道 4 00101: ADC 通道 5 00110: ADC 通道 6 00111: ADC 通道 7 01000: ADC 通道 8 01001: ADC 通道 9 01010: ADC 通道 10 01011: ADC 通道 11 01100: ADC 通道 12 01101: ADC 通道 13 01110: ADC 通道 13 01110: ADC 通道 15 10000: ADC 通道 15 10000: ADC 通道 15 10000: ADC 通道 16 10001: ADC 通道 17 其他值保留。 注意: ADC0 的模拟输入通道 16 和通道 17 分别连接到温度传感器和 VREFINT。
		ADC1 的模拟输入通道 16 和通道 17 内部都连接到 Vssa。 ADC2 的模拟输入通道

12.7.3. 控制寄存器 1 (ADC_CTL1)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保	留				TSVREN	SWRCST	保留	ETERC	E	TSRC[2: ()]	保留.
								rw	rw		rw		rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留		DAL	保	留.	DMA		保	留		RSTCLB	CLB	CTN	ADCON
				rw			rw					rw	rw	rw	rw

16 和通道 17 内部都连接到 Vssa。

位/位域	名称	说明
31: 24	保留	必须保持复位值。
23	TSVREN	ADC0 的通道 16 和 17 使能 0: ADC0 的通道 16 和 17 禁止 1: ADC0 的通道 16 和 17 使能
22	SWRCST	软件触发常规序列转换开始 如果 ETSRC 是 111,该位置'1'开启常规序列转换。软件置位,软件清零,或转换开始后,由硬件清零。
21	保留	必须保持复位值。
20	ETERC	常规序列外部触发使能 0: 常规序列外部触发禁止 1: 常规序列外部触发使能
19: 17	ETSRC[2: 0]	常规序列外部触发选择 对于 ADC0 与 ADC1: 000: 定时器 0 CH0 001: 定时器 0 CH1 010: 定时器 0 CH2 011: 保留 100: 定时器 2 TRGO 101: 定时器 3 CH3 110: 中断线 11/定时器 7 TRGO 111: 软件触发 对于 ADC2: 000: 定时器 2 CH0 001: 定时器 1 CH2 010: 定时器 7 CH0 100: 定时器 7 TRGO 101: 保留 110: 保留 111: 软件触发
16:12	保留	必须保持复位值。
11	DAL	数据对齐 0: 最低有效位对齐 1: 最高有效位对齐
10: 9	保留	必须保持复位值。
8	DMA	DMA 请求使能 0: DMA 请求禁止

•		
		1: DMA 请求使能
7: 4	保留	必须保持复位值。
3	RSTCLB	校准复位 软件置位,在校准寄存器初始化后该位硬件清零。 0:校准寄存器初始化结束. 1:校准寄存器初始化开始
2	CLB	ADC 校准 0:校准结束 1:校准开始
1	CTN	连续模式 0: 禁止连续运行模式 1: 使能连续运行模式
0	ADCON	开启 ADC。该位从'0'变成'1'将在稳定时间结束后唤醒 ADC。当该位被置位以后,不改变寄存器的其他位仅仅对该位写'1', 将开启转换。 0: 禁止 ADC 关闭电源 1: 使能 ADC

12.7.4. 采样时间寄存器 0 (ADC_SAMPT0)

地址偏移: 0x0C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保	留			SPT1					SPT16[2:0]	D] SPT15[2:1]		5[2:1]
								rw			rw			rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPT15[0]		SPT14[2:0]		SPT13[2:0]				SPT12[2:0]			SPT11[2:0]		SPT10[2:0]		
rw		rw			rw			rw			rw			rw	

位/位域	名称	说明
31:24	保留	必须保持复位值。
23:21	SPT17[2:0]	参考 SPT10[2:0]的描述
20:18	SPT16[2:0]	参考 SPT10[2:0]的描述
17:15	SPT15[2:0]	参考 SPT10[2:0]的描述
14:12	SPT14[2:0]	参考 SPT10[2:0]的描述
11:9	SPT13[2:0]	参考 SPT10[2:0]的描述

-			0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8:6	SPT12[2:0]	参考 SPT10[2:0]的描述	
5:3	SPT11[2:0]	参考 SPT10[2:0]的描述	
2:0	SPT10[2:0]	通道采样时间	
		000: 通道采样时间为1.5周期	
		001: 通道采样时间为7.5周期	
		010: 通道采样时间为13.5周期	
		011: 通道采样时间为28.5周期	
		100: 通道采样时间为41.5周期	
		101:通道采样时间为55.5周期	
		110: 通道采样时间为71.5周期	
		111: 通道采样时间为 239.5 周期	

12.7.5. 采样时间寄存器 1 (ADC_SAMPT1)

地址偏移: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保	留		SPT9[2:0]			SPT8[2:0]			SPT7[2:0]			SPT6[2:0]	0] SF		5[2:1]
	rw		rw				rw			rw			rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPT5[0]		SPT4[2:0]	2:0] S		SPT3[2:0]	SPT3[2:0]		SPT2[2:0]		SPT1[2:0]			SPT0[2:0]		
rw	rw		•	rw			rw			rw			rw		

位/位域	名称	说明
31:30	保留	必须保持复位值。
29:27	SPT9[2:0]	参考 SPT0[2:0]的描述
26:24	SPT8[2:0]	参考 SPT0[2:0]的描述
23:21	SPT7[2:0]	参考 SPT0[2:0]的描述
20:18	SPT6[2:0]	参考 SPT0[2:0]的描述
17:15	SPT5[2:0]	参考 SPT0[2:0]的描述
14:12	SPT4[2:0]	参考 SPT0[2:0]的描述
11:9	SPT3[2:0]	参考 SPT0[2:0]的描述
8:6	SPT2[2:0]	参考 SPT0[2:0]的描述
5:3	SPT2[2:0]	参考 SPT0[2:0]的描述
2:0	SPT0[2:0]	通道采样时间

000: 通道采样时间为1.5周期

001: 通道采样时间为7.5周期

010: 通道采样时间为13.5周期

011: 通道采样时间为28.5周期

100: 通道采样时间为41.5周期

101: 通道采样时间为55.5周期

110: 通道采样时间为71.5周期

111: 通道采样时间为 239.5 周期

12.7.6. 看门狗高阈值寄存器 (ADC_WDHT)

地址偏移: 0x24

复位值: 0x0000 0FFF

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	韶							WDH	Γ[11:0]					

rw

位/位域	名称	说明
31:12	保留	必须保持复位值。
11:0	WDHT[11:0]	模拟看门狗高侧阈值
		这些位定义了模拟看门狗的高侧阈值。

12.7.7. 看门狗低阈值寄存器 (ADC_WDLT)

地址偏移: 0x28

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

保留	
15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
保留 WDLT[11:0]	

rw

位/位域 名称 说明

31:12 保留 必须保持复位值。

11:0 WDLT[11:0] 模拟看门狗低侧阈值

这些位定义了模拟看门狗的低侧阈值。

12.7.8. 常规序列寄存器 0 (ADC_RSQ0)

地址偏移: 0x2C

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			保	留					RL[3:0]			RSQ1	5[4:1]		
									r	N		rw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RSQ15[0]			RSQ14[4:0]					RSQ13[4:0]	l		RSQ12[4:0]					
rw	rw							rw	•	•		•	rw	•		

位/位域	名称	说明
31:24	保留	必须保持复位值。
23:20	RL[3:0]	常规序列长度 常规通道转换序列中的总的通道数目为 RL[3:0]+1。
19:15	RSQ15[4:0]	参考 RSQ0[4:0]的描述
14:10	RSQ14[4:0]	参考 RSQ0[4:0]的描述
9:5	RSQ13[4:0]	参考 RSQ0[4:0]的描述
4:0	RSQ12[4:0]	参考 RSQ0[4:0]的描述

12.7.9. 常规序列寄存器 1 (ADC_RSQ1)

地址偏移: 0x30

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
保	留 RSQ11[4:0]								RSQ10[4:0]		RSQ9[4:1]					
		rw							rw			rw					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
RSQ9[0]		RSQ8[4:0]						RSQ7[4:0]					RSQ6[4:0]				
rw		rw						rw				rw					

	D Ib	74 HI	
位/位域	名称	说明	
31:30	保留	必须保持复位值。	
29:25	RSQ11[4:0]	参考 RSQ0[4:0]的描述	
24:20	RSQ10[4:0]	参考 RSQ0[4:0]的描述	
19:15	RSQ9[4:0]	参考 RSQ0[4:0]的描述	
14:10	RSQ8[4:0]	参考 RSQ0[4:0]的描述	
9:5	RSQ7[4:0]	参考 RSQ0[4:0]的描述	
4:0	RSQ6[4:0]	参考 RSQ0[4:0]的描述	

12.7.10. 常规序列寄存器 2 (ADC_RSQ2)

地址偏移: 0x34

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
保質	3			RSQ5[4:0]					RSQ4[4:0]				RSQ	3[4:1]			
•	rw								rw			rw					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
RSQ3[0]		RSQ2[4:0]						RSQ1[4:0]					RSQ0[4:0]				
rw/	rw							rw.			nw.						

位/位域	名称	说明
31:30	保留	必须保持复位值。
29:25	RSQ5[4:0]	参考 RSQ0[4:0]的描述
24:20	RSQ4[4:0]	参考 RSQ0[4:0]的描述
19:15	RSQ3[4:0]	参考 RSQ0[4:0]的描述
14:10	RSQ2[4:0]	参考 RSQ0[4:0]的描述
9:5	RSQ1[4:0]	参考 RSQ0[4:0]的描述
4:0	RSQ0[4:0]	通道编号(017)写入这些位来选择常规通道的第 n 个转换的通道

12.7.11. 常规数据寄存器 (ADC_RDATA)

地址偏移: 0x4C 复位值: 0x0000 0000

GD32F403xx	用户手册
GD32F4U3XX	出厂士加

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADC1RD	TR[15:0]							
							ı	r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RDATA	A[15:0]							

r

位/位域	名称	说明
31:16	ADC1RDTR[15:0]	ADC1 常规通道数据
		在同步模式下,这些位包含着 ADC1 的常规通道数据
		这些位只在 ADC0 中使用。
15:0	RDATA[15:0]	常规通道数据
13.0	[[DATA[15.0]	市然思想致始
		这些位包含了常规通道的转换结果,只读。

12.7.12. 过采样控制寄存器 (ADC_OVSAMPCTL)

地址偏移: 0x80

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
															<u>.</u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留	DRES	6[1:0]	保	留	TOVS		OVS	S[3:0]			OVSR[2:0]		保留	OVSEN
		P	w			rw/		r	M			rw.			rw/

位/位域	名称	说明 ·
31:14	保留	必须保持复位值。
13:12	DRES[1: 0]	ADC 分辨率
		00: 12 位
		01: 10 位
		10:8位
		11:6位
11:10	保留	必须保持复位值。
9	TOVS	触发过滤采样
		该位通过软件设置和清除.
		0: 所有的过滤采样连续转换完成一个触发后
		1: 对于过采样通道的每次转换都需要一次触发,触发次数由过采样率
		(OVSR[2:0]) 决定。

注意: 当 ADCON= 0 时软件才允许写该位(确定没有转换正在进行).

8:5 OVSS[3:0] 过滤采样移位

该位通过软件设置和清除.

0000: 不移位

0001: 移1位

0010: 移2位

0011: 移3位

0100: 移4位

0101: 移5位

0110: 移6位

0111: 移7位

1000: 移8位

其他保留

注意:当 ADCON=0 时软件才允许写该位(确定没有转换正在进行).

4:2 OVSR[2:0] 过采样率

这些位定义了过采样率的大小.

000: 2x

001: 4x

010: 8x

011: 16x

100: 32x

101: 64x

110: 128x

111: 256x

注意:当 ADCON=0 时软件才允许写该位(确定没有转换正在进行)

1 保留 必须保持复位值。

0 OVSEN 过滤采样使能

该位通过软件和设置和清除

0: 过滤采样失能

1: 过滤采样使能

注意:当 ADCON=0 时软件才允许写该位(确定没有转换正在进行)

13. 数模转换器 (DAC)

13.1. 简介

数字/模拟转换器可以将 12 位的数字数据转换为外部引脚上的电压输出。数据可以采用 8 位或 12 位模式, 左对齐或右对齐模式。当使能了外部触发, DMA 可被用于更新输入端数字数据。 在输出电压时,可以利用 DAC 输出缓冲区来获得更高的驱动能力。

每个 DAC 的两个通道可以独立或并发工作。

13.2. 主要特征

DAC 的主要特征如下:

- 8 位或 12 位分辨率;
- 数据左对齐或右对齐;
- DMA 功能;
- 同步更新转换;
- 外部事件触发转换;
- 可配置的内部缓冲区;
- 输入参考电压 V_{REFP};
- 噪声波生成(LSFR噪声模式和三角噪声模式);
- DACx 双通道并发模式。

图 13-1. DAC 结构框图为 DAC 的结构框图,表 13-1. DAC 引脚给出了引脚描述。

图 13-1. DAC 结构框图

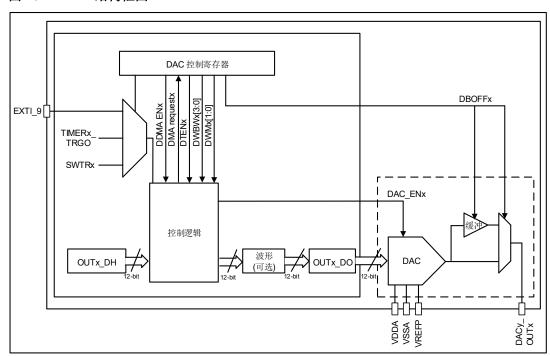


表 13-1. DAC 引脚

名称	描述	信号类型
V_{DDA}	模拟电源	输入,模拟电源
Vssa	模拟电源地	输入,模拟电源地
V _{REFP}	DAC 正参考电压	输入,模拟正参考电压
DACy_OUTx	DAC 模拟输出	模拟输出信号

下表详细列出了 DAC 的触发与输出信号。

表 13-2. DAC 触发与输出

	DA	AC0					
通道	通道 0	通道 1					
DAC 输出 I/O	PA4	PA5					
DAC 输出 BUFFER	_						
功能	•	•					
软件触发功能		•					
EXTI 触发信号	EX	TI_9					
	TIMER1_TRGO						
	TIMER2_TRGO						
TIMER 触发信号	TIMER3_TRGO						
TIMEN MEXICITY	TIMER4_TRGO						
	TIMER	5_TRGO					
	TIMER	6_TRGO					

注意: 在使能 DAC 模块前, GPIO 口(DAC 输出 I/O)应配置为模拟模式。

13.3. 功能描述

13.3.1. DAC 使能

将 DAC_CTL0 寄存器中的 DENx 位置 1,可以给 DAC 模块上电,DAC 子模块完全启动需要等待 twakeup 时间。

13.3.2. DAC 输出缓冲

为了降低输出阻抗,并在没有外部运算放大器的情况下驱动外部负载,每个 DAC 模块内部各集成了一个输出缓冲区。

缺省情况下,输出缓冲区是开启的,可以通过设置 DAC_CTL0 寄存器的 DBOFFx 位来开启或 关闭缓冲区。

13.3.3. DAC 数据配置

对于 12 位的 DAC 保持数据 (OUTx_DH), 可以通过对 DAC_OUTx_R12DH、

DAC_OUTx_L12DH 和 DAC_OUTx_R8DH 中的任意一个寄存器写入数据来配置。当数据被加载到 DAC_OUTx_R8DH 寄存器时,只有 8 位最高有效位是可配置,4 位最低有效位被强制置为 4′b0000。

13.3.4. DAC 触发

DAC 可以通过软件或者外部信号的上升沿触发。外部触发可以通过设置 DAC_CTL0 寄存器中 DTENx 位来使能。触发源可以通过 DAC_CTL0 寄存器中 DTSELx 位来进行选择,如*表13-3. DAC 外部触发*所示。

表 13-3. DAC 外部触发

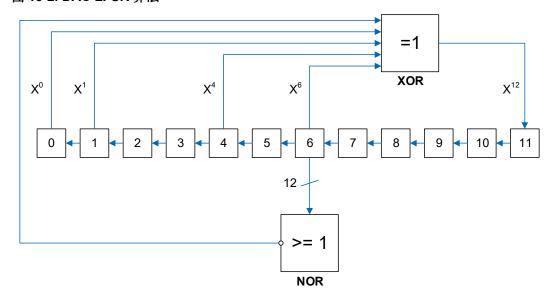
DTSELx[2:0]	触发源	触发类型
3b'000	TIMER5_TRGO	
3b'001	TIMER2_TRGO	
3b'010	TIMER6_TRGO	
3b'011	TIMER4_TRGO	硬件触发
3b'100	TIMER1_TRGO	
3b'101	TIMER3_TRGO	
3b'110	EXTI_9	
3b'111	SWTR	软件触发

TIMERx_TRGO 信号是由定时器生成的,而软件触发是通过设置 DAC_SWT 寄存器的 SWTRx 位生成的。

13.3.5. DAC 转换

如果使能了外部触发(通过设置 DAC_CTL0 寄存器的 DTENx 位),当已经选择的触发事件发生,DAC 保持数据(OUTx_DH)会被转移到 DAC 数据输出寄存器(DAC_OUTx_DO)。而在外部触发未使能的情况下,DAC 保持数据(OUTx_DH)会被自动转移到 DAC 数据输出寄存器(DAC_OUTx_DO)。

当 DAC 保持数据(OUTx_DH)加载到 DAC_OUTx_DO 寄存器时,经过 tsettling 时间之后,模拟输出变得有效,tsettling 的值与电源电压和模拟输出负载有关。


13.3.6. DAC 噪声波

有两种方式可以将噪声波加载到 DAC 输出数据: LFSR 噪声波和三角波。噪声波模式可以通过 DAC_CTL0 寄存器的 DWMx 位来进行选择。噪声的幅值可以通过配置 DAC_CTL0 寄存器的 DAC 噪声波位宽(DWBWx)位来进行设置。

LFSR 噪声模式:在 DAC 控制逻辑中有一个线性反馈移位寄存器(LFSR)。在此模式下, LFSR 的值与 OUTx_DH 值相加后,被写入到 DAC 数据输出寄存器(DAC_OUTx_DO)。当配置的 DAC 噪声波位宽小于 12 时, LFSR 的值等于 LFSR 寄存器最低的 DWBWx 位,高位被屏蔽。

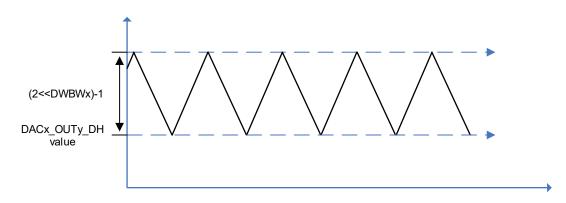


图 13-2. DAC LFSR 算法

三角噪声模式: 三角波幅值与 OUTx_DH 值相加后,被写入到 DAC 数据输出寄存器 (DAC_OUTx_DO)。三角波幅值的最小值为 0,最大值为(2 << DWBWx) - 1。

图 13-3. DAC 三角噪声模式生成的波形

13.3.7. DAC 输出电压

DAC 引脚上的模拟输出电压取决于下面的等式:

$$V_{DAC\ OUT} = V_{REFP} *OUTx_DO/4096$$
 (13-1)

数字输入被线性地转换成模拟输出电压,输出范围为 0 到 VREFP。

13.3.8. DMA 请求

在外部触发使能的情况下,通过设置 DAC_CTL0 寄存器的 DDMAENx 位来使能 DMA 请求。 当有外部硬件触发的时候(不是软件触发),则产生一个 DMA 请求。

13.3.9. DAC 并发转换

当 DAC 的两个通道同时工作时,为了在特定应用中最大限度利用总线带宽,DAC 的两个通道可以被配置为并发模式。在并发模式中,DAC 的 OUTx_DH 和 DAC_OUTx_DO 寄存器值将同时被更新。

有 3 个并发寄存器可用于加载 OUTx_DH 的值,分别是: DACC_R8DH、DACC_R12DH 和 DACC_L12DH 寄存器,配置其中的任意一个寄存器都可实现同时驱动 DAC 的两个通道。

当使能了外部触发时,DAC 两个通道的 DTENx 位都需要置 1,需要配置 DTSEL0/1 相同来保证同时触发。

当使能了 DMA 功能时,DAC 任一通道的 DDMAENx 置位即可。

噪声模式和噪声位宽可以根据使用情况配置为相同或不同。

13.4. DAC 寄存器

DAC0 基地址: 0x4000 7400

13.4.1. DACx 控制寄存器 (DAC_CTL0)

地址偏移: 0x00

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留		DDMA		DWDV	1412.01		DWM	4[4.0]		DTCE 4[2:0]		DTEN1	DBOEE1	DEN1
	休田		EN1		DWBV	V1[3:0]		DVVIVI	1[1:0]		DTSEL1[2:0]		DIENT	DBOFF1	DENT
			rw		r	w		n	N		rw		rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	/ti tkn		DDMA		DWDV	10.6101		DWM	014.01		DTCEL 0[2:0]		DTENO	DBOFF0	DEN0
	保留		EN0		DVVBV	V0[3:0]		DWM	0[1:0]		DTSEL0[2:0]		DTEN0	DBOFFU	DENU
			rw		r	W		n	N		rw		rw	rw	rw

位/位域	名称	描述
31:29	保留	必须保持复位值
28	DDMAEN1	DACx_OUT1 DMA 使能 0: DACx_OUT1 DMA 模式禁能 1: DACx_OUT1 DMA模式使能
27:24	DWBW1[3:0]	DACx_OUT1 噪声波位宽 这些位指定了 DACx_OUT1 的噪声波信号的位宽。LFSR 噪声模式下,这些位表示不屏蔽 LFSR 的位[n-1, 0]; 三角噪声模式下,这些位表示三角波幅值为(2<<(n-1))-1。其中,n 为噪声波位宽。 0000: 波形信号的位宽为 1 0001: 波形信号的位宽为 2 0010: 波形信号的位宽为 3 0011: 波形信号的位宽为 4 0100: 波形信号的位宽为 5 0101: 波形信号的位宽为 6 0110: 波形信号的位宽为 7 0111: 波形信号的位宽为 8 1000: 波形信号的位宽为 9 1001: 波形信号的位宽为 10 1010: 波形信号的位宽为 11 ≥1011: 波形信号的位宽为 11
23:22	DWM1[1:0]	DACx_OUT1 噪声波模式

这些位指定了在 DACx_OUT1 外部触发使能(DTEN1=1)的情况下,DACx_OUT1 的

digabevice		OD321 403XX /11/ 1 /1/1
		噪声波模式的选择。 00: 波形生成禁能 01: LFSR 噪声模式 1x: 三角噪声模式
21:19	DTSEL1[2:0]	DACx_OUT1 触发选择 这些位仅在 DTEN=1 并选择用于触发 DAC 的外部事件时使用。 000: TIMER5 TRGO 001: TIMER2 TRGO 010: TIMER6 TRGO 011: TIMER4 TRGO 100: TIMER1 TRGO 101: TIMER3 TRGO 110: 外部中断线9 111: 软件触发
18	DTEN1	DACx_OUT1 触发使能 0: DACx_OUT1 触发禁能 1: DACx_OUT1触发使能
17	DBOFF1	DACx_OUT1输出缓冲区关闭 0: DACx_OUT1输出缓冲区打开,以降低输出阻抗,提高驱动能力 1: DACx_OUT1输出缓冲区关闭
16	DEN1	DACx_OUT1 使能 0: DACx_OUT1 禁能 1: DACx_OUT1使能
15:13	保留	必须保持复位值
12	DDMAEN0	DACx_OUT0 DMA 使能 0: DACx_OUT0 DMA 模式禁能 1: DACx_OUT0 DMA模式使能
11:8	DWBW0[3:0]	DACx_OUT0 噪声波位宽 这些位指定了 DACx_OUT0 的噪声波信号的位宽。LFSR 噪声模式下,这些位表示 不屏蔽 LFSR 的位[n-1, 0]; 三角噪声模式下,这些位表示三角波幅值为(2<<(n-1))- 1。其中,n 为噪声波位宽。 0000: 波形信号的位宽为 1 0001: 波形信号的位宽为 2 0010: 波形信号的位宽为 3 0011: 波形信号的位宽为 4 0100: 波形信号的位宽为 5 0101: 波形信号的位宽为 6 0110: 波形信号的位宽为 7 0111: 波形信号的位宽为 8 1000: 波形信号的位宽为 9

GigaDevice		GD32F403XX 用户手册
		1001: 波形信号的位宽为 10 1010: 波形信号的位宽为 11
		≥1011: 波形信号的位宽为12
7:6	DWM0[1:0]	DACx_OUT0 噪声波模式 这些位指定了在 DACx_OUT0 外部触发使能(DTEN0=1)的情况下,DACx_OUT0 的 噪声波模式的选择。 00: 波形生成禁能 01: LFSR 噪声模式 1x: 三角噪声模式
5:3	DTSEL0[2:0]	DACx_OUT0 触发选择 这些位仅在 DTEN=1 并选择用于触发 DAC 的外部事件时使用。 000: TIMER5 TRGO 001: TIMER2 TRGO 010: TIMER6 TRGO 011: 保留 100: 保留 101: TIMER3 TRGO 110: 外部中断线9 111: 软件触发
2	DTEN0	DACx_OUT0 触发使能 0: DACx_OUT0 触发禁能 1: DACx_OUT0触发使能
1	DBOFF0	DACx_OUT0输出缓冲区关闭 0: DACx_OUT0输出缓冲区打开,以降低输出阻抗,提高驱动能力 1: DACx_OUT0输出缓冲区关闭
0	DEN0	DACx_OUT0 使能 0: DACx_OUT0 禁能 1: DACx_OUT0使能

13.4.2. DACx 软件触发寄存器 (DAC_SWT)

地址偏移: 0x04

复位值: 0x0000 0000

保留	
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
保留 SWTR1 S	SWTR0

位/位域	名称	描述	_
31:2	保留	必须保持复位值	
1	SWTR1	DACx_OUT1 软件触发,由硬件清除。 0: 软件触发禁能 1: 软件触发使能	
0	SWTR0	DACx_OUT0 软件触发,由硬件清除。 0: 软件触发禁能 1: 软件触发使能	

13.4.3. DACx_OUT0 12 位右对齐数据保持寄存器 (DAC_OUT0_R12DH)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保旨	H H		OUT0_DH[11:0]											

rw

位/位域	名称	描述
31:12	保留	必须保持复位值
11:0	OUT0_DH[11:0]	DACx_OUT0 12 位右对齐数据 这些位指定了将由 DACx OUT0 转换的数据。

13.4.4. DACx_OUT0 12 位左对齐数据保持寄存器 (DAC_OUT0_L12DH)

地址偏移: 0x0C

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	31 30 29 28 27 26 25 24 23 22 21 20													17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OUT0_DH[11:0]											保留				
	OUT0_DH[11:0]												保	留	

rw

位/位域 名称	描述
---------	----

31:16	保留	必须保持复位值	-
15:4	OUT0_DH[11:0]	DACx_OUT0 12 位左对齐数据 这些位指定了将由 DACx_OUT0 转换的数据。	
3:0	保留	必须保持复位值	

13.4.5. DACx_OUT0 8 位右对齐数据保持寄存器 (DAC_OUT0_R8DH)

地址偏移: 0x10

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

保留	
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
保留 OUTO_DH[7:0]	

rw

位/位域	名称	描述
31:8	保留	必须保持复位值
7:0	OUT0_DH[7:0]	DACx_OUT0 8 位右对齐数据
		这些位指定了将由 DACx OUTO 转换的数据的最高 8 位有效位。

13.4.6. DACx_OUT1 12 位右对齐数据保持寄存器 (DAC_OUT1_R12DH)

地址偏移: 0x14

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

保留												
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0											
保留 OUT1_DH[11:0]	OUT1_DH[11:0]											

 位/位域
 名称
 描述

 31:12
 保留
 必须保持复位值

 11:0
 OUT1_DH[11:0]
 DACx_OUT1 12 位右对齐数据

 这些位指定了将由 DACx_OUT1 转换的数据。

13.4.7. DACx_OUT1 12 位左对齐数据保持寄存器 (DAC_OUT1_L12DH)

地址偏移: 0x18

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	15 14 13 12 11 10 9 8 7 6 5 4											3	2	1	0
	OUT1_DH[11:0]											保	:留		

rw

位/位域	名称	描述
31:16	保留	必须保持复位值
15:4	OUT1_DH[11:0]	DACx_OUT1 12 位左对齐数据 这些位指定了将由 DACx_OUT1 转换的数据。
3:0	保留	必须保持复位值

13.4.8. DACx_OUT1 8 位右对齐数据保持寄存器 (DAC_OUT1_R8DH)

地址偏移: 0x1C

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

保留 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
									保	留									
	_																		
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
保留 OUT1_DH[7:0]		保留							OUT1_DH[7:0]										

rw

位/位域	名称	描述 描述
31:8	保留	必须保持复位值
7:0	OUT1_DH[7:0]	DACx_OUT1 8 位右对齐数据
		这些位指定了将由 DACx OUT1 转换的数据的 8 位最高有效位。

13.4.9. DACx 并发模式 12 位右对齐数据保持寄存器 (DACC_R12DH)

地址偏移: 0x20

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	留							OUT1_E	DH[11:0]					
									n	W					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留							OUT0_E	DH[11:0]					

rw

位/位域	名称	描述
31:28	保留	必须保持复位值
27:16	OUT1_DH[11:0]	DACx_OUT1 12 位右对齐数据 这些位指定了将由 DACx_OUT1 转换的数据。
15:12	保留	必须保持复位值
11:0	OUT0_DH[11:0]	DACx_OUT0 12 位右对齐数据 这些位指定了将中 DACx_OUT0 转换的数据。

13.4.10. DACx 并发模式 12 位左对齐数据保持寄存器 (DACC_L12DH)

地址偏移: 0x24

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OUT1_DH[11:0]											保留				
					r	w									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OUT0_DH[11:0]											保	留			

rw

位/位域	名称	描述
31:20	OUT1_DH[11:0]	DACx_OUT1 12 位左对齐数据 这些位指定了将由 DACx_OUT1 转换的数据。
19:16	保留	必须保持复位值
15:4	OUT0_DH[11:0]	DACx_OUT0 12 位左对齐数据 这些位指定了将由 DACx_OUT0 转换的数据。
3:0	保留	必须保持复位值

13.4.11. DACx 并发模式 8 位右对齐数据保持寄存器 (DACC_R8DH)

地址偏移: 0x28

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

rw

保留 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	;	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									保	留							
OUTA DUITA		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OUT1_DH [7:0] OUT0_DH [7:0]		OUT1_DH [7:0]											OUT0_I	OH [7:0]			

rv

位/位域	名称	描述
31:16	保留	必须保持复位值
15:8	OUT1_DH[7:0]	DACx_OUT1 8 位右对齐数据 这些位指定了将由 DACx_OUT1 转换的数据的 8 位最高有效位。
7:0	OUT0_DH[7:0]	DACx_OUT0 8 位右对齐数据 这些位指定了将由 DACx_OUT0 转换的数据的 8 位最高有效位。

13.4.12. DACx_OUT0 数据输出寄存器 (DAC_OUT0_DO)

地址偏移: 0x2C

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留							OUT0_E	O [11:0]					

 位/位域
 名称
 描述

 31:12
 保留
 必须保持复位值

 11:0
 OUT0_DO [11:0]
 DACx_OUT0 数据输出。
这些位为只读类型,存储由 DACx_OUT0 转换的数据。

13.4.13. DACx_OUT1 数据输出寄存器 (DAC_OUT1_DO)

地址偏移: 0x30

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
<u> </u>															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留							OUT1_E	O [11:0]					

 位/位域
 名称
 描述

 31:12
 保留
 必须保持复位值

 11:0
 OUT1_DO [11:0]
 DACx_OUT1 数据输出。
这些位为只读类型,存储由 DACx_OUT1 转换的数据。

14. 看门狗定时器(WDGT)

看门狗定时器(WDGT)是一个硬件计时电路,用来监测由软件故障导致的系统故障。片上有两个看门狗定时器外设,独立看门狗定时器(FWDGT)和窗口看门狗定时器(WWDGT)。它们使用灵活,并提供了很高的安全水平和精准的时间控制。两个看门狗定时器都是用来解决软件故障问题的。

看门狗定时器在内部计数值达到预设门限的时候,会触发一个复位。当处理器工作在调试模式的时候看门狗定时器定时计数器可以停止计数。

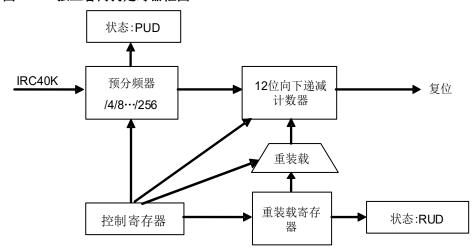
14.1. 独立看门狗定时器(FWDGT)

14.1.1. 简介

独立看门狗定时器(FWDGT)有独立的时钟源(IRC40K)。即使主时钟失效了,FWDGT依然能保持正常工作状态,适用于需要独立环境且对计时精度要求不高的场合。

当内部向下计数器的计数值达到**0**,独立看门狗会产生一个系统复位。使能独立看门狗的寄存器写保护功能可以避免寄存器的值被意外的配置篡改。

14.1.2. 主要特征


- 自由运行的12位向下计数器;
- 使能看门狗定时器,当向下计数器的值达到0时产生系统复位;
- 独立时钟源,独立看门狗定时器在主时钟故障(例如待机和深度睡眠模式下)时仍能工作;
- 独立看门狗定时器硬件控制位,用来控制是否在上电时自动启动独立看门狗定时器;
- 可以配置独立看门狗定时器在调试模式下选择停止还是继续工作

14.1.3. 功能说明

独立看门狗定时器带有一个8级预分频器和一个12位的向下递减计数器。图14-1.独立看门狗定时器格图为独立看门狗定时器的功能模块。

图 14-1. 独立看门狗定时器框图

向控制寄存器(FWDGT_CTL)中写0xCCCC可以开启独立看门狗定时器,计数器开始向下计数。当计数器记到0x000,产生一次系统复位。

在任何时候向FWDGT_CTL中写0xAAAA都可以重装载计数器,重装载值来源于重装载寄存器(FWDGT_RLD)。软件可以在计数器计数值达到0x000之前可以通过重装载计数器来阻止看门狗定时器产生系统复位。

如果在选项字节中打开了"硬件看门狗定时器"功能,那么在上电的时候看门狗定时器就被自动打开。为了避免系统复位,软件应该在计数器达到0x000之前重装载计数器。

预分频寄存器(FWDGT_PSC)和FWDGT_RLD寄存器都有写保护功能。在写数据到这些寄存器之前,需要写0x5555到FWDGT_CTL中。写其他任何值到FWDGT_CTL中将会再次启动对这些寄存器的写保护。当FWDGT_PSC或者FWDGT_RLD更新时,FWDGT_STAT寄存器的相应的状态位会被置1。

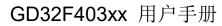

如果DBG控制寄存器0(DBG_CTL0)中的FWDGT_HOLD位被清0,即使Cortex®-M4内核停止(调试模式下)独立看门狗定时器依然工作。如果FWDGT_HOLD位置1,独立看门狗定时器将在调试模式下停止工作。

表 14-1. 独立看门狗定时器在 40kHz (IRC40K) 时的最小/最大超时周期

预分频系数	PSC[2:0] 位	最小超时(ms) RLD[11:0]=0x000	最大超时(ms) RLD[11:0]=0xFFF
1 / 4	000	0.025	409.525
1/8	001	0.025	819.025
1 / 16	010	0.025	1638.025
1 / 32	011	0.025	3276.025
1 / 64	100	0.025	6552.025
1 / 128	101	0.025	13104.025
1 / 256	110 or 111	0.025	26208.025

通过校准IRC40K可以使独立看门狗定时器超时更加精确。

注意: 当执行完喂狗reload操作之后,如需要立即进入deepsleep / standby模式时,必须通过

软件设置,在reload命令及deepsleep / standby模式命令中间插入(3个以上)IRC40K时钟间隔。

14.1.4. FWDGT 寄存器

FWDGT 基地址: 0x4000 3000

控制寄存器(FWDGT_CTL)

地址偏移: 0x00

复位值: 0x0000 0000

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CMD	[15:0]							

W

位/位域	名称	说明
31:16	保留	必须保持复位值。
15:0	CMD[15:0]	只可写,写入不同的值来产生不同的功能。
		0x5555: 关闭FWDGT_PSC和FWDGT_RLD的写保护
		0xCCCC: 开启独立看门狗定时器定时计数器。计数减到0时产生复位
		OxAAAA· 重装载计数器

预分频寄存器(FWDGT_PSC)

地址偏移: 0x04

复位值: 0x0000 0000

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保留								PSC[2:0]	

rw

位/位域	名称	说明
31:3	保留	必须保持复位值。
2:0	PSC[2:0]	独立看门狗定时器计时预分频选择。写这些位之前要通过向FWDGT_CTL寄存器写 0x5555去除写保护。在改写这个寄存器的过程中,FWDGT_STAT寄存器的PUD位被 置1,此时读取此寄存器的值都是无效的。 000: 1/4 001: 1/8

010: 1/16 011: 1/32 100: 1/64 101: 1/128

110: 1 / 256111: 1 / 256

如果应用需要使用几个预分频系数,改变预分频值之前必须等到PUD位被清0。更新预分频寄存器中的值后,在代码持续执行之前不必等待PUD值被清零(在进入省电模式前需要等待PUD值清零)。

重装载寄存器(FWDGT_RLD)

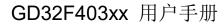
地址偏移: 0x08

复位值: 0x0000 0FFF

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留							RLD	[11:0]					

rv


位/位域	名称	说明
31:12	保留	必须保持复位值。
11:0	RLD[11:0]	独立看门狗定时器定时计数器重装载值。向FWDGT_CTL寄存器写入0xAAAA的时候,这个值会被更新到看门狗定时器计数器中。这些位有写保护功能。在写这些位之前需向FWDGT_CTL寄存器中写0x5555。在改写这个寄存器的过程中,FWDGT_STAT寄存器的RUD位被置1,从此寄存器中读取的任何值都是无效的。如果应用需要使用几个重装载值,改变重装载值之前必须等到RUD位被清0。更新了重装载寄存器的值后,在代码持续执行之前不必等待RUD值被清零在进入省电模式
		前需要等待PUD值清零)。

状态寄存器(FWDGT_STAT)

地址偏移: 0x0C 复位值: 0x0000 0000

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保	:留							RUD	PUD

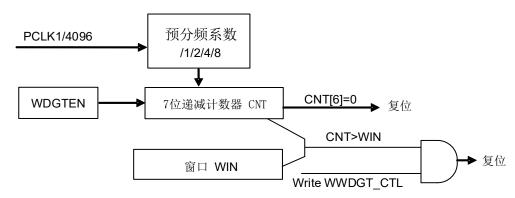
位/位域 说明 名称 31:2 保留 必须保持复位值。 RUD 独立看门狗定时器计数器重装载值更新。 1 FWDGT_RLD寄存器写操作时,该位被置1,此时读取FWDGT_RLD寄存器的任何值 都是无效的。在FWDGT_RLD寄存器更新后,该位由硬件清零。 PUD 0 独立看门狗定时器预分频值更新。 FWDGT_PSC寄存器写操作时,该位被置1,此时读取FWDGT_PSC寄存器的任何值 都是无效的。在FWDGT_PSC寄存器更新后,该位由硬件清零。

14.2. 窗口看门狗定时器(WWDGT)

14.2.1. 简介

窗口看门狗定时器(WWDGT)用来监测由软件故障导致的系统故障。窗口看门狗定时器开启后,7位向下递减计数器值逐渐减小。计数值达到0x3F时会产生系统复位(CNT[6]位被清0)。在计数器计数值达到窗口寄存器值之前,计数器的更新也会产生系统复位。因此软件需要在给定的区间内更新计数器。窗口看门狗定时器在计数器计数值达到0x40,会产生一个提前唤醒标志,如果使能中断将会产生提前唤醒中断。

窗口看门狗定时器时钟是由APB1时钟预分频而来。窗口看门狗定时器适用于需要精确计时的场合。


14.2.2. 主要特征

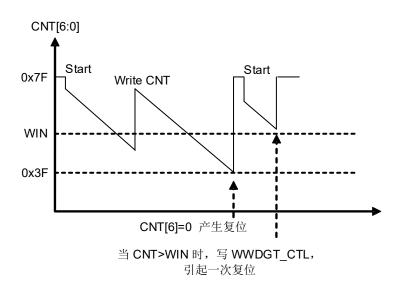
- 可编程的7位自由运行向下递减计数器;
- 当窗口看门狗使能后,有以下两种情况会产生复位:
 - 当计数器达到0x3F时产生复位;
 - 当计数器的值大于窗口寄存器的值时,更新计数器会产生复位;
- 提前唤醒中断(EWI):看门狗定时器打开,中断使能,计数值达到0x40时会产生中断;
- 可以配置窗口看门狗定时器在调试模式下选择停止还是继续工作。

14.2.3. 功能说明

如果窗口看门狗定时器使能(将WWDGT_CTL寄存器的WDGTEN位置1),计数值达到0x3F的时候产生系统复位(CNT[6]位被清0)或是在计数值达到窗口寄存器值之前,更新计数器也会产生系统复位。

图 14-2. 窗口看门狗定时器框图

上电复位之后窗口看门狗定时器总是关闭的。软件可以向WWDGT_CTL的WDGTEN写1开启窗口看门狗定时器。窗口看门狗定时器打开后,计数器始终递减计数,计数器配置的值应该大于0x3F,也就是说CNT[6]位应该被置1。CNT[5:0]决定了两次重装载之间的最大间隔时间。计数器的递减速度取决于APB1时钟和预分频器(WWDGT CFG寄存器的PSC[1:0]位)。



配置寄存器(WWDGT_CFG)中的WIN[6:0]位用来设定窗口值。当计数器的值小于窗口值,且大于0x3F的时候,重装载向下计数器可以避免复位,否则在其他时候进行重加载就会引起复位。

对WWDGT_CFG寄存器的EWIE位置1可以使能提前唤醒中断(EWI),当计数值达到0x40的时候该中断产生。同时可以用相应的中断服务程序(ISR)来触发特定的行为(例如通信或数据记录),来分析软件故障的原因以及在器件复位的时候挽救重要数据。此外,在ISR中软件可以重装载计数器来管理软件系统检查等。在这种情况下,窗口看门狗定时器将永远不会复位但是可以用于其他地方。

通过将WWDGT STAT寄存器的EWIF位写0可以清除EWI中断。

图 14-3. 窗口看门狗定时器时序图

窗口看门狗定时器超时的计算公式如下:

$$t_{WWDGT} = t_{PCLK1} \times 4096 \times 2^{PSC} \times (CNT[5:0]+1)$$
 (ms) (14-1)

其中:

twwdgr: 窗口看门狗定时器的超时时间 tpclk1: APB1以ms为单位的时钟周期

twwpgr的最大值和最小值请参考表14-2. 在84MHz(fPCLK1)时的最大/最小超时值。

表 14-2. 在 84MHz(f_{PCLK1})时的最大/最小超时值

预分频系数	DSC[4:0]	最小超时	最大超时
贝刀贝尔致	PSC[1:0]	CNT[6:0] =0x40	CNT[6:0]=0x7F
1 / 1	00	48.76 μs	3.12 ms
1/2	01	97.52 μs	6.24 ms
1 / 4	10	195.04 µs	12.48 ms
1 / 8	11	390.08µs	24.96 ms

如果MCU调试模块中的WWDGT_HOLD位被清0,即使Cortex®-M4内核停止工作(调试模式下),窗口看门狗定时器也可以继续工作。当WWDGT_HOLD位被置1时,窗口看门狗定时器在调试模式下停止。

14.2.4. WWDGT 寄存器

WWDGT 基地址: 0x4000 2C00

控制寄存器(WWDGT_CTL)

地址偏移: 0x00

复位值: 0x0000 007F

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留											CNT[6:0]			
·								rs				rw			

 位/位域
 名称
 说明

 31:8
 保留
 必须保持复位值。

 7
 WDGTEN
 开启窗口看门狗定时器,硬件复位的时候清0,写0无效。

 0: 关闭窗口看门狗定时器
 1: 开启窗口看门狗定时器

6:0 CNT[6:0] 看门狗定时器计数器的值。当计数值从0x40降到0x3F时,产生看门狗定时器复位。 当计数器值高于窗口值的时候,写计数器可以产生看门狗定时器系统复位。

配置寄存器(WWDGT_CFG)

地址偏移: 0x04

复位值: 0x0000 007F

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	:留			EWIE	PSC	[1:0]				WIN[6:0]			
						rs	n	w				rw			

位/位域	名称	说明
31:10	保留	必须保持复位值。
9	EWIE	提前唤醒中断使能。如果该位被置1,计数值达到0x40时触发中断。该位由硬件复位 清0,或通过RCU模块的WWDGTRST位进行软件复位。写0没有任何作用。
8:7	PSC[1:0]	预分频器,看门狗定时器计数器的时间基准。

6:0

00: PCLK1/4096/1

01: PCLK1/4096/2

10: PCLK1 / 4096 / 411: PCLK1 / 4096 / 8

窗口值,当看门狗定时器计数器的值大于窗口值时,写看门狗定时器计数器

(WWDGT_CTL的CNT位) 会产生系统复位。

状态寄存器(WWDGT_STAT)

地址偏移: 0x08

WIN[6:0]

复位值: 0x0000 0000

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保留								EWIF

rw

位/位域	名称	说明
31:1	保留	必须保持复位值。
0	EWIF	提前唤醒中断标志位。当计数值达到0x40,即使中断没有被使能(WWDGT_CFG中
		的EWIE位为0)该位也会被硬件置1。这个bit可以通过写0清零,写1无效。

15. 实时时钟(RTC)

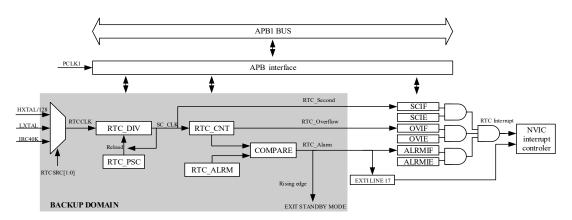
15.1. 简介

实时时钟 RTC 通常用于日历时钟。RTC 电路分属于两个电源域。一部分位于备份域中,该部分包括一个 32 位的累加计数器、一个闹钟、一个预分频器、一个分频器以及 RTC 时钟配置寄存器。这表明系统复位或者从待机模式唤醒时,RTC 的设置和时间都保持不变。另一部分位于 VDD 电源域中,该部分只包括 APB 接口以及一组控制寄存器。在本章接下来的部分,将详细介绍 RTC 的功能。

15.2. 主要特性

- 32位可编程计数器,用于计数运行时间 可编程的预分频器:分频系数最高可达 2²⁰
- 独立时钟域:
 - A) PCLK1 时钟域
 - B) RTC 时钟域 (该时钟必须比 PCLK1 时钟至少慢 4 倍)
- RTC 时钟源:
 - A) HXTAL 时钟除以 128
 - B) LXTAL 振荡电路时钟
 - C) IRC40K 振荡电路时钟
- 可屏蔽的中断源:
 - A) 闹钟中断
 - B) 秒中断
 - C) 溢出中断

15.3. 功能描述


RTC 电路包含两个主要部分,位于 PCLK1 时钟域的 APB 接口和位于 RTC 时钟域的 RTC 内核。

APB接口与 APB1 总线相连,包含一组寄存器,通过 APB1 总线可以对其进行读或写。

RTC 内核包含两个主要模块。一个是 RTC 预分频模块,用来产生 RTC 时间基准 SC_CLK,RTC 预分频模块包含一个 20 位可编程分频器 (RTC 预分频器)。该分频器可以通过对 RTC 时钟源分频产生 SC_CLK。如果对 RTC_INTEN 寄存器中秒中断位进行使能,RTC 会在每个 SC_CLK 上升沿产生一个秒中断。另外一个模块是一个 32 位可编程计数器,其数值可以被初始化位当前系统时间。如果对 RTC_INTEN 寄存器的闹钟中断位进行使能,RTC 会在系统时间等于闹钟时间(存储于 RTC_ALRMH/L 寄存器)时产生一个闹钟中断。

图 15-1. RTC 框图

15.3.1. RTC 复位

APB 接口和 RTC_INTEN 寄存器会随着系统复位进行复位。RTC 内核(预分频器、分频器、 计数器以及闹钟)只会随备份域复位进行复位。

通过下面的步骤,可以在复位后访问备份域寄存器以及 RTC 寄存器:

- 1. 通过对 RCU_APB1EN 寄存器中的 PMUEN 和 BKPEN 位进行置位, 使能电源以及备份接口时钟。
- 2. 通过对 PMU_CTL 中的 BKPWEN 位进行置位,使能对备份域寄存器和 RTC 的访问。

15.3.2. RTC 读取

APB 接口和 RTC 内核分属于两个不同电源域。

在 RTC 内核中,只有计数器和分频器寄存器为可读寄存器。这两个寄存器的值以及 RTC 标志会在每个 RTC 时钟的上升沿进行内部更新,并与 APB1 时钟进行重新同步。

当 APB 接口从禁用状态使能后,建议不要立即进行读操作,因为这些寄存器的首次内部更新可能尚未完成。这表明,在系统复位、电源复位、从待机/深度睡眠模式下唤醒时,APB 接口是被禁用的,但是 RTC 内核仍然保持运行。在这类情况下,正确的读操作应该先将 RTC_CTL 寄存器的 RSYNF 清零并等待其被硬件置位。WFI 和 WFE 指令对于 RTC 的 APB 接口没有影响。

15.3.3. RTC 配置

RTC 内核中的 RTC_PSC、RTC_CNT 和 RTC_ALRM 寄存器都是可写的。只有在外设进入配置模式后,这些寄存器的值才能进行设置。通过查询 RTC_CTL 寄存器的 CMF 位,可以检测配置模式的状态。只有在外设退出配置模式后,之前对这些寄存器的写操作才能生效,且至少需要三个 RTCCLK 周期才能完成。当写操作完成后,RTC_CTL 寄存器中的 LWOFF 位的值变为'1'。下一个写操作必须等待上次写操作完成之后才能进行。

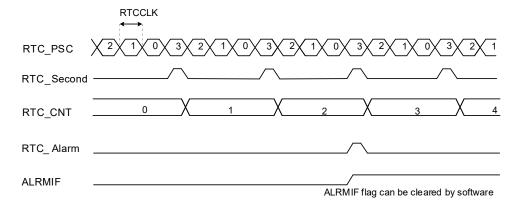
配置过程如下:

1. 等待 RTC CTL 寄存器中的 LWOFF 位的值变为 1;

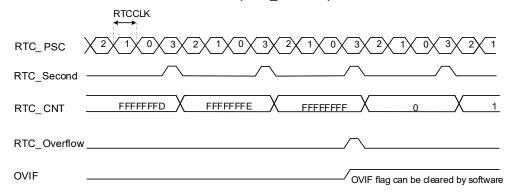
- 2. 通过将 RTC_CTL 寄存器中的 CMF 置位来进入配置模式;
- 3. 对 RTC 寄存器进行写操作;
- 4. 通过将 RTC CTL 寄存器中的 CMF 清零来退出配置模式;
- 5. 等待 RTC_CTL 寄存器中的 LWOFF 位的值变为 1。

15.3.4. RTC 标志位

RTC 秒中断标志(SCIF)在 RTC 计数器更新之前的每个 RTCCLK 周期置位。


RTC 闹钟中断标志(ALRMIF)在计数器达到存储于闹钟寄存器中的 RTC 闹钟值加 1 的前一个 RTCCLK 周期置位。

RTC 溢出中断标志(OVIF)在计数器值达到 0x00 的前一个 RTCCLK 周期置位。


RTC 闹钟的写操作需要按照下列任一序列进行和秒中断标志保持同步:

- 启用RTC闹钟中断,在RTC内部中断服务程序内更新RTC闹钟寄存器及/或RTC计数器寄存器的内容。
- RTC闹钟寄存器及/或RTC计数器寄存器的内容必须等待RTC控制寄存器中SCIF置位后才能更新。

图 15-2. RTC 秒信号及闹钟信号的波形 (RTC_PSC = 3,RTC_ ALRM = 2)

图 15-3. RTC 秒信号及溢出信号的波形(RTC_PSC = 3)

15.4. RTC 寄存器

RTC 基地址: 0x4000 2800

15.4.1. RTC 中断使能寄存器 (RTC_INTEN)

偏移地址: 0x00 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								
															•
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保留							OVIE	ALRMIE	SCIE
													rw	rw	rw

位/位域	名称	描述
31:3	保留	必须保持复位值。
2	OVIE	溢出中断使能
		0: 禁用溢出中断
		1: 使能溢出中断
1	ALRMIE	闹钟中断使能
		0: 禁用闹钟中断
		1: 使能闹钟中断
0	SCIE	秒中断使能
		0: 禁用秒中断
		1: 使能秒中断

15.4.2. RTC 控制寄存器 (RTC_CTL)

偏移地址: 0x04 复位值: 0x0020

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保	留					LWOFF	CMF	RSYNF	OVIF	ALRMIF	SCIF
										r	rw	rc w0	rc w0	rc w0	rc w0

位/位域 名称 描述

,		
31:6	保留	必须保持复位值。
5	LWOFF	上次对 RTC 寄存器写操作标志 0: 上次对 RTC 寄存器写操作没有完成 1: 上次对 RTC 寄存器写操作已经完成
4	CMF	配置模式标志 0: 退出配置模式 1: 进入配置模式
3	RSYNF	寄存器同步标志 0: 寄存器没有与 APB1 时钟同步 1: 寄存器已经与 APB1 时钟同步
2	OVIF	溢出中断标志 0: 没有检测到溢出事件 1: 检测到溢出事件。 当 RTC_INTEN 寄存器的 OVIE 位被置 1,中断发生。
1	ALRMIF	闹钟中断标志 0: 没有检测到闹钟事件 1: 检测到闹钟事件。 当 RTC_INTEN 寄存器的 ALRMIE 位被置 1,RTC 全局中断发生。并且当 EXTI17 被使能中断模式,发生 RTC 闹钟中断。
0	SCIF	秒中断标志 0: 没有检测到秒事件 1: 检测到秒事件。当 RTC_INTEN 寄存器的 SCIE 位被置 1,中断发生。 当分频器重加载 RTC_PSC 值时,硬件将该位置 1,从而累加 RTC 计数器。

15.4.3. RTC 预分频寄存器高位 (RTC_PSCH)

偏移地址: 0x08 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					保	留							PSC[19:16]	

位/位域	名称	描述
31:4	保留	必须保持复位值。
3:0	PSC[19:16]	RTC 预分频器高位值

RTC 预分频寄存器低位 (RTC_PSCL) 15.4.4.

偏移地址: 0x0C 复位值: 0x8000

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PSC[[15:0]							

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	PSC[15:0]	RTC 预分频器低位值
		SC CLK 的频率是 RTCCLK 的频率除以(PSC[19:0]+1).

RTC 分频器高位 (RTC_DIVH) 15.4.5.

偏移地址: 0x10 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					保	留							DIV[1	9:16]	
														_	

位/位域	名称	描述
31:4	保留	必须保持复位值。
3:0	DIV[19:16]	RTC 分频器高位

RTC 分频器低位 (RTC_DIVL) 15.4.6.

偏移地址: 0x14 复位值: 0x8000

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							

GD32F403xx 用户手册

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DIV[[15:0]							

r

位/位域	名称	描述
31:16	保留	必须保持复位值
15:0	DIV[15:0]	RTC 分频器低位 当 RTC 预分频寄存器或者 RTC 计数寄存器更新时,RTC 分频器寄存器会由硬件自 动加载

15.4.7. RTC 计数寄存器高位 (RTC_CNTH)

偏移地址: 0x18 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT[31:16]														

rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	CNT[31:16]	RTC 计数寄存器高位

15.4.8. RTC 计数寄存器低位 (RTC_CNTL)

偏移地址: 0x1C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT[15:0]														

rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	CNT[15:0]	RTC 计数寄存器低位

15.4.9. RTC 闹钟寄存器高位 (RTC_ALRMH)

偏移地址: 0x20 复位值: 0xFFFF

该寄存器可以按半字(16 位)或字(32 位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ALRM[31:16]														

W

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	ALRM[31:16]	RTC 闹钟值高位

15.4.10. RTC 闹钟寄存器低位 (RTC_ALRML)

偏移地址: 0x24 复位值: 0xFFFF

该寄存器可以按半字(16位)或字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ALRM[15:0]														

W

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	ALRM[15:0]	RTC 闹钟值低位

16. 定时器(TIMER)

表 16-1. 定时器(TIMERx)分为五种类型

定时器	定时器 0/7	定时器 1~4	定时器 8/11	定时器 9/10/12/13	定时器 5/6
类型	高级	通用 (L0)	通用 (L1)	通用(L2)	基本
预分频器	16 位	16 位	16 位	16 位	16 位
计数器	16 位	16 位	16 位	16 位	16 位
计数模式	向上,向下, 中央对齐	向上,向下,中央 对齐	只有向上	只有向上	只有向上
可重复性	•	×	×	×	×
捕获/比较 通道数	4	4	2	1	0
互补和 死区时间	•	×	×	×	×
中止输入	•	×	×	×	×
单脉冲	•	•	•	×	•
正交译码器	•	•	×	×	×
主-从管理	•	•	•	×	×
内部连接	• (1)	• (2)	• (3)	×	TRGO TO DAC
DMA	•	•	×	×	• (4)
Debug 模式	•	•	•	•	•

(1)	TIMER0	ITI0: TIMER4_TRGO	ITI1: TIMER1_TRGO	ITI2: TIMER2_TRGO	ITI3: TIMER3_TRGO
	TIMER7	ITI0: TIMER0_TRGO	ITI1: TIMER1_TRGO	ITI2: TIMER3_TRGO	ITI3: TIMER4_TRGO
(2)	TIMER1	ITI0: TIMER0_TRGO	ITI1: TIMER7_TRGO	ITI2: TIMER2_TRGO	ITI3: TIMER3_TRGO
	TIMER2	ITI0: TIMER0_TRGO	ITI1: TIMER1_TRGO	ITI2: TIMER4_TRGO	ITI3: TIMER3_TRGO
	TIMER3	ITI0: TIMER0_TRGO	ITI1: TIMER1_TRGO	ITI2: TIMER2_TRGO	ITI3: TIMER7_TRGO
	TIMER4	ITI0: TIMER1_TRGO	ITI1: TIMER2_TRGO	ITI2: TIMER3_TRGO	ITI3: TIMER7_TRGO
(3)	TIMER8	ITI0: TIMER1_TRGO	ITI1: TIMER2_TRGO	ITI2: TIMER9_TRGO	ITI3: TIMER10_TRGO
	TIMER11	ITIO: TIMER3_TRGO	ITI1: TIMER4_TRGO	ITI2: TIMER12_TRGO	ITI3: TIMER13_TRGO

⁽⁴⁾ 只有更新事件可以产生 DMA 请求。但是定时器 5 和定时 6 中没有 DMA 配置寄存器。

16.1. 高级定时器(TIMERx,x=0,7)

16.1.1. 简介

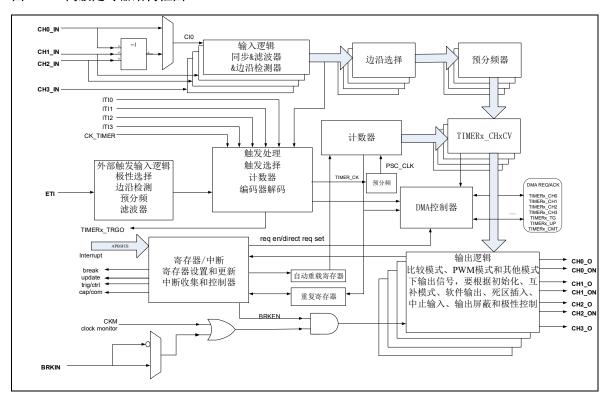
高级定时器(TIMERO 和 TIMER7)是四通道定时器,支持输入捕获和输出比较。可以产生 PWM 信号控制电机和电源管理。高级定时器含有一个 16 位无符号计数器。

高级定时器是可编程的,可以被用来计数,其外部事件可以驱动其他定时器。

高级定时器包含了一个死区时间插入模块,非常适合电机控制。

定时器和定时器之间是相互独立,但是它们的计数器可以被同步在一起形成一个更大的定时器。

16.1.2. 主要特性


- 总通道数: 4;
- 计数器宽度: 16位;
- 时钟源可选:内部时钟,内部触发,外部输入,外部触发;
- 多种计数模式:向上计数,向下计数和中央计数;
- 正交编码器接口:被用来追踪运动和分辨旋转方向和位置;
- 霍尔传感器接口:用来做三相电机控制;
- 可编程的预分频器: 16位,运行时可以被改变;
- 每个通道可配置:输入捕获模式,输出比较模式,可编程的PWM模式,单脉冲模式;
- 可编程的死区时间;
- 自动重装载功能;
- 可编程的计数器重复功能;
- 中止输入功能;
- 中断输出和DMA请求: 更新事件, 触发事件, 比较/捕获事件, 换相事件和中止事件;
- 多个定时器的菊链使得一个定时器可以同时启动多个定时器;
- 定时器的同步允许被选择的定时器在同一个时钟周期开始计数;
- 定时器主-从管理。

16.1.3. 结构框图

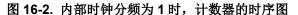
图 16-1. 高级定时器结构框图 提供了高级定时器的内部配置细节

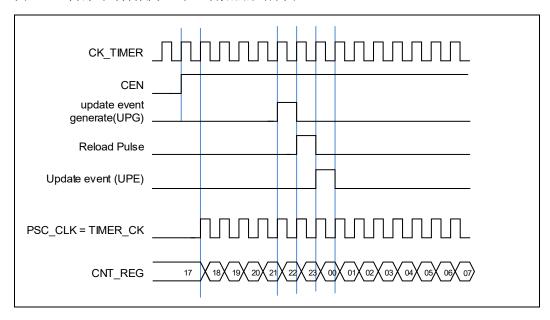
图 16-1. 高级定时器结构框图

16.1.4. 功能描述

时钟源配置

高级定时器可以由内部时钟源 CK_TIMER 或者由 SMC (TIMERx_SMCFG 寄存器位[2:0]) 控制的复用时钟源驱动。


■ SMC[2:0]==3'b000,定时器选择内部时钟源(连接到RCU模块的CK TIMER)


如果 SMC[2:0]==3'b000, 默认用来驱动计数器预分频器的是内部时钟源 CK_TIMER。当 CEN 置位,CK_TIMER 经过预分频器(预分频值由 TIMERx_PSC 寄存器确定)产生 PSC_CLK。

这种模式下,驱动预分频器计数的 TIMER_CK 等于来自于 RCU 模块的 CK_TIMER

如果将 TIMERx_SMCFG 寄存器的 SMC[2:0]设置为 0x1、0x2、0x3 和 0x7, 预分频器被其他时钟源(由 TIMERx_SMCFG 寄存器的 TRGS [2:0]区域选择)驱动,在下文说明。当 SMC 位被设置为 0x4、0x5 和 0x6,计数器预分频器时钟源由内部时钟 CK_TIMER 驱动。

■ SMC[2:0]==3'b111(外部时钟模式0),定时器选择外部输入引脚作为时钟源

计数器预分频器可以在 TIMERx_CH0/ TIMERx_CH1 引脚的每个上升沿或下降沿计数。这种模式可以通过设置 SMC [2:0]为 0x7 同时设置 TRGS[2:0]为 0x4, 0x5 或 0x6 来选择。

计数器预分频器也可以在内部触发信号 ITI0/1/2/3 的上升沿计数。这种模式可以通过设置 SMC [2:0]为 0x7 同时设置 TRGS [2:0]为 0x0, 0x1, 0x2 或者 0x3。

■ SMC1==1'b1(外部时钟模式1),定时器选择外部输入引脚ETI作为时钟源

计数器预分频器可以在外部引脚 ETI 的每个上升沿或下降沿计数。这种模式可以通过设置 TIMERx_SMCFG 寄存器中的 SMC1 位为 1 来选择。另一种选择 ETI 信号作为时钟源方式是,设置 SMC [2:0]为 0x7 同时设置 TRGS [2:0]为 0x7。注意 ETI 信号是通过数字滤波器采样 ETI 引脚得到的。如果选择 ETI 信号为时钟源,触发控制器包括边沿监测电路将在每个 ETI 信号上升沿产生一个时钟脉冲来为计数器预分频器提供时钟。

时钟预分频器

预分频器可以将定时器的时钟(TIMER_CK)频率按 1 到 65536 之间的任意值分频,分频后的时钟 PSC_CLK 驱动计数器计数。分频系数受预分频寄存器 TIMERx_PSC 控制,这个控制寄存器带有缓冲器,它能够在运行时被改变。新的预分频器的参数在下一次更新事件到来时被采用。

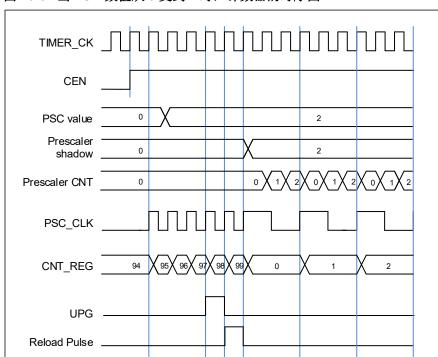


图 16-3. 当 PSC 数值从 0 变到 2 时, 计数器的时序图

计数器向上计数模式

在这种模式,计数器的计数方向是向上计数。计数器从 0 开始向上连续计数到自动加载值(定义在 TIMERx_CAR 寄存器中),一旦计数器计数到自动加载值,会重新从 0 开始向上计数。如果设置了重复计数器,在(TIMERx_CREP+1)次上溢后产生更新事件,否则在每次上溢时都会产生更新事件。在向上计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 应该被设置成 0。

当通过 TIMERx_SWEVG 寄存器的 UPG 位置 1 来设置更新事件时,计数值会被清 0,并产生更新事件。

如果 TIMERx_CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有影子寄存器(重复计数器,计数器自动重载寄存器,预分频寄存器)都将被更新。

下面这些图给出了一些例子,当 TIMERx_CAR=0x99 时,计数器在不同预分频因子下的行为。

图 16-4. 向上计数时序图,PSC=0/2

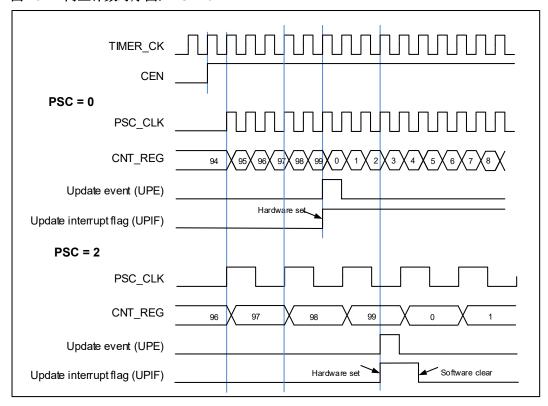
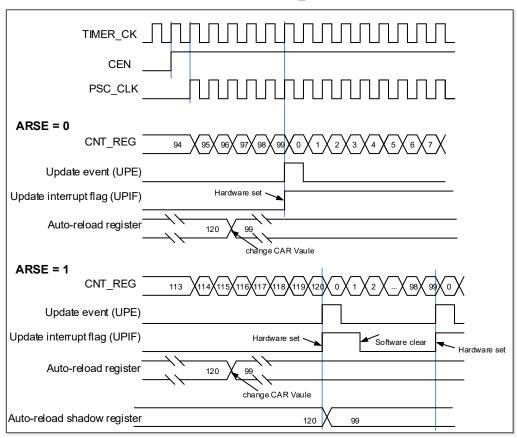
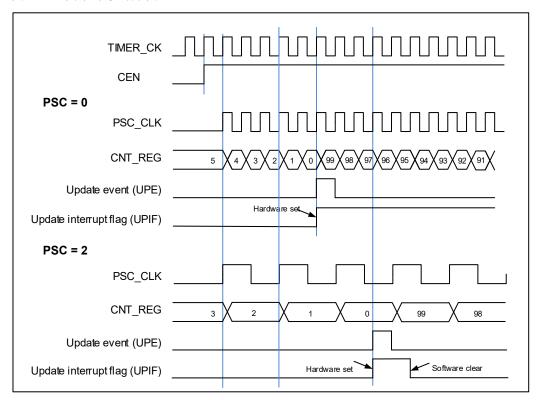



图 16-5. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值

计数器向下计数模式

在这种模式,计数器的计数方向是向下计数。计数器从自动加载值(定义在 TIMERx_CAR 寄存器中)向下连续计数到 0。一旦计数器计数到 0,计数器会重新从自动加载值开始计数。如果设置了重复计数器,在(TIMERx_CREP+1)次下溢后产生更新事件,否则在每次下溢时都会产生更新事件。在向下计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 应该被设置成 1。


当通过 TIMERx_SWEVG 寄存器的 UPG 位置 1 来设置更新事件时, 计数值会被初始化为自动加载值, 并产生更新事件。

如果 TIMERx CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有影子寄存器(重复计数器,计数器自动重载寄存器,预分频寄存器)都将被更新。

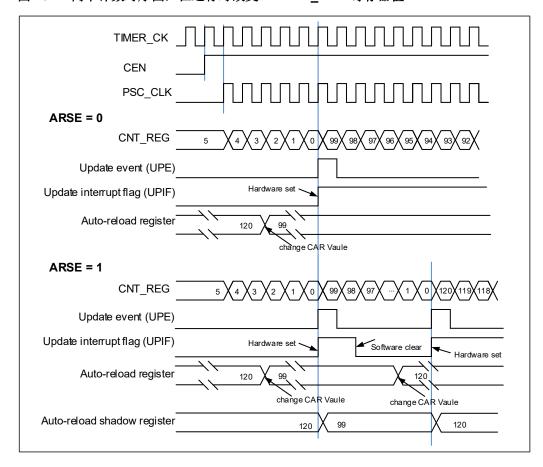

下面这些图给出了一些例子,当 TIMERx_CAR=0x99 时,计数器在不同时钟频率下的行为。

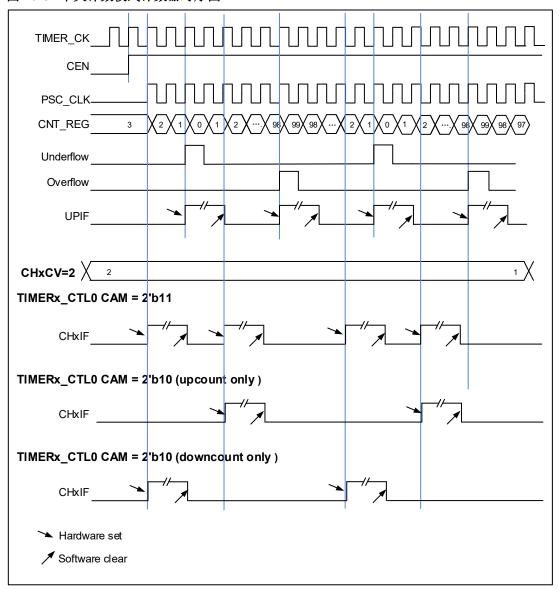
图 16-6. 向下计数时序图,PSC=0/2

图 16-7. 向下计数时序图,在运行时改变 TIMERx_CAR 寄存器值

计数器中央对齐模式

在中央对齐模式下,计数器交替的从 0 开始向上计数到自动加载值,然后再向下计数到 0。。 向上计数模式中,定时器模块在计数器计数到自动加载值-1 产生一个上溢事件;向下计数模式 中,定时器模块在计数器计数到 1 时产生一个下溢事件。在中央计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 只读,表明了的计数方向。

将 TIMERx_SWEVG 寄存器的 UPG 位置 1 可以初始化计数值为 0,并产生一个更新事件,而无需考虑计数器在中央模式下是向上计数还是向下计数。

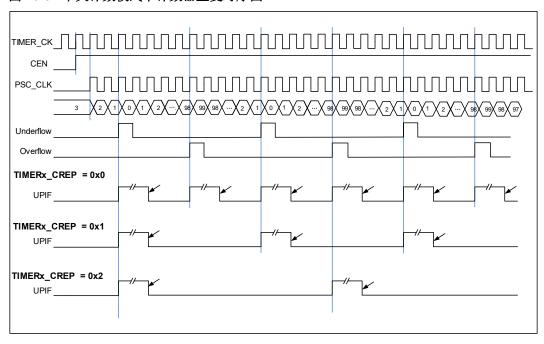

上溢或者下溢时,TIMERx_INTF 寄存器中的 UPIF 位都会被置 1,然而 CHxIF 位置 1 与 TIMERx_CTL0 寄存器中 CAM 的值有关。具体细节参考 图16-8. 中央计数模式计数器时序图。 如果 TIMERx CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有的寄存器(重复计数器,自动重载寄存器,预分频寄存器)都将被更新。

<u>图 16-8.</u> 中央计数模式计数器时序图</u>给出了一些例子,当 TIMERx_CAR=0x99,TIMERx_PSC=0x0时,计数器的行为

图 16-8. 中央计数模式计数器时序图

更新事件(来自上溢/下溢)频率配置


更新事件的生成频率(来自上溢和下溢事件)可以通过 TIMERx_CREP 寄存器进行配置。重复计数器是用来在 N+1 个计数周期之后产生更新事件,更新定时器的寄存器,N 为 TIMERx_CREP 寄存器的 CREP。重复计数器在每次计数器上溢和下溢时递减(向上计数模式中不存在下溢事件;向下计数模式中不存在上溢事件)。

将 TIMERx_SWEVG 寄存器的 UPG 位置 1 可以重载 TIMERx_CREP 寄存器中 CREP 的值并产生一个更新事件。

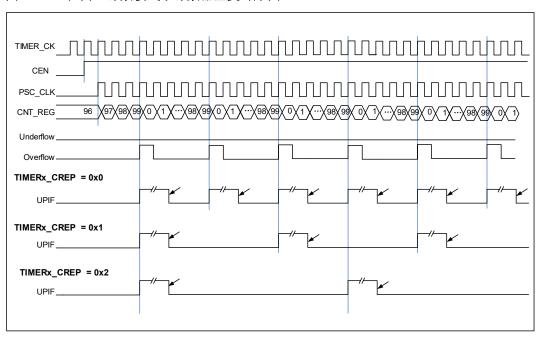

新写入的CREP值将在下一次更新事件到来时生效。当CREP的值为奇数,并且计数器在中央对齐模式下计数时,更新事件发生在上溢或下溢取决于写入的CREP值何时生效。如果在写入奇数到CREP寄存器后由软件生成更新事件(UPG位置1),则在下溢时产生更新事件。如果在写入奇数到CREP寄存器后下一个更新事件发生在上溢,此后将在上溢时产生更新事件。

图 16-9. 中央计数模式下计数器重复时序图

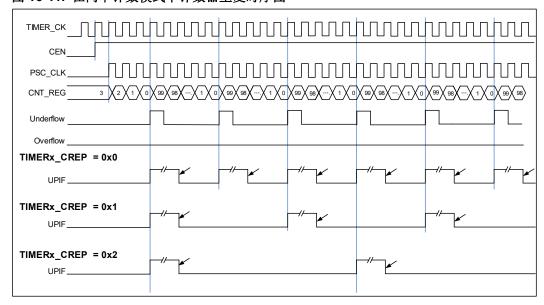
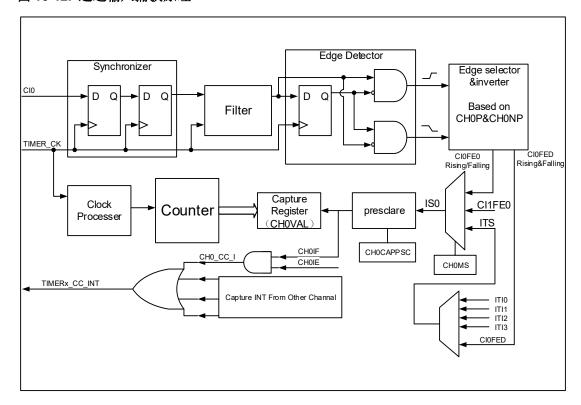


图 16-10. 在向上计数模式下计数器重复时序图

图 16-11. 在向下计数模式下计数器重复时序图

捕获/比较通道


高级定时器拥有四个独立的通道用于捕获输入或比较输出是否匹配。每个通道都围绕一个通道捕获比较寄存器建立,包括一个输入级,通道控制器和输出级。

■ 通道输入捕获功能

通道输入捕获功能允许通道测量一个波形时序,频率,周期,占空比等。输入级包括一个数字滤波器,一个通道极性选择,边沿检测和一个通道预分频器。如果在输入引脚上出现被选择的边沿,TIMERx_CHxCV 寄存器会捕获计数器当前的值,同时 CHxIF 位被置 1,如果 CHxIE = 1 则产生通道中断。

图 16-12. 通道输入捕获原理

通 道 输 入 信 号 Clx 有 两 种 选 择 , 一 种 是 TIMERx_CHx 信 号 , 另 一 种 是 TIMERx_CH0,TIMERx_CH1 和 TIMERx_CH2 异或之后的信号。通道输入信号 Clx 先被 TIMER_CK 信号同步,然后经过数字滤波器采样,产生一个被滤波后的信号。通过边沿检测器,可以选择检测上升沿或者下降沿。通过配置 CHxP 选择使用上升沿或者下降沿。配置 CHxMS.,可以选择其他通道的输入信号,内部触发信号。配置 IC 预分频器,使得若干个输入事件后才产生一个有效的捕获事件。捕获事件发生,TIMERx CHxCV 存储计数器的值。

配置步骤如下:

第一步:滤波器配置(TIMERx_CHCTL0寄存器中CHxCAPFLT):根据输入信号和请求信号的质量,配置相应的CHxCAPFLT。

第二步: 边沿选择(TIMERx_CHCTL2寄存器中CHxP/CHxNP): 配置CHxP/CHxNP选择上升沿或者下降沿。

第三步: 捕获源选择 (TIMERx CHCTL0寄存器中CHxMS):

一旦通过配置 CHxMS 选择输入捕获源,必须确保通道配置在输入模式 (CHxMS!=0x0),而且TIMERx CHxCV寄存器不能再被写。

第四步: 中断使能(TIMERx_DMAINTEN寄存器中CHxIE 和 CHxDEN): 使能相应中断,可以获得中断和DMA请求。

第五步: 捕获使能(TIMERx_CHCTL2寄存器中CHxEN)。

结果: 当期望的输入信号发生时,TIMERx_CHxCV被设置成当前计数器的值,CHxIF为置1。如果CHxIF位已经为1,则CHxOF位置1。根据TIMERx_DMAINTEN寄存器中CHxIE和CHxDEN的配置,相应的中断和DMA请求会被提出。

直接产生: 软件设置CHxG位, 会直接产生中断和DMA请求。

输入捕获模式也可用来测量 TIMERx_CHx 引脚上信号的脉冲波宽度。例如,一个 PWM 波连接到 Clo。配置 TIMERx_CHCTLo 寄存器中 CH0MS 为 2′b01,选择通道 0 的捕获信号为 Clo 并设置上升沿捕获。配置 TIMERx_CHCTLo 寄存器中 CH1MS 为 2′b10,选择通道 1 捕获信号为 Clo 并设置下降沿捕获。计数器配置为复位模式,在通道 0 的上升沿复位。TIMERX CH0CV寄存器测量 PWM 的周期值,TIMERx CH1CV寄存器测量 PWM 占空比值。

■ 通道输出比较功能

在通道输出比较功能,TIMERx 可以产生时控脉冲,其位置,极性,持续时间和频率都是可编程的。当一个输出通道的 TIMERx_CHxCV 寄存器与计数器的值匹配时,根据 CHxCOMCTL 的配置,这个通道的输出可以被置高电平,被置低电平或者反转。当计数器的值与 TIMERx_CHxCV 寄存器的值匹配时,CHxIF 位被置 1,如果 CHxIE = 1 则会产生中断,如果 CxCDE=1 则会产生 DMA 请求。

配置步骤如下:

第一步: 时钟配置:

配置定时器时钟源, 预分频器等。

第二步: 比较模式配置:

设置CHxCOMSEN位来配置输出比较影子寄存器;

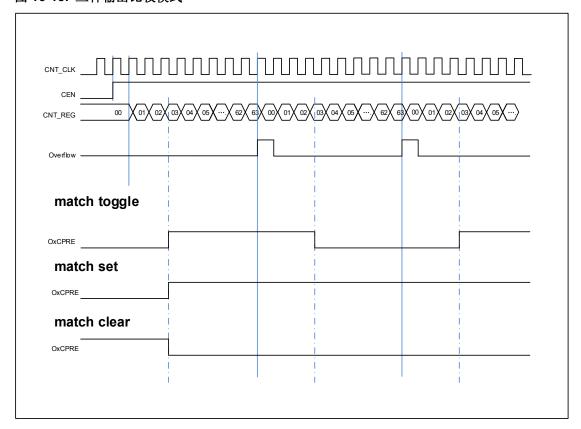
设置CHxCOMCTL位来配置输出模式(置高电平/置低电平/反转);

设置CHxP/CHxNP位来选择有效电平的极性;

设置CHxEN使能输出。

第三步: 通过CHxIE/CxCDE位配置中断/DMA请求使能。

第四步: 通过TIMERx CAR寄存器和TIMERx CHxCV寄存器配置输出比较时基:


TIMERx_CHxCV可以在运行时根据你所期望的波形而改变。

第五步:设置CEN位使能定时器。

图16-13. 三种输出比较模式显示了三种比较输出模式:反转/置高电平/置低电平,CAR=0x63,CHxVAL=0x3。

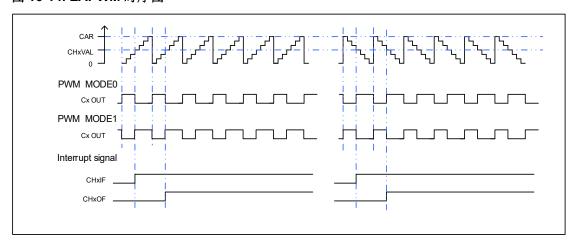
图 16-13. 三种输出比较模式

输出 PWM 功能

在 PWM 输出模式下 (PWM 模式 0 是配置 CHxCOMCTL 为 3'b110, PWM 模式 1 是配置 CHxCOMCTL 为 3'b111), 通道根据 TIMERx_CAR 寄存器和 TIMERx_CHxCV 寄存器的值, 输出 PWM 波形。

根据计数模式,我们可以分为两种PWM波: EAPWM(边沿对齐PWM)和CAPWM(中央对齐PWM)。

EAPWM的周期由TIMERx_CAR寄存器值决定,占空比由TIMERx_CHxCV寄存器值决定。**图** 16-14. EAPWM时序图显示了EAPWM的输出波形和中断。


CAPWM的周期由(2*TIMERx_CAR寄存器值)决定,占空比由(2*TIMERx_CHxCV寄存器值)决定。**图16-15.** CAPWM时序图显示了CAPWM的输出波形和中断。

在 PWM0 模式下 (CHxCOMCTL==3'b110) , 如果 TIMERx_CHxCV 寄存器的值大于 TIMERx_CAR寄存器的值,通道输出一直为有效电平。

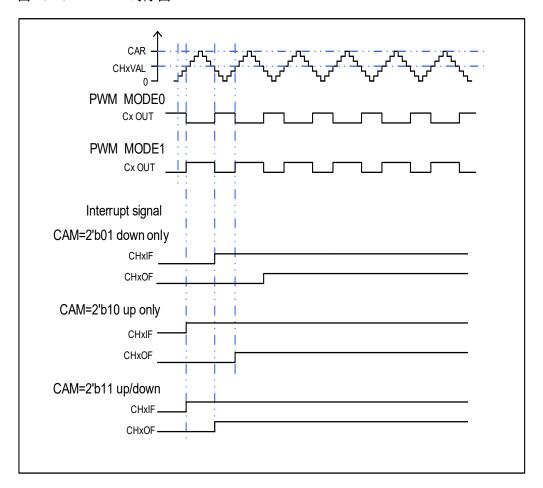

在PWM0模式下(CHxCOMCTL==3'b110),如果TIMERx_CHxCV寄存器的值等于0,通道输出一直为无效电平。

图 16-14. EAPWM 时序图

图 16-15. CAPWM 时序图

通道输出准备信号

当 TIMERx 用于输出匹配比较模式下,设置 CHxCOMCTL 位可以定义 OxCPRE 信号(通道 x 准备信号)类型。OxCPRE 信号有若干类型的输出功能,包括,设置 CHxCOMCTL=0x00 可以保持原始电平;设置 CHxCOMCTL=0x01 可以将 OxCPRE 信号设置为高电平;设置 CHxCOMCTL=0x02 可以将 OxCPRE 信号设置为低电平;设置 CHxCOMCTL=0x03,在计数

器值和 TIMERx_CHxCV 寄存器的值匹配时,可以翻转输出信号。

PWM 模式 0 和 PWM 模式 1 是 OxCPRE 的另一种输出类型,设置 CHxCOMCTL 位域位 0x06 或 0x07 可以配置 PWM 模式 0/PWM 模式 1。在这些模式中,根据计数器值和 TIMERx_CHxCV 寄存器值的关系以及计数方向, OxCPRE 信号改变其电平。具体细节描述,请参考相应的位。

设置 CHxCOMCTL =0x04 或 0x05 可以实现 OxCPRE 信号的强制输出功能。输出比较信号能够直接由软件强置为有效或无效状态,而不依赖于 TIMERx_CHxCV 的值和计数器值之间的比较结果。

设置 CHxCOMCEN=1, 当由外部 ETI 引脚信号产生的 ETIFE 信号为高电平时, OxCPRE 被强制为低电平。在下一次更新事件到来时, OxCPRE 信号才会回到有效电平状态。

通道输出互补 PWM

CHx_O 和 CHx_ON 是一对互补输出通道,这两个信号不能同时有效。TIMERx 有四路通道,只有前三路有互补输出通道。互补信号 CHx_O 和 CHx_ON 是由一组参数来决定:TIMERx_CHCTL2 寄存器中的 CHxEN 和 CHxNEN 位,TIMERx_CCHP 寄存器中和TIMERx_CTL1 寄存器中的 POEN, ROS, IOS, ISOx 和 ISOxN 位。输出极性由TIMERx_CHCTL2寄存器中的 CHxP 和 CHxNP 位来决定。

表 16-2. 由参数控制的互补输出表

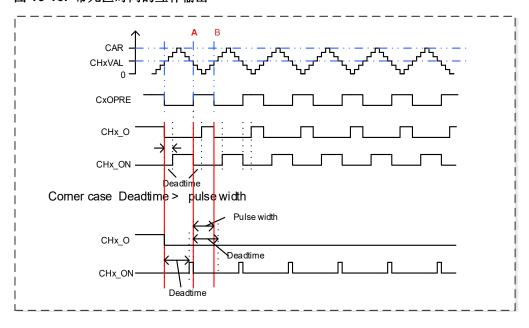
		互补参	数		输出状态						
POEN	ROS	IOS	CHxEN	CHxNEN	CHx_O	CHx_ON					
			0	0	CHx_O / CHx_ON = LOW CHx_O / CHx_ON 输出禁用						
		0		1	CHx_O = CHxP CHx_ON = CHxNP						
				0	CHx_O/CHx_ON 输出禁用.						
			1	1	如果时钟使能: CHx_O = ISOx CHx_ON = ISOxN						
0	0/1	1	0	0	CHx_O = CHxP CHx_ON = (CHx_O/CHx_ON输出禁用.	CHxNP					
				1	CHx_O = CHxP CHx_ON = CHxNP						
				0	CHx_O/CHx_ON 输出使能.						
			1	1	如果时钟使能: CHx_O = ISOx						
				0	CHx_O/CHx_ON = LOW CHx_O/CHx_ON 输出禁用.						
1	0	0/1	0	1	CHx_O = LOW CHx_O 输出禁用.	CHx_ON=OxCPRE ⊕ CHxNP					

		互补参	数		输出状态				
POEN	ROS	ios	CHxEN	CHxNEN	CHx_O	CHx_ON			
						CHx_ON 输出使能			
				0	CHx_O=OxCPRE⊕CHxP CHx_O输出使能	CHx_ON = LOW CHx_ON输出禁用.			
			1	1	CHx_O=OxCPRE⊕CHxP CHx_O输出使能	CHx_ON=(!OxCPRE)⊕CHxNP CHx_ON输出使能			
				0	CHx_O = CHxP CHx_O输出禁用.	CHx_ON = CHxNP CHx_ON输出禁用.			
			0	1	CHx_O = CHxP CHx_O输出使能	CHx_ON=OxCPRE ⊕ CHxNP CHx_ON输出使能			
	1			0	CHx_O=OxCPRE⊕CHxP CHx_O输出使能	CHx_ON = CHxNP CHx_ON输出使能			
			1	1	CHx_O=OxCPRE⊕CHxP CHx_O输出使能	CHx_ON=(!OxCPRE)⊕CHxNP CHx_ON输出使能			

互补 PWM 插入死区时间

设置 CHxEN 和 CHxNEN 为 1'b1 同时设置 POEN, 死区插入就会被使能。DTCFG 位域定义了死区时间, 死区时间对除了通道 3 以外通道有效。死区时间的细节,请参考 TIMERx_CCHP 寄存器。

死区时间的插入,确保了通道互补的两路信号不会同时有效。

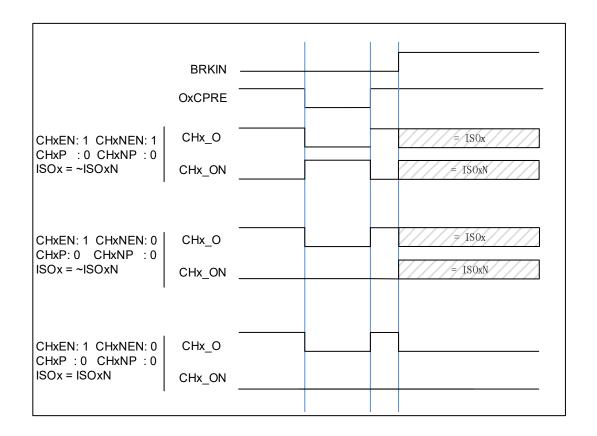

在 PWM0 模式,当通道 x 匹配发生时(TIMERx 计数器=TIMERx_CHxCV),OxCPRE 反转。在 图 16-16. 带死区时间的互补输出中的 A 点,CHx_O 信号在死区时间内为低电平,直到死区时间过后才变为高电平,而 CHx_ON 信号立刻变为低电平。同样,在 B 点,计数器再次匹配(TIMERx 计数器= TIMERx_CHxCV),OxCPRE 信号被清 0,CHx_O 信号被立即清零,CHx_ON 信号在死区时间内仍然是低电平,在死区时间过后才变为高电平。

有时会有一些死角事件发生,例如:

■ 如果死区延时大于或者等于CHx_ON信号的占空比,CHx_ON信号一直为无效值。

图 16-16. 带死区时间的互补输出

中止模式


使用中止模式时,输出 CHx_O 和 CHx_ON 信号电平被以下位控制,TIMERx_CCHP 寄存器的 POEN, IOS 和 ROS 位,TIMERx_CTL1 寄存器的 ISOx 和 ISOxN 位。当中止事件发生时,CHx_O 和 CHx_ON 信号输出不能同时设置为有效电平。中止源可以选择中止输入引脚,也可以选择 HXTAL 时钟失效事件,时钟失败事件由 RCU 中的时钟监视器(CKM)产生。将TIMERx_CCHP 寄存器的 BRKEN 位置 1 可以使能中止功能。TIMERx_CCHP 寄存器的 BRKP位决定了中止输入极性。

发生中止时,POEN 位被异步清除,一旦 POEN 位为 0,CHx_O 和 CHx_ON 被 TIMERx_CTL1 寄存器中的 ISOx 位和 ISOxN 驱动。如果 IOS=0,定时器释放输出使能,否则输出使能仍然为高。起初互补输出被置于复位状态,然后死区时间产生器重新被激活,以便在一个死区时间后驱动输出,输出电平由 ISOx 和 ISOxN 位配置。

发生中止时,TIMERx INTF 寄存器的BRKIF 位被置 1。如果BRKIE=1,中断产生。

图 16-17. 通道响应中止输入(高电平有效)时,输出信号的行为

正交译码器

正交译码器功能使用由TIMERx_CH0和TIMERx_CH1引脚生成的Cl0FE0和Cl1FE1正交信号各自相互作用产生计数值。在每个输入源改变期间,DIR位会发生改变。输入源可以是只有Cl0FE0,可以只有Cl1FE1,或着可以同时有Cl0FE0和Cl1FE1,通过设置SMC=0x01,0x02或0x03来选择使用哪种模式。计数器计数方向改变的机制如表16-3.不同编码器模式下的计数方向所示。正交译码器可以当作一个带有方向选择的外部时钟,这意味着计数器会在0和自动加载值之间连续的计数。因此,用户必须在计数器开始计数前配置TIMERx_CAR寄存器。

表 16-3. 不同编码器模式下的计数方向

		CIO	FE0	CI1FE1		
计数模式	电平	上升	下降	上升	下降	
编码器模式0	CI1FE1=1	向下	向上	-	-	
SMC[2:0]=3'b001	CI1FE1=0	向上	向下	-	-	
编码器模式1	CI0FE0=1	-	-	向上	向下	
SMC [2:0]=3'b010	CI0FE0=0	1	-	向下	向上	
	CI1FE1=1	向下	向上	Χ	Χ	
编码器模式2	CI1FE1=0	向上	向下	Χ	Χ	
SMC [2:0]=3'b011	CI0FE0=1	Х	Х	向上	向下	
	CI0FE0=0	Х	Х	向下	向上	

注意: "-" 意思是"无计数"; "X" 意思是不可能。"0" 意思是低电平, "1" 意思是高电平。

图 16-18. 在编码器模式 2 且 CloFEO 极性不反相时计数器行为

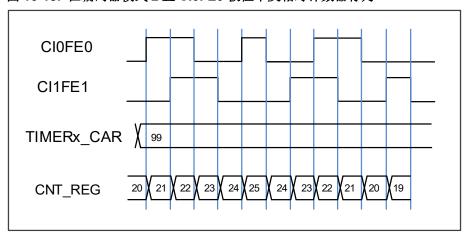
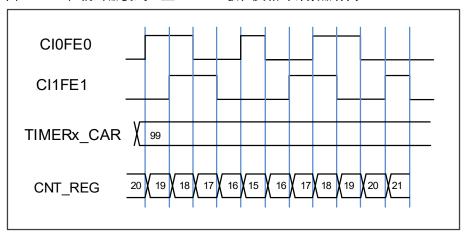



图 16-19. 在编码器模式 2 且 CloFEO 极性反相时计数器行为

霍尔传感器接口功能

高级定时器支持霍尔传感器接口功能,该功能可以用来控制 BLDC 电机。

图 16-20. 霍尔传感器用在 BLDC 电机控制中是定时器和电机的连接示意图。众所周知,我们要两个定时器。TIMER_in 定时器(可以是高级定时器或者通用 L0 定时器)接收霍尔传感器的三路信号。

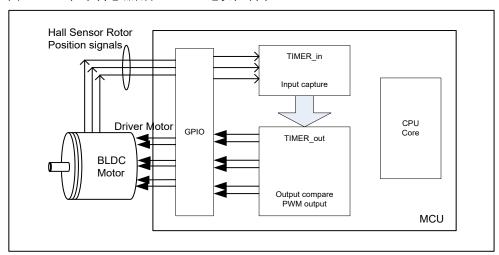
三个霍尔传感器信号与 TIMER_in 定时器的三路输入捕获引脚一一对应连接,每个霍尔传感器输入一路波形到输入引脚,分析三路霍尔信号可以计算出转子的位置和速度。

通过定时器内部连接,例如 TRGO-ITIx,TIMER_in 定时器和 TIMER_out 定时器可以连接在一起。TIMER_out 定时器根据 ITIx 触发信号输出 PWM 波,驱动 BLDC 电机,控制 BLDC 电机的速度。这样,TIMER_in 定时器和 TIMER_out 定时器的连接形成了一个反馈电路,可以根据需求改变配置。

TIMER_in 定时器需要具备输入异或功能,所以可以选择高级定时器和通用 L0 定时器。

TIMER_out 定时器需要具备互补输出和死区插入功能,所以可以选择高级定时器。另外,根据定时器的内部互连关系,可以选择成对的互连定时器,例如:

TIMER_in (TIMER0) -> TIMER_out (TIMER7 ITI0)


TIMER_in (TIMER1) -> TIMER_out (TIMER0 ITI1)

等等。

选择好合适的互连定时器,定时器和 BLDC 的线路也已经连接好,我们就可以配置定时器了。 有以下关键配置:

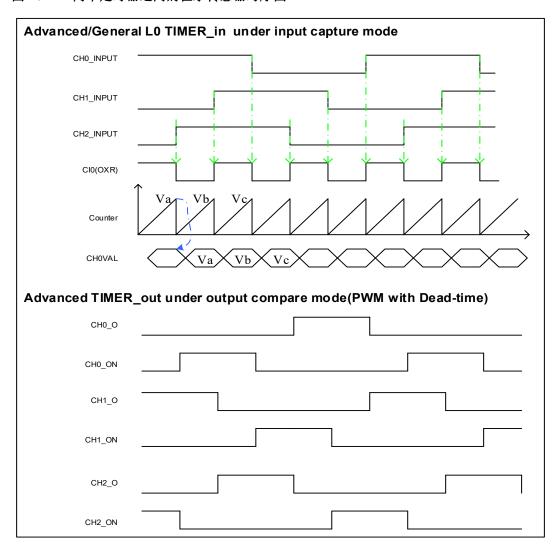

- 设置TIOS,使能异或功能。三路输入信号的任何一路发生变化,CIO都会反转,CHOVAL 此时会捕获计数器的当前值。
- 设置CCUC和CCSE,使能ITIx直接连接到换相功能。
- 根据需求配置PWM参数。

图 16-20. 霍尔传感器用在 BLDC 电机控制中

图 16-21. 两个定时器之间的霍尔传感器时序图

主-从管理

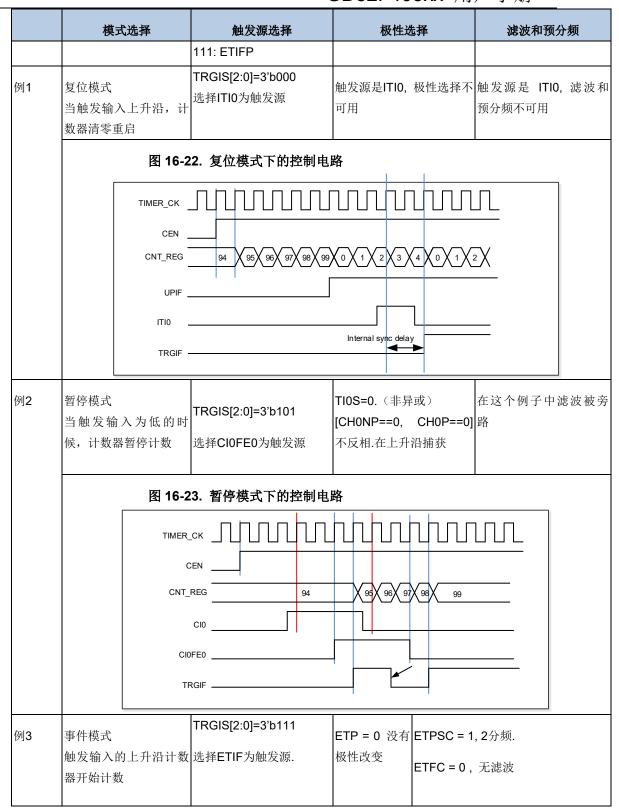
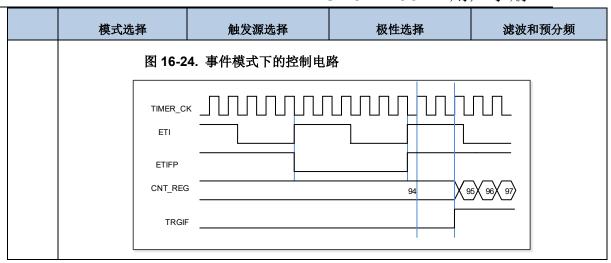
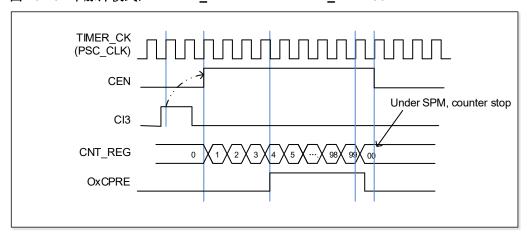

TIMERx 能在多种模式下同步外部触发,包括复位模式,暂停模式和事件模式,可以通过设置 TIMERx_SMCFG 寄存器中的 SMC [2:0]配置这些模式。这些模式的输入触发源可以通过设置 TIMERx_SMCFG 寄存器中的 TRGS [2:0]来选择。

表 16-4. 从模式例子列表


	模式选择	触发源选择	极性选择	滤波和预分频
列举	SMC[2:0]	TRGS[2:0]	如果触发源是Cl0FE0或者	触发源ITIv 滤波和额公
列宁	SiviC[2.0]	000: ITI0	CI1FE1,配置CHxP和	
	3'b100 (复位模式)	001: ITI1	CHxNP来选择极性和反相	
	3'b101 (暂停模式)	010: ITI2	OTAN 不起并依正师及相	触发源Clx,配置
	00101(自计快风)	011: ITI3	如果触发源是ETIF,配置	CHxCAPFLT设置滤波,
	3'b110 (事件模式)	100: CI0F_ED	ETP选择极性和反相	分频不可用
		101: CI0FE0		触发源是ETIF,滤波和预
		110: CI1FE1		分频不可用

GD32F403xx 用户手册

单脉冲模式

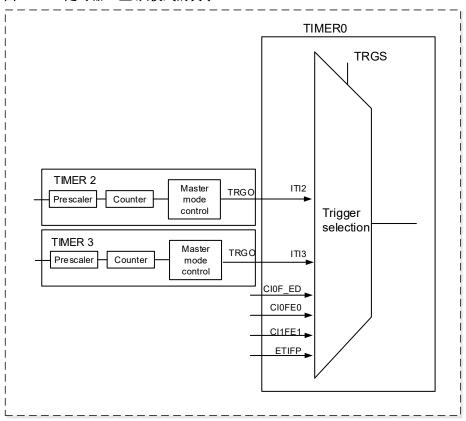

单脉冲模式与重复模式是相反的,设置 TIMERx_CTL0 寄存器的 SPM 位置 1,则使能单脉冲模式。当 SPM 置 1,计数器在下次更新事件到来后清零并停止计数。为了得到脉冲波,可以通过设置 CHxCOMCTL 配置 TIMERx 为 PWM 模式或者比较模式。

一旦设置定时器运行在单脉冲模式下,没有必要设置 TIMERx_CTL0 寄存器的定时器使能位 CEN=1 来使能计数器。触发信号沿或者软件写 CEN=1 都可以产生一个脉冲,此后 CEN 位一直保持为 1 直到更新事件发生或者 CEN 位被软件写 0。如果 CEN 位被软件清 0,计数器停止工作,计数值被保持。

在单脉冲模式下,有效的外部触发边沿会将 CEN 位置 1,使能计数器。然而,执行计数值和 TIMERx_CHxCV 寄存器值的比较结果依然存在一些时钟延迟。为了最大限度减少延迟,用户可以将 TIMERx_CHCTL0/1 寄存器的 CHxCOMFEN 位置 1。单脉冲模式下,触发上升沿产生之后, OxCPRE 信号将被立即强制转换为与发生比较匹配时相同的电平,但是不用考虑比较结果。只有输出通道配置为 PWM1 或 PWM2 输出运行模式下时 CHxCOMFEN 位才可用,触发源来源于触发信号。

图 16-25. 单脉冲模式,TIMERx CHxCV = 4 TIMERx CAR=99 展示了一个例子

图 16-25. 单脉冲模式,TIMERx CHxCV = 4 TIMERx CAR=99



定时器互连

定时器之间可配置为内部级联,一个定时器配置为主模式输出TRGO信号,另一个定时器配置为从模式,TRGO信号包括复位事件、使能事件、更新事件、捕获比较脉冲事件、比较事件。从定时器接收到ITIx信号,并执行对应的操作,包括内部时钟模式、正交编码模式、复位模式、暂停模式、事件模式、外部时钟模式。

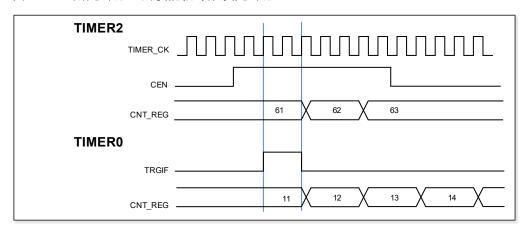
图 16-26. 定时器 0 主/从模式的例子 显示了当定时器 0 配置为从模式时的触发选择

其他定时器互连的例子:

■ 定时器2作为定时器0的预分频器

参考图 16-26. 定时器 0 主/从模式的例子 连接配置定时器 2 为定时器 0 的预分频器,步骤如下:

- 1. 配置定时器2为主模式,选择其更新事件(UPE)为触发输出(配置TIMER2_CTL1寄存器的 MMC=3'b010)。定时器2在每次计数器溢出产生更新事件时,输出一个周期信号;
- 2. 配置定时器2周期(TIMER2_CAR寄存器);
- 3. 选择定时器0输入触发源为定时器2 (配置TIMERx_SMCFG寄存器的TRGS=3'b010);
- 4. 配置定时器0在外部时钟模式0(配置TIMERx SMCFG寄存器的SMC=3'b111);
- 5. 写1到CEN位启动定时器0 (TIMER0_CTL0寄存器);
- 6. 写1到CEN位启动定时器2 (TIMER2_CTL0寄存器)。
- 用定时器2的使能/更新信号来启动定时器0



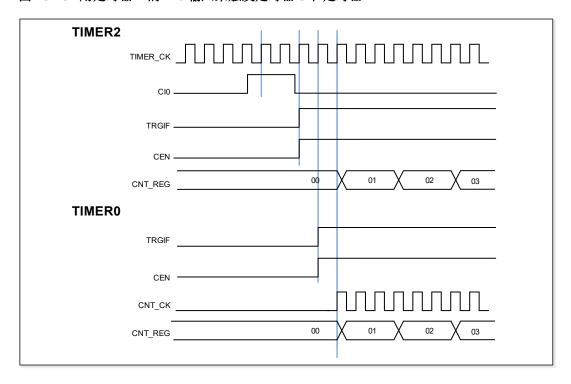
用定时器 2 的使能信号来启动定时器 0,见<u>图 16-27. 用定时器 2 的使能信号触发定时器 0</u>。 在定时器 2 使能信号输出后,定时器 0 按照分频后的内部时钟从当前值开始计数。

当定时器 0 接收到触发信号,它的 CEN 位置 1,计数器计数直到禁能定时器 0。两个定时器的计数器频率都是 TIMER_CK 经过预分频器 3 分频后频率(fCNT_CLK = fTIMER_CK/3)。步骤如下:

- 1. 配置定时器2为主模式,发送它的使能信号作为触发输出(配置TIMER2_CTL1寄存器的MMC=3'b001);
- 2. 配置定时器0选择输入触发来自定时器2 (配置TIMERx_SMCFG寄存器的TRGS=3'b010);
- 3. 配置定时器0在事件模式 (配置TIMERx_SMCFG寄存器的SMC=3'b 110);
- 4. 写1到CEN来开启定时器2 (TIMER2_CTL0寄存器)。

图 16-27. 用定时器 2 的使能信号触发定时器 0

■ 使用一个外部触发来同步两个定时器


配置定时器2的使能信号触发定时器0的开启,配置定时器2的CI0输入信号上升沿来触发定时器2。为了确保两个定时器同步开启,定时器2必须配置在主/从模式。步骤如下:

- 1. 配置定时器2工作在从模式来获取来自CIO的触发输入(配置TIMER2_SMCFG寄存器的TRGS=3'b100);
- 2. 配置定时器2工作在事件模式(配置TIMER2_SMCFG寄存器的SMC=3'b110);
- 3. 写MSM=1(TIMER2_SMCFG寄存器)来配置定时器2工作在主/从模式;
- 4. 配置定时器0的触发输入来自定时器2 (配置TIMERx SMCFG 寄存器的TRGS=3'b010);
- 5. 配置定时器0工作在事件模式(配置TIMERO SMCFG寄存器的SMC=3'b110)。

当定时器2的CIO信号产生上升沿时,两个定时器的计数器在内部时钟下开始同步计数,二者的TRGIF标志位都被置1。

图 16-28. 用定时器 2 的 CIO 输入来触发定时器 0 和定时器 2

定时器 DMA 模式

定时器 DMA 模式是指通过 DMA 模块配置定时器的寄存器。有两个跟定时器 DMA 模式相关的寄存器: TIMERx_DMACFG and TIMERx_DMATB。当然,必须要使能 DMA 请求,一些内部中断事件可以产生 DMA 请求。当中断事件发生,TIMERx 会给 DMA 发送请求。DMA 配置成 M2P 模式,PADDR 是 TIMERx_DMATB 寄存器地址,DMA 就会访问 TIMERx_DMATB 寄存器。实际上,TIMERx_DMATB 寄存器只是一个缓冲,定时器会将 TIMERx_DMATB 映射到一个内部寄存器,这个内部寄存器由 TIMERx_DMACFG 寄存器中的 DMATA 来指定。如果TIMERx_DMACFG 寄存器的 DMATC 位域值为 0,表示 1 次传输,定时器的发送 1 个 DMA请求就可以完成。如果 TIMERx_DMACFG 寄存器的 DMATC 位域值不为 1,例如其值为 3,表示 4 次传输,定时器就需要再多发 3 次 DMA 请求。在这 3 次请求下,DMA 对 TIMERx_DMATB 寄存器的访问会映射到访问定时器的 DMATA+0x4, DMATA+0x8, DMATA+0xc 寄存器。总之,发生一次 DMA 内部中断请求,定时器会连续发送(DMATC+1)次请求。

如果再来1次DMA请求事件,TIMERx将会重复上面的过程。

定时器调试模式

当Cortex®-M4内核停止,DBG_CTL0寄存器中的TIMERx_HOLD配置位被置1,定时器计数器停止。

16.1.5. TIMERx 寄存器(x=0,7)

TIMER0 基地址: 0x4001 2C00

TIMER7 基地址: 0x4001 3400

控制寄存器 0 (TIMERx_CTL0)

地址偏移: 0x00 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留				CKD	V[1:0]	ARSE	CAN	Л[1:0]	DIR	SPM	UPS	UPDIS	CEN	
						,	w	rw/		w	rw/	rw.	rw.	rw.	rw/

位/位域	名称	描述
15:10	保留	必须保持复位值。
9:8	CKDIV[1:0]	时钟分频 通过软件配置CKDIV,规定定时器时钟(CK_TIMER) 与死区时间和数字滤波器采样 时钟(DTS)之间的分频系数。 00: fots=fck_timer 01: fots= fck_timer /2 10: fots= fck_timer /4 11: 保留
7	ARSE	自动重载影子使能 0: 禁能 TIMERx_CAR 寄存器的影子寄存器 1: 使能 TIMERx_CAR 寄存器的影子寄存器
6:5	CAM[1:0]	计数器对齐模式选择 00: 无中央对齐计数模式(边沿对齐模式)。 DIR位指定了计数方向 01: 中央对齐向下计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),只有在向下计数时,CHxF位置1 10: 中央对齐向上计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),只有在向上计数时,CHxF位置1 11: 中央对齐上下计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),在向上和向下计数时,CHxF位都会置1 当计数器使能以后,该位不能从 0x00 切换到非 0x00
4	DIR	方向 0: 向上计数 1: 向下计数 当计数器配置为中央对齐计数模式或编码器模式时,该位只读。

3	SPM	单脉冲模式
		0: 单脉冲模式禁能。更新事件发生后,计数器继续计数
		1: 单脉冲模式使能。在下一次更新事件发生时, 计数器停止计数
2	UPS	更新请求源
		软件配置该位,选择更新事件源.
		0:以下事件均会产生更新中断或DMA请求:
		UPG位被置1
		计数器溢出/下溢
		复位模式产生的更新
		1:下列事件会产生更新中断或DMA请求:
		计数器溢出/下溢
1	UPDIS	禁止更新.
		该位用来使能或禁能更新事件的产生
		0: 更新事件使能. 更新事件发生时, 相应的影子寄存器被装入预装载值, 以下事件
		均会产生更新事件:
		UPG位被置1
		计数器溢出/下溢
		复位模式产生的更新
		1: 更新事件禁能.
		注意: 当该位被置 1 时, UPG 位被置 1 或者复位模式不会产生更新事件, 但是计数
		器和预分频器被重新初始化
0	CEN	计数器使能
		0: 计数器禁能
		1: 计数器使能
		在软件将 CEN 位置 1 后,外部时钟、暂停模式和编码器模式才能工作。

控制寄存器 1 (TIMERx_CTL1)

地址偏移: 0x04 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	ISO3	ISO2N	ISO2	ISO1N	ISO1	ISO0N	ISO0	TIOS		MMC[2:0]		DMAS	CCUC	保留.	CCSE

位/位域	名称	描述
15	保留	必须保持复位值。
14	ISO3	通道 3 的空闲状态输出 参考 ISO0 位
13	ISO2N	通道2的互补通道空闲状态输出

-		ODOZI 100000 / 13 / 13/3
		参考 ISO0N 位
12	ISO2	通道 2 的空闲状态输出 参考 ISO0 位
11	ISO1N	通道 1 的互补通道空闲状态输出 参考 ISO0N 位
10	ISO1	通道 1 的空闲状态输出 参考 ISO0 位
9	ISO0N	 通道 0 的互补通道空闲状态输出 0: 当 POEN 复位, CH0_ON 设置低电平. 1: 当 POEN 复位, CH0_ON 设置高电平 此位只有在 TIMERx_CCHP 寄存器的 PROT [1:0]位为 00 的时候可以被更改.
8	ISO0	通道 0 的空闲状态输出 0: 当 POEN 复位, CH0_O 设置低电平 1: 当 POEN 复位, CH0_O 设置高电平 如果 CH0_ON 生效, 一个死区时间后 CH0_O 输出改变。此位只有在 TIMERx_CCHP 寄存器的 PROT [1:0]位为 00 的时候可以被更改.
7	TIOS	通道 0 触发输入选择 0:选择 TIMERx_CH0 引脚作为通道 0 的触发输入 1:选择 TIMERx_CH0, CH1 and CH2 引脚异或的结果作为通道 0 的触发输入
6:4	MMC[2:0]	主模式控制 这些位控制 TRGO 信号的选择,TRGO 信号由主定时器发给从定时器用于同步功能 000: 当产生一个定时器复位事件后,输出一个TRGO信号,定时器复位源为: 主定时器产生一个复位事件 TIMERx_SWEVG寄存器中UPG位置1 001: 当产生一个定时器使能事件后,输出一个TRGO信号,定时器使能源为: CEN位置1 在暂停模式下,触发输入置1 010: 当产生一个定时器更新事件后,输出一个TRGO信号,更新事件源由UPDIS和UPS位决定 011: 当通道0在发生一次捕获或一次比较成功时,主模式控制器产生一个TRGO脉冲 100: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O0CPRE 101: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O1CPRE 110: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O2CPRE 111: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O3CPRE
3	DMAS	DMA 请求源选择 0: 当通道捕获/比较事件发生时,发送通道 x 的 DMA 请求 . 1: 当更新事件发生,发送通道 x 的 DMA 请求
2	CCUC	换相控制影子寄存器更新控制 当换相控制影子寄存器(CHxEN, CHxNEN 和 CHxCOMCTL 位)使能(CCSE=1),

这些影子寄存器更新控制如下:

0: CMTG 位被置 1 时更新影子寄存器

1: 当 CMTG 位被置 1 或检测到 TRIGI 上升沿时,影子寄存器更新

当通道没有互补输出时,此位无效。

保留 必须保持复位值。

换相控制影子使能 0 CCSE

0: 影子寄存器 CHxEN, CHxNEN 和 CHxCOMCTL 位禁能.

1: 影子寄存器 CHxEN, CHxNEN 和 CHxCOMCTL 位使能. 如果这些位已经被写入了,换相事件到来时这些位才被更新

当通道没有互补输出时,此位无效

从模式配置寄存器(TIMERx_SMCFG)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETP	SMC1	ETPS	C[1:0]		ETFC[3:0]			MSM	TRGS[2:0]			保留	保留 SMC[2:0]		
rw	rw	n	N	rw			rw		rw				rw		

位/位域	名称	描述							
31:16	保留	必须保持复位值							
15	ETP	外部触发极性							
		该位指定 ETI 信号的极性							
		0: ETI 高电平或上升沿有效 .							
		1: ETI 低电平或下降沿有效 .							
14 SMC1		SMC 的一部分为了使能外部时钟模式 1							
		在外部时钟模式 1, 计数器由 ETIF 信号上的任意有效边沿驱动							
		0: 外部时钟模式 1 禁能							
		1: 外部时钟模式 1 使能							
		当从模式配置为复位模式,暂停模式和事件模式时,定时器仍然可以工作在外部时钟							
		模式 1。但是 TRGS 必须不能为 3'b111。							
		如果外部时钟模式 0 和外部时钟模式 1 同时被被配置,外部时钟的输入是 ETIF							
		注意:外部时钟模式 0 使能在寄存器的 SMC[2:0]位域。							
13:12	ETPSC[1:0]	外部触发预分频							

外部触发信号 ETIFP 的频率不能超过 TIMER_CK 频率的 1/4。当输入较快的外部时 钟时,可以使用预分频降低 ETIFP 的频率。

00: 预分频禁能

01:2分频

10: 4 分频

11:8分频

11:8 ETFC[3:0]

外部触发滤波控制

外部触发信号可以通过数字滤波器进行滤波,该位域定义了数字滤波器的滤波能力。数字滤波器的基本原理是:以 **fsamp** 频率连续采样外部触发信号,同时记录采样相同电平的次数。当该次数达到配置的滤波能力时,则认为是一个有效的电平信号。

EXTFC[3:0]	次数	f SAMP				
4'b0000	Filter	lisabled.				
4'b0001	2					
4'b0010	4	f _{CK_TIMER}				
4'b0011	8					
4'b0100	6	f/2				
4'b0101	8	f _{DTS_Cк} /2				
4'b0110	6	£ //				
4'b0111	8	f _{DTS_Cк} /4				
4'b1000	6	f /0				
4'b1001	8	f _{DTS_CK} /8				
4'b1010	5					
4'b1011	6	f _{DTS_CK} /16				
4'b1100	8					
4'b1101	5					
4'b1110	6	f _{DTS_CK} /32				
4'b1111	8					

7 MSM

主-从模式

该位被用来同步被选择的定时器同时开始计数。通过 TRIGI 和 TRGO, 定时器被连接在一起, TRGO 用做启动事件。

0: 主从模式禁能

1: 主从模式使能

6:4 TRGS[2:0]

触发选择

该位域用来指定选择哪一个信号作为用来同步计数器的触发输入源

000: ITI0

001: ITI1

010: ITI2

011: ITI3

100: CI0F_ED

101: CI0FE0

110: CI1FE1

111: ETIFP

从模式被使能后这些位不能改

3 保留 必须保持复位值
2:0 SMC[2:0] 从模式控制
000: 关闭从模式. 如果 CEN=1,则预分频器直接由内部时钟驱动
001: 编码器模式 0. 根据 Cl1FE1 的电平,计数器在 Cl0FE0 的边沿向上/下计数
010: 编码器模式 1. 根据 Cl0FE0 的电平,计数器在 Cl1FE1 的边沿向上/下计数
011: 编码器模式 2. 根据另一个信号的输入电平,计数器在 Cl0FE0 和 Cl1FE1 的边沿向上/下计数
100: 复位模式. 选中的触发输入的上升沿重新初始化计数器,并且产生更新事件.
101: 暂停模式. 当触发输入为高时,计数器的时钟开启。一旦触发输入变为低,则计数器时钟停止
110: 事件模式.计数器在触发输入的上升沿启动。
111: 外部时钟模式 0. 选中的触发输入的上升沿驱动计数器

DMA 和中断使能寄存器 (TIMERx_DMAINTEN)

地址偏移: 0x0C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	TRGDEN	CMTDEN	CH3DEN	CH2DEN	CH1DEN	CH0DEN	UPDEN	BRKIE	TRGIE	CMTIE	CH3IE	CH2IE	CH1IE	CH0IE	UPIE
	rw	rw	rw	rw	rw	rw	rw	rw/	rw	nw	rw.	rw	rw	rw	rw

位/位域	名称	描述
15	保留	必须保持复位值。
14	TRGDEN	触发 DMA 请求使能 0: 禁止触发 DMA 请求 1: 使能触发 DMA 请求
13	CMTDEN	换相 DMA 更新请求使能 0: 禁止换相 DMA 更新请求 1: 使能换相 DMA 更新请求
12	CH3DEN	通道 3 比较/捕获 DMA 请求使能 0: 禁止通道 3 比较/捕获 DMA 请求 1: 使能通道 3 比较/捕获 DMA 请求
11	CH2DEN	通道 2 比较/捕获 DMA 请求使能 0:禁止通道 2 比较/捕获 DMA 请求 1:使能通道 2 比较/捕获 DMA 请求
10	CH1DEN	通道 1 比较/捕获 DMA 请求使能 0:禁止通道 1 比较/捕获 DMA 请求 1:使能通道 1 比较/捕获 DMA 请求

digabevice			ODJZI	40377	/11/	1 /1/1
9	CH0DEN	通道 0 比较/捕获 DMA 请求使能 0:禁止通道 0 比较/捕获 DMA 请求 1:使能通道 0 比较/捕获 DMA 请求				
8	UPDEN	更新 DMA 请求使能 0: 禁止更新 DMA 请求 1: 使能更新 DMA 请求				
7	BRKIE	中止中断使能 0:禁止中止中断 1:使能中止中断				
6	TRGIE	触发中断使能 0:禁止触发中断 1:使能触发中断				
5	CMTIE	换相更新中断使能 0:禁止换相更新中断 1:使能换相更新中断				
4	CH3IE	通道 3 比较/捕获中断使能 0:禁止通道 3 中断 1:使能通道 3 中断				
3	CH2IE	通道 2 比较/捕获中断使能 0:禁止通道 2 中断 1:使能通道 2 中断				
2	CH1IE	通道 1 比较/捕获中断使能 0:禁止通道 1 中断 1:使能通道 1 中断				
1	CH0IE	通道 0 比较/捕获中断使能 0:禁止通道 0 中断 1:使能通道 0 中断				
0	UPIE	更新中断使能 0:禁止更新中断 1:使能更新中断				

中断标志寄存器 (TIMERx_INTF)

地址偏移: 0x10 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	保留		CH3OF	CH2OF	CH1OF	CH0OF	保留	BRKIF	TRGIF	CMTIF	CH3IF	CH2IF	CH1IF	CH0IF	UPIF	

rc_w0 rc_w0

rc_w0 rc_w0 .

GD32F403xx 用户手册

rc_w0 rc_w0

rc_w0 rc_w0

rc_w0

位/位域	名称	描述
15:13	保留	必须保持复位值。
12	CH3OF	通道 3 捕获溢出标志 参见 CH0OF 描述
11	CH2OF	通道 2 捕获溢出标志 参见 CH0OF 描述
10	CH1OF	通道 1 捕获溢出标志 参见 CH0OF 描述
9	CH0OF	通道 0 捕获溢出标志 当通道 0 被配置为输入模式时,在 CHOIF 标志位已经被置 1 后,捕获事件再次发生时,该标志位可以由硬件置 1。该标志位由软件清 0. 0: 无捕获溢出中断发生 1: 发生了捕获溢出中断
8	保留	必须保持复位值。
7	BRKIF	中止中断标志位 当中止输入有效时,由硬件对该位置'1'。 当中止输入无效时,则该位可由软件清'0'。 0: 无中止事件产生 1: 中止输入上检测到有效电平
6	TRGIF	触发中断标志 当发生触发事件时,此标志会置 1,此位由软件清 0。当暂停模式使能时,触发输入的任意边沿都可以产生触发事件。否则,其它模式时,仅在触发输入端检测到有效边沿,产生触发事件。 0:无触发事件产生 1:触发中断产生
5	CMTIF	通道换相更新中断标志 当通道换相更新事件发生时此标志位被硬件置 1,此位由软件清 0。 0:无通道换相更新中断发生 1:通道换相更新中断发生
4	CH3IF	通道 3 比较/捕获中断标志 参见 CHOIF 描述
3	CH2IF	通道 2 比较/捕获中断标志 参见 CHOIF 描述
2	CH1IF	通道 1 比较/捕获中断标志 参见 CH0IF 描述
1	CH0IF	通道 0 比较/捕获中断标志

此标志由硬件置 1 软件清 0。当通道 0 在输入模式下时,捕获事件发生时此标志位被置 1,当通道 0 在输出模式下时,此标志位在一个比较事件发生时被置 1。

当通道 0 在输入模式下时,读 TIMERx_CH0CV 会将此标志清 0。

0: 无通道 0 中断发生

1: 通道 0 中断发生

0 UPIF 更新中断标志

此位在任何更新事件发生时由硬件置 1, 软件清 0。

0: 无更新中断发生

1: 发生更新中断

软件事件产生寄存器 (TIMERx_SWEVG)

地址偏移: 0x14 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	:留				BRKG	TRGG	CMTG	CH3G	CH2G	CH1G	CH0G	UPG
·								w	w	w	w	w	w	w	w

位/位域	名称	描述
15:8	保留	必须保持复位值。
7	BRKG	产生中止事件 该位由软件置 1,用于产生一个中止事件,由硬件自动清 0。当此位被置 1 时,POEN 位被清 0 且 BRKIF 位被置 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA 传输。 0:不产生中止事件 1:产生中止事件
6	TRGG	触发事件产生 此位由软件置 1,由硬件自动清 0.当此位被置 1,TIMERx_INTF 寄存器的 TRGIF 标志位被置 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA 传输。 0:无触发事件产生 1:产生触发事件
5	CMTG	通道换相更新事件发生 此位由软件置 1,由硬件自动清 0.当此位被置 1,通道捕获/比较控制寄存器 (CHxEN, CHxNEN 和 CHxCOMCTL) 的互补输出被更新。 0:不产生通道控制更新事件 1:产生通道控制更新事件
4	CH3G	通道 3 捕获或比较事件发生 参见 CH0G 描述
3	CH2G	通道 2 捕获或比较事件发生

algabatica		
		参见 CH0G 描述
2	CH1G	通道 1 捕获或比较事件发生 参见 CH0G 描述
1	CH0G	通道 0 捕获或比较事件发生 该位由软件置 1,用于在通道 0 产生一个捕获/比较事件,由硬件自动清 0。当此位 被置 1,CHOIF 标志位被置 1,若开启对应的中断和 DMA,则发出相应的中断和 DMA 请求。此外,如果通道 0 配置为输入模式,计数器的当前值被 TIMERx_CHOCV 寄存器捕获,如果 CHOIF 标志位已经为 1,则 CHOOF 标志位被 置 1。 0: 不产生通道 0 捕获或比较事件 1: 发生通道 0 捕获或比较事件
0	UPG	更新事件产生 此位由软件置 1,被硬件自动清 0。当此位被置 1,如果选择了中央对齐或向上计数 模式,计数器被清 0。否则(向下计数模式)计数器将载入自动重载值,预分频计数器 将同时被清除。 0: 无更新事件产生 1: 产生更新事件

通道控制寄存器 0 (TIMERx_CHCTL0)

地址偏移: 0x18 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH1COI CEN		I1COMCTL[[2:0]	CH1COM SEN	CH1COM FEN	CH1M	S[1:0]	CH0COM CEN		COMCTL[2	2:0]	CH0COM SEN	CH0COM FEN	CH0M	S[1:0]
	CH1CA	PFLT[3:0]		CH1CAP	PSC[1:0]				CH0CAP	FLT[3:0]		CH0CAP	PSC[1:0]		
	_			_		_			_			-		_	

输出比较模式:

位/位域	名称	描述
15	CH1COMCEN	通道 1 输出比较清 0 使能 参见 CH0COMCEN 描述
14:12	CH1COMCTL[2:0]	通道 1 输出比较模式 参见 CH0COMCTL 描述
11	CH1COMSEN	通道 1 输出比较影子寄存器使能 参见 CH0COMSEN 描述
10	CH1COMFEN	通道 1 输出比较快速使能 参见 CH0COMFEN 描述
9:8	CH1MS[1:0]	通道 1 模式选择

这些位定义了通道的方向和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄存器的 CH1EN 位被清 0)时这些位才可以写。

00: 通道1配置为输出

01: 通道 1 配置为输入,IS1 映射在 CI1FE1 上

10: 通道 1 配置为输入, IS1 映射在 CI0FE1 上

11: 通道 1 配置为输入, IS1 映射在 ITS 上

注意: 当 CH1MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存器)选择内部触发输入。

7 CH0COMCEN

通道 0 输出比较清 0 使能

当此位被置 1,当检测到 ETIFP 信号输入高电平时,O0CPRE 参考信号被清 0

0:禁止通道0输出比较清零

1: 使能通道 0 输出比较清零

6:4 CH0COMCTL[2:0]

通道 0 输出比较模式

此位定义了输出准备信号 OOCPRE 的输出比较模式,而 OOCPRE 决定了 CH0_O、CH0_ON 的值。另外,OOCPRE 高电平有效,而 CH0_O、CH0_ON 通道的极性取决于 CH0P、CH0NP 位。

000: 时基。输出比较寄存器 TIMERx_CH0CV 与计数器 TIMERx_CNT 间的比较对 O0CPRE 不起作用

001: 匹配时设置为高。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 O0CPRE 为高。

010: 匹配时设置为低。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 O0CPRE 为低。

011: 匹配时翻转。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 O0CPRE 翻转。

100: 强制为低。强制 O0CPRE 为低电平

101: 强制为高。强制 O0CPRE 为高电平

110: PWM 模式 0。在向上计数时,一旦计数器值小于 TIMERx_CH0CV 时,O0CPRE 为高电平,否则为低电平。在向下计数时,一旦计数器的值大于 TIMERx_CH0CV 时,O0CPRE 为低电平,否则为高电平。

111: PWM 模式 1。在向上计数时,一旦计数器值小于 TIMERx_CH0CV 时,O0CPRE 为低电平,否则为高电平。在向下计数时,一旦计数器的值大于 TIMERx_CH0CV 时,O0CPRE 为高电平,否则为低电平。

如果配置在 PWM 模式下,只有当输出比较模式从时基模式变为 PWM 模式或者比较结果改变时,O0CPRE 电平才改变。

当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH0MS =00 (比较模式) 时此位不能被改变。

3 CH0COMSEN

通道 0 输出比较影子寄存器使能

当此位被置 1, TIMERx_CH0CV 寄存器的影子寄存器被使能,影子寄存器在每次更新事件时都会被更新。

0: 禁止通道 0 输出/比较影子寄存器

1: 使能通道 0 输出/比较影子寄存器

仅在单脉冲模式下(SPM =1),可以在未确认影子寄存器的情况下使用 PWM 模式

当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH0MS =00 时此位不能被改变。

2 CHOCOMFEN 通道 0 输出比较快速使能

当该位为 1 时,如果通道配置为 PWM0 模式或者 PWM1 模式,会加快捕获/比较输出对触发输入事件的响应。输出通道将触发输入信号的有效边沿作为一个比较匹配,CH0 O 被设置为比较电平而与比较结果无关。

0: 禁止通道 0 输出比较快速.

1: 使能通道 0 输出比较快速。

1:0 CH0MS[1:0] 通道 0 I/O 模式选择

这些位定义了通道的工作模式和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄存器的 CH0EN 位被清 0)时这些位才可写。

00: 通道 0 配置为输出

01: 通道 0 配置为输入, ISO 映射在 CIOFEO 上

10: 通道 0 配置为输入, ISO 映射在 CI1FE0 上

11: 通道 0 配置为输入, ISO 映射在 ITS 上

注意: 当 CH0MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存

器)选择内部触发输入

输入捕获模式:

位/位域	名称	描述
15:12	CH1CAPFLT[3:0]	通道 1 输入捕获滤波控制 参见 CH0CAPFLT 描述
11:10	CH1CAPPSC[1:0]	通道 1 输入捕获预分频器 参见 CH0CAPPSC 描述
9:8	CH1MS[1:0]	通道 1 模式选择 与输出模式相同
7:4	CH0CAPFLT[3:0]	通道 0 输入捕获滤波控制

CIO 输入信号可以通过数字滤波器进行滤波,该位域配置滤波参数。

数字滤波器的基本原理:根据 fsamp 对 CIO 输入信号进行连续采样,并记录信号相同电平的次数。达到该位配置的滤波参数后,认为是有效电平。

滤波器参数配置如下:

CH0CAPFLT [3:0]	采样次数	fsamp
4'b0000	Э	
4'b0001	2	
4'b0010	4	fck_timer
4'b0011	8	
4'b0100	6	fors/2
4'b0101	8	ID19/2
4'b0110	6	fors/4
4'b0111	8	וטוא/4
4'b1000	6	f _{DTS} /8

GD32F403xx 用户手册

4'b1001	8	
4'b1010	5	
4'b1011	6	f _{DTS} /16
4'b1100	8	
4'b1101	5	
4'b1110	6	f _{DTS} /32
4'b1111	8	

3:2 CH0CAPPSC[1:0] 通

通道 0 输入捕获预分频器

这 2 位定义了通道 0 输入的预分频系数。当 TIMERx_CHCTL2 寄存器中的

CH0EN =0 时,则预分频器复位。

00: 无预分频器, 捕获输入口上检测到的每一个边沿都触发一次捕获

01:每2个事件触发一次捕获10:每4个事件触发一次捕获11:每8个事件触发一次捕获

1:0 CH0MS[1:0]

与输出比较模式相同

通道0模式选择

通道控制寄存器 1 (TIMERx_CHCTL1)

地址偏移: 0x1C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH3COM CEN		3COMCTL[2	2:0]	CH3COM SEN	CH3COM FEN	СНЗМ	S[1:0]	CH2COM CEN		CH2COMCTL[2:0]		CH2COM SEN	CH2COM FEN		18[1:0]
	CH3CAF	PFLT[3:0]		CH3CAP	PSC[1:0]				CH2CAF	CH2CAPFLT[3:0]		CH2CAF	PSC[1:0]		

输出比较模式:

位/位域	名称	描述
15	CH3COMCEN	通道3输出比较清0使能
		参见 CH0COMCEN 描述
14:12	CH3COMCTL[2:0]	通道3输出比较模式
		参见 CH0COMCTL 描述
11	CH3COMSEN	通道3输出比较影子寄存器使能
		参见 CH0COMSEN 描述
10	CH3COMFEN	通道3输出比较快速使能
		参见 CH0COMFEN 描述
9:8	CH3MS[1:0]	通道3模式选择
		这些位定义了通道的方向和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄
		存器的 CH3EN 位被清 0)时这些位才可以写。

00: 通道3配置为输出

01: 通道 3 配置为输入, IS3 映射在 Cl3FE3 上

10: 通道 3 配置为输入, IS3 映射在 Cl2FE3 上

11: 通道 3 配置为输入,IS3 映射在 ITS 上

注意: 当 CH3MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存

器)选择内部触发输入

7 CH2COMCEN

通道 2 输出比较清 0 使能

当此位被置 1,当检测到 ETIFP 输入高电平时,O2CPRE 参考信号被清 0

0: 使能通道 2 输出比较清零

1: 禁止通道 2 输出比较清零

6:4 CH2COMCTL[2:0]

通道 2 输出比较模式

此位定义了输出准备信号 O2CPRE 的输出比较模式,而 O2CPRE 决定了 CH2_O、CH2_ON 的值。另外,O2CPRE 高电平有效,而 CH2_O、CH2_ON 通道的极性取决于 CH2P、CH2NP 位。

000: 时基。输出比较寄存器 TIMERx_CH2CV 与计数器 TIMERx_CNT 间的比较对 O2CPRE 不起作用

001: 匹配时设置为高。当计数器的值与捕获/比较值寄存器 TIMERx_CH2CV 相同时,强制 O2CPRE 为高。

010: 匹配时设置为低。当计数器的值与捕获/比较值寄存器 TIMERx_CH2CV 相同时,强制 O2CPRE 为低。

011: 匹配时翻转。当计数器的值与捕获/比较值寄存器 TIMERx_CH2CV 相同时,强制 O2CPRE 翻转。

100: 强制为低。强制 O2CPRE 为低电平

101: 强制为高。强制 O2CPRE 为高电平

110: PWM 模式 0。在向上计数时,一旦计数器值小于 TIMERx_CH2CV 时,O2CPRE 为高电平,否则为低电平。在向下计数时,一旦计数器的值大于 TIMERx_CH2CV 时,O2CPRE 为低电平,否则为高电平。

111: PWM 模式 1。在向上计数时,一旦计数器值小于 TIMERx_CH2CV 时,O2CPRE 为低电平,否则为高电平。在向下计数时,一旦计数器的值大于 TIMERx_CH2CV 时,O2CPRE 为高电平,否则为低电平。

如果配置在 PWM 模式下,只有当输出比较模式从时基模式变为 PWM 模式或者比较 结果改变时, O2CPRE 电平才改变。

当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH2MS =00 (比较模式) 时此位不能被改变。

3 CH2COMSEN

通道 0 输出比较影子寄存器使能

当此位被置 1, TIMERx_CH2CV 寄存器的影子寄存器被使能,影子寄存器在每次更新事件时都会被更新。

0: 禁止通道 2 输出/比较影子寄存器

1: 使能通道 2 输出/比较影子寄存器

仅在单脉冲模式下(SPM =1),可以在未确认影子寄存器情况下使用 PWM 模式 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH2MS =00 时此位不能被改变。

2 CH2COMFEN

通道 2 输出比较快速使能

当该位为 1 时,如果通道配置为 PWM0 模式或者 PWM1 模式,会加快捕获/比较输出对触发输入事件的响应。输出通道将触发输入信号的有效边沿作为一个比较匹配,CH2 O 被设置为比较电平而与比较结果无关。

0: 禁止通道 2 输出比较快速.

1: 使能通道 2 输出比较快速。

1:0 CH2MS[1:0] 通道 2 I/O 模式选择

这些位定义了通道的工作模式和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄存器的 CH2EN 位被清 0)时这些位才可写。

00: 通道2配置为输出

01: 通道 2 配置为输入, IS2 映射在 CI2FE2 上

10: 通道 2 配置为输入, IS2 映射在 Cl3FE2 上

11: 通道 2 配置为输入, IS2 映射在 ITS 上.

注意: 当 CH2MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存

器)选择内部触发输入

输入捕获模式:

位/位域	名称	描述
15:12	CH3CAPFLT[3:0]	通道 3 输入捕获滤波控制 参见 CH0CAPFLT 描述
11:10	CH3CAPPSC[1:0]	通道 3 输入捕获预分频器 参见 CH0CAPPSC 描述
9:8	CH3MS[1:0]	通道 3 模式选择 与输出模式相同
7:4	CH2CAPFLT[3:0]	通道 2 输入捕获滤波控制

CI2 输入信号可以通过数字滤波器进行滤波,该位域配置滤波参数。

数字滤波器的基本原理:根据 fsamp 对 Cl2 输入信号进行连续采样,并记录信号相同电平的次数。达到该位配置的滤波参数后,认为是有效电平。

滤波器参数配置如下:

CH2CAPFLT [3:0]	采样次数	f SAMP
4'b0000	Э	
4'b0001	2	
4'b0010	4	fck_timer
4'b0011	8	
4'b0100	6	f/2
4'b0101	8	f _{DTS} /2
4'b0110	6	f/A
4'b0111	8	f _{DTS} /4
4'b1000	6	£ /0
4'b1001	8	f _{DTS} /8
4'b1010	5	fors/16
4'b1011	6	IDTS/ 10

GD32F403xx 用户手册

4'b1100	8	
4'b1101	5	
4'b1110	6	f _{DTS} /32
4'b1111	8	

3:2 CH2CAPPSC[1:0]

通道2输入捕获预分频器

这 2 位定义了通道 2 输入的预分频系数。当 TIMERx_CHCTL2 寄存器中的

CH2EN =0 时,则预分频器复位。

00: 无预分频器, 捕获输入口上检测到的每一个边沿都触发一次捕获

01: 每2个事件触发一次捕获 10: 每4个事件触发一次捕获 11: 每8个事件触发一次捕获

1:0 CH2MS[1:0]

通道 2 模式选择 与输出比较模式相同

通道控制寄存器 2 (TIMERx_CHCTL2)

地址偏移: 0x20 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留.	CH3P	CH3EN	СЗСОМРР	CH2NEN	CH2P	CH2EN	CH1NP	CH1NEN	CH1P	CH1EN	CH0NP	CH0NEN	CH0P	CH0EN
		nw.	rw.	rw.	r)A/	nw.	na/	nw.	nw.	DA/	rw.	rw.	r)A/	rw.	rw.

Bits	Fields	Descriptions
15:14	保留	必须保持复位值。
13	CH3P	通道 3 极性 参考 CH0P 描述
12	CH3EN	通道 3 使能 参考 CH0EN 描述
11	CH2NP	通道 2 互补输出极性 参考 CH0NP 描述
10	CH2NEN	通道 2 互补输出使能 参考 CH0NEN 描述
9	CH2P	通道 2 极性 参考 CH0P 描述
8	CH2EN	通道 2 使能 参考 CH0EN 描述
7	CH1NP	通道 1 互补输出极性

		参考 CH0NP 描述
6	CH1NEN	通道 1 互补输出使能 参考 CHONEN 描述
5	CH1P	通道 1 极性 参考 CH0P 描述
4	CH1EN	通道 1 使能 参考 CH0EN 描述
3	CH0NP	通道 0 互补输出极性 当通道 0 配置为输出模式,此位定义了互补输出信号的极性。 0: 通道0互补输出高电平为有效电平 1: 通道0互补输出低电平为有效电平 当通道 0 配置为输入模式时,此位和 CH0P 联合使用,作为输入信号 CI0 的极性选择控制信号。 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 或 10 时此位不能被更改。
2	CH0NEN	通道 0 互补输出使能 当通道 0 配置为输出模式时,将此位置 1 使能通道 0 的互补输出。 0:禁止通道 0 互补输出 1:使能通道 0 互补输出
1	CH0P	通道 0 配置为输出模式时,此位定义了输出信号极性。 0: 通道0高电平为有效电平 1: 通道0低电平为有效电平 当通道 0 配置为输入模式时,此位定义了 CIO 信号极性 [CHONP, CHOP] 将选择 CIOFEO 或者 CI1FEO 的有效边沿或者捕获极性 [CHONP==0, CHOP==0]: 把 CIxFEO 的上升沿作为捕获或者从模式下触发的有效信号,并且 CIxFEO 不会被翻转。 [CHONP==0, CHOP==1]: 把 CIxFEO 的下降沿作为捕获或者从模式下触发的有效信号,并且 CIxFEO 会被翻转。 [CHONP==1, CHOP==0]: 保留。 [CHONP==1, CHOP==1]: 保留。 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 或 10 时此位不能被更改。
0	CH0EN	通道 0 捕获/比较使能 当通道 0 配置为输出模式时,将此位置 1 使能 CH0_O 信号有效。当通道 0 配置为输入模式时,将此位置 1 使能通道 0 上的捕获事件。 0: 禁止通道 0 1: 使能通道 0

计数器寄存器 (TIMERx_CNT)

地址偏移: 0x24

复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw

位/位域 名称 描述

15:0 CNT[15:0] 这些位是当前的计数值。写操作能改变计数器值。

预分频寄存器 (TIMERx_PSC)

地址偏移: 0x28 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw

位/位域 名称 描述

15:0 PSC[15:0] 计数器时钟预分频值

计数器时钟等于 TIMER_CK 时钟除以(PSC+1),每次当更新事件产生时,PSC 的 值被装入到对应的影子寄存器。

计数器自动重载寄存器 (TIMERx_CAR)

地址偏移: 0x2C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CARL[15:0]

rw

位/位域 名称 描述

15:0 CARL[15:0] 计数器自动重载值

这些位定义了计数器的自动重载值。

注意: 在定时器被配置为输入捕获模式时,该寄存器需要被配置成一个大于用户期望值的非 0 值(例如 0xFFFF)。

重复计数寄存器 (TIMERx_CREP)

地址偏移: 0x30

复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

保留 CREP[7:0]

rw

 位/位域
 名称
 描述

 15:8
 保留
 必须保持复位值。

 7:0
 CREP[7:0]
 重复计数器的值 这些位定义了更新事件的产生速率。重复计数器计数值减为 0 时产生更新事件。影

子寄存器的更新速率也会受这些位影响(前提是影子寄存器被使能)。

通道 0 捕获/比较寄存器 (TIMERx_CH0CV)

地址偏移: 0x34 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH0VAL[15:0]

rw

位/位域 名称 描述

15:0 CH0VAL[15:0] 通道 0 的捕获或比较值
 当通道 0 配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存器为只读。
 当通道 0 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子寄存器后,影子寄存器值随每次更新事件更新。

通道 1 捕获/比较寄存器 (TIMERx_CH1CV)

地址偏移: 0x38 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH1VAL[15:0]

rw

 位/位域
 名称
 描述

 15:0
 CH1VAL[15:0]
 通道 1 的捕获或比较值

当通道1配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存

器为只读。

当通道 1 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子 寄存器后,影子寄存器值随每次更新事件更新。

通道 2 捕获/比较寄存器 (TIMERx_CH2CV)

地址偏移: 0x3C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH2VAL[15:0]

rw

位/位域 名称 描述

15:0 CH2VAL[15:0]

通道2的捕获或比较值

当通道 2 配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存器为只读。

当通道 2 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子 寄存器后,影子寄存器值随每次更新事件更新。

通道 3 捕获/比较寄存器 (TIMERx_CH3CV)

地址偏移: 0x40 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH3VAL[15:0]

rw

位/位域 名称 描述

15:0 CH3VAL[15:0]

通道3的捕获或比较值

当通道 3 配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存器为只读。

当通道 3 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子 寄存器后,影子寄存器值随每次更新事件更新。

互补通道保护寄存器 (TIMERx_CCHP)

地址偏移: 0x44 复位值: 0x0000

GD32F403xx 用户手册

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	POEN	OAEN	BRKP	BRKEN	ROS	IOS	PRO1	PROT[1:0]				DTCF	G[7:0]			
-	rw	rw	rw	rw	rw	rw	rv	v				r۱	v			

位/位域	名称	描述
15	POEN	所有的通道输出使能 该位通过以下方式置 1: -写 1 置位 -如果 OAEN=1,则在下一次更新事件发生时置 1. 该位通过以下方式清 0: -写 0 清 0 -有效的中止输入(异步) 如果一个通道配置为输出模式,如果设置了相应的使能位(TIMERx_CHCTL2 寄存器的 CHxEN, CHxNEN 位),则开启 CHx_O 和 CHx_ON 输出。 0: 禁止通道输出 1: 使能通道输出 注意: 仅当 CHxMS[1:0]=2'b00 时该位有效
14	OAEN	自动输出使能 0: POEN 位只能使用软件方式置 1 1: 如果中止输入无效,下一次更新事件发生时,POEN 位将会置 1 此位只有在 TIMERx_CCHP 寄存器的 PROT [1:0] =00 时才可修改。
13	BRKP	中止极性 此位定义了中止输入信号 BRKIN 的极性。 0:中止输入低电平有效 1:中止输入高电平有效
12	BRKEN	中止使能 此位置 1 使能中止事件和 CCS 时钟失败事件输入。 0:禁能中止输入 1:使能中止输入 此位只有在 TIMERx_CCHP 寄存器的 PROT [1:0] =00 时才可修改。.
11	ROS	运行模式下"关闭状态"配置 当 POEN 位被置 1,此位定义了通道(带有互补输出且配置为输出模式)的输出状态。 0: 当 POEN 位被置 1,通道输出信号 (CHx_O/ CHx_ON)被禁止 1: 当 POEN 位被置 1,通道输出信号 (CHx_O / CHx_ON)被使能,和TIMERO_CHCTL2 寄存器 CHxEN/CHxNEN 位有关此位在 TIMERx_CCHP 寄存器的 PROT [1:0]=10 或 11 时不能被更改。
10	IOS	空闲模式下"关闭状态"配置 当 POEN 位被清 0,此位定义了已经配置为输出模式的通道的输出状态。 0: 当 POEN 位被清 0,通道输出信号(CHx_O/ CHx_ON)被禁止 1: 当 POEN 位被清 0,通道输出信号(CHx_O/ CHx_ON)被使能,和

TIMERx CHCTL2 寄存器 CHxEN/CHxNEN 位有关

此位在 TIMERx CCHP 寄存器的 PROT [1:0]=10 或 11 时不能被更改。.

9:8 PROT[1:0]

互补寄存器保护控制

这两位定义了寄存器的写保护特性。

00: 禁能保护模式。无写保护.

01: PROT 模式 0。TIMERx_CTL1 寄存器中 ISOx/ISOxN 位,TIMERx_CCHP 寄存器中 BRKEN/BRKP/OAEN/DTCFG 位写保护

10: PROT 模式 1。除了 PROT 模式 0 下的寄存器写保护外,还有

TIMERx_CHCTL2 寄存器中 CHxP/CHxNP 位(如果相应通道配置为输出模式),

TIMERx CCHP 寄存器中 ROS/IOS 位。

11: PROT 模式 2.。除了 PROT 模式 1下的寄存器写保护外,还有

TIMERx_CHCTLR0/1 中 CHxCOMCTL/ CHxCOMSEN 位(如果相关通道配置为输出模式)写保护。

系统复位后这两位只能被写一次,一旦 TIMERx_CCHP 寄存器被写入,这两位被写保护

7:0 DTCFG[7:0]

死区时间控制

DTCFG 值和死区时间的关系如下:

DTCFG[7:5]	The duration of dead-time
3'b0xx	DTCFG[7:0] * t _{DTS_CK}
3'b10x	(64+ DTCFG[5:0]) * t _{DTS_CK} *2
3'b110	(32+ DTCFG[4:0]) * t _{DTS_CK} *8
3'b111	(32+ DTCFG[4:0]) * t _{DTS_Ск} *16

注意:

- 1. tdts_cк 是 DTS_CK 的周期,由 TIMERx_CTL0 中的 CKDIC[1:0]定义。
- 2. 此位只有在 TIMERx_CCHP 寄存器的 PROT [1:0]=00 时才可修改。

DMA 配置寄存器 (TIMERx_DMACFG)

地址偏移: 0x48 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13	12 11	10	9	8	7	6	5	4	3	2	1	0
保留		DMATC[4:0				保留			1	DMATA [4:0	l	

 位/位域
 名称
 描述

 15:14
 保留
 必须保持复位值。

 12:8
 DMATC [4:0]
 DMA 传输计数

该位域定义了 DMA 访问(读写)TIMERx_DMAVB 寄存器的数量 n, n = (DMATC [4:0] +1). DMATC [4:0] 从 5'b0_0000 到 5'b1_0001.

7:5 保留 必须保持复位值。 4:0 **DMATA** [4:0] DMA 传输起始地址 该位域定义了 DMA 访问 TIMERx DMAVB 寄存器的第一个地址。当通过 TIMERx_DMA 第一次访问时,访问的就是该位域指定的地址。第二次访问 TIMERx DMAVB时,将访问起始地址+0x4。

DMA 发送缓冲区寄存器 (TIMERx_DMATB)

地址偏移: 0x4C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 12 14 8 0 DMATB[15:0]

位/位域	名称	描述
15:0	DMATB [15:0]	DMA 发送缓冲
		对这个寄存器的读或写, (起始地址+传输次数*4)地址范围内的寄存器会被访问
		传输次数由硬件计算,范围为 0 到 DMATC。

配置寄存器 (TIMERx_CFG)

地址偏移: 0xFC 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保	留							CHVSEL	OUTSEL

描述 位/位域 名称 15:2 必须保持复位值。 保留 1 **CHVSEL** 写捕获比较寄存器选择位 此位由软件写1或清0。 1: 当写入捕获比较寄存器的值与寄存器当前值相等时,写入操作无效 0: 无影响 0 **OUTSEL** 输出值选择位 此位由软件写1或清0。 1: 如果 POEN 位与 IOS 位均为 0,则输出无效 0: 无影响

16.2. 通用定时器 L0(TIMERx, x=1,2,3,4)

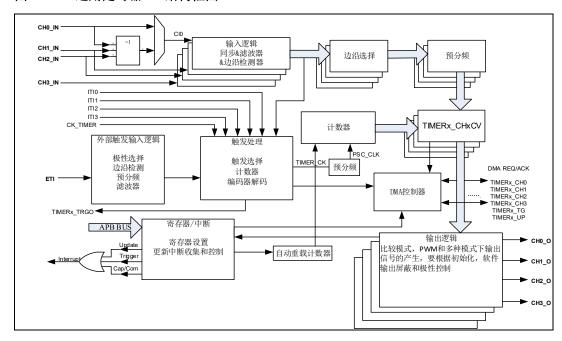
16.2.1. 简介

通用定时器 L0 是 4 通道定时器,支持输入捕获,输出比较,产生 PWM 信号控制电机和电源管理。通用定时器 L0 计数器是 16 位无符号计数器。

通用定时器 LO 是可编程的,可以被用来计数,其外部事件可以驱动其他定时器。

定时器和定时器之间是相互独立,但是它们的计数器可以被同步在一起形成一个更大的定时器。

16.2.2. 主要特性


- 总通道数: 4;
- 计数器宽度: 16位;
- 时钟源可选:内部时钟,内部触发,外部输入,外部触发;
- 多种计数模式:向上计数,向下计数和中央计数;
- 正交编码器接口:被用来追踪运动和分辨旋转方向和位置;
- 霍尔传感器接口:用来做三相电机控制;
- 可编程的预分频器: 16位,运行时可以被改变;
- 每个通道可配置:输入捕获模式,输出比较模式,可编程的PWM模式,单脉冲模式;
- 自动重装载功能;
- 中断输出和DMA请求: 更新事件, 触发事件, 比较/捕获事件;
- 多个定时器的菊链使得一个定时器可以同时启动多个定时器;
- 定时器的同步允许被选择的定时器在同一个时钟周期开始计数;
- 定时器主-从管理。

16.2.3. 结构框图

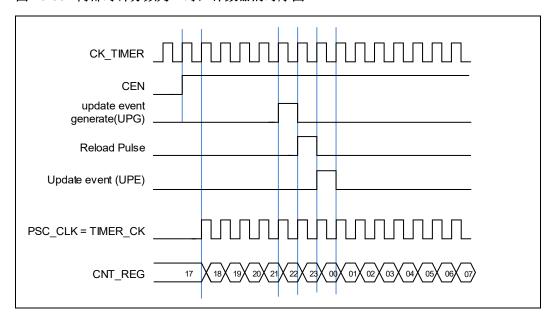
图 16-29. 通用定时器 LO 结构框图 提供了通用定时器 LO 的内部细节

图 16-29. 通用定时器 L0 结构框图

16.2.4. 功能描述

时钟源配置

通用定时器 L0 可以由内部时钟源 CK_TIMER 或者由 SMC(TIMERx_SMCFG 寄存器位[2:0]) 控制的复用时钟源驱动。


■ SMC[2:0]==3'b000, 定时器选择内部时钟源(连接到RCU模块的CK_TIMER)

如果 SMC[2:0]==3'b000, 默认用来驱动计数器预分频器的是内部时钟源 CK_TIMER。当 CEN 置位, CK_TIMER 经过预分频器(预分频值由 TIMERx_PSC 寄存器确定)产生 PSC_CLK。

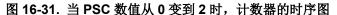
如果将 TIMERx_SMCFG 寄存器的 SMC[2:0]设置为 0x1、0x2、0x3 和 0x7, 预分频器被其他时钟源(由 TIMERx_SMCFG 寄存器的 TRGS [2:0]区域选择)驱动,在下文说明。当 SMC 位被设置为 0x4、0x5 和 0x6,计数器预分频器时钟源由内部时钟 CK_TIMER 驱动。

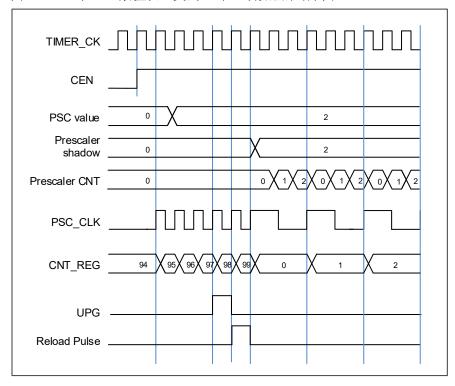
图 16-30. 内部时钟分频为 1 时,计数器的时序图

■ SMC[2:0]==3'b111(外部时钟模式0),定时器选择外部输入引脚作为时钟源

计数器预分频器可以在 TIMERx_CI0/ TIMERx_CI1 引脚的每个上升沿或下降沿计数。这种模式可以通过设置 SMC [2:0]为 0x7 同时设置 TRGS [2:0]为 0x4, 0x5 或 0x6 来选择。CIx 是 TIMERx CIx 通过数字滤波器采样后的信号。

计数器预分频器也可以在内部触发信号 ITI0/1/2/3 的上升沿计数。这种模式可以通过设置 SMC [2:0]为 0x7 同时设置 TRGS [2:0]为 0x0, 0x1, 0x2 或者 0x3。


■ SMC==1'b1(外部时钟模式1),定时器选择外部输入引脚ETI作为时钟源


计数器预分频器可以在外部引脚 ETI 的每个上升沿或下降沿计数。这种模式可以通过设置 TIMERx_SMCFG 寄存器中的 SMC1 位为 1 来选择。另一种选择 ETI 信号作为时钟源方式是,设置 SMC [2:0]为 0x7 同时设置 TRGS [2:0]为 0x7。注意 ETI 信号是通过数字滤波器采样 ETI 引脚得到的。。如果选择 ETIF 信号为时钟源,触发控制器包括边沿监测电路将在每个 ETI 信号上升沿产生一个时钟脉冲来为计数器预分频器提供时钟。

时钟预分频器

预分频器可以将定时器的时钟(TIMER_CK)频率按 1 到 65536 之间的任意值分频,分频后的时钟 PSC_CLK 驱动计数器计数。分频系数受预分频寄存器 TIMERx_PSC 控制,这个控制寄存器带有缓冲器,它能够在运行时被改变。新的预分频器的参数在下一次更新事件到来时被采用。

计数器向上计数模式

在这种模式,计数器的计数方向是向上计数。计数器从 0 开始向上连续计数到自动加载值(定义在 TIMERx_CAR 寄存器中),一旦计数器计数到自动加载值,会重新从 0 开始向上计数并产生上溢事件。在向上计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 应该被设置成 0。

当通过 TIMERx_SWEVG 寄存器的 UPG 位置 1 来设置更新事件时,计数值会被清 0,并产生更新事件。

如果 TIMERx_CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有的寄存器(自动重载寄存器,预分频寄存器)都将被更新。

下面的这些图给出了一些例子,当 TIMERx_CAR=0x99 时,计数器在不同预分频因子下的行为。

图 16-32. 向上计数时序图, PSC=0/2

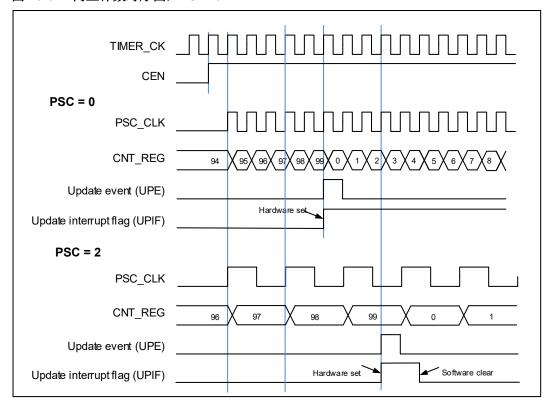
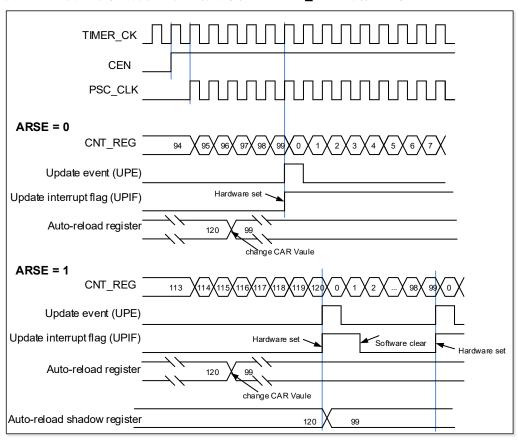
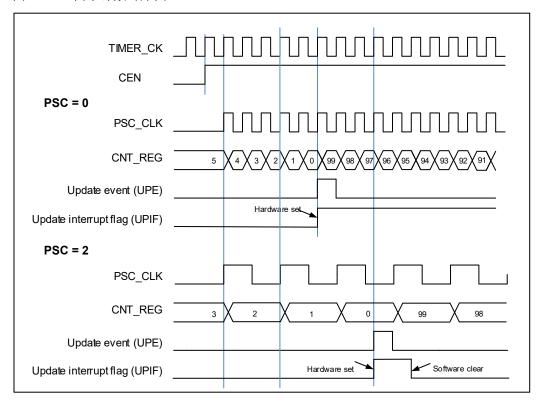



图 16-33. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值

计数器向下计数模式

在这种模式,计数器的计数方向是向下计数。计数器从自动加载值(定义在 TIMERx_CAR 寄存器中)向下连续计数到 0。一旦计数器计数到 0,计数器会重新从自动加载值开始计数并产生下溢事件。在向下计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 应该被设置成 1。


当通过 TIMERx_SWEVG 寄存器的 UPG 位置 1 来设置更新事件时,计数值会被初始化为自动加载值,并产生更新事件。

如果 TIMERx_CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有影子寄存器(计数器自动重载寄存器,预分频寄存器)都将被更新。

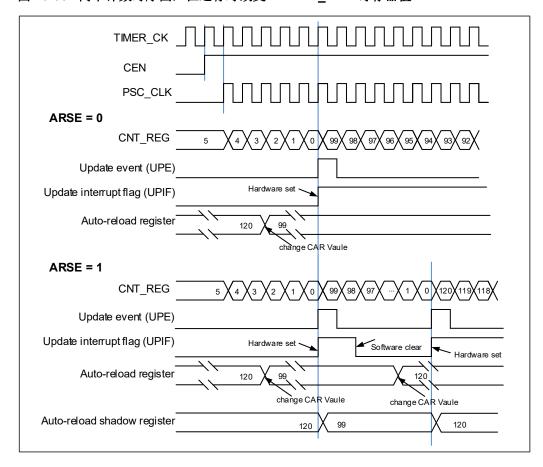

下面这些图给出了一些例子,当 TIMERx_CAR=0x99 时,计数器在不同时钟频率下的行为。

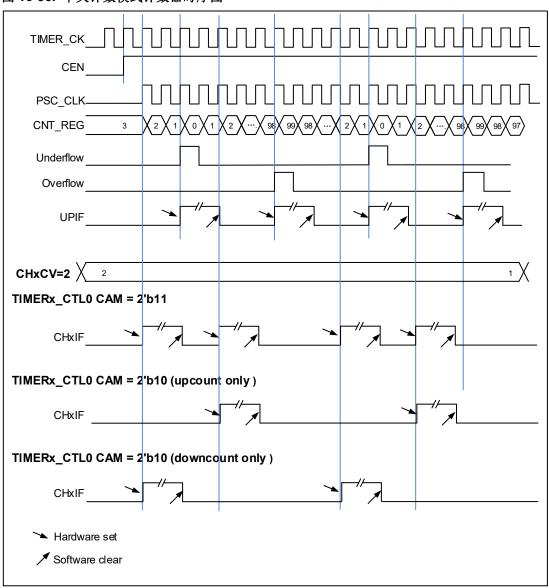
图 16-34. 向下计数时序图,PSC=0/2

图 16-35. 向下计数时序图,在运行时改变 TIMERx_CAR 寄存器值

计数器中央对齐模式

在中央对齐模式下,计数器交替的从 0 开始向上计数到自动加载值,然后再向下计数到 0。向上计数模式中,定时器模块在计数器计数到 (自动加载值-1) 产生一个上溢事件;向下计数模式中,定时器模块在计数器计数到 1 时产生一个下溢事件。在中央计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 只读,表明了的计数方向。

将 TIMERx_SWEVG 寄存器的 UPG 位置 1 可以初始化计数值为 0,并产生一个更新事件,而无需考虑计数器在中央模式下是向上计数还是向下计数。

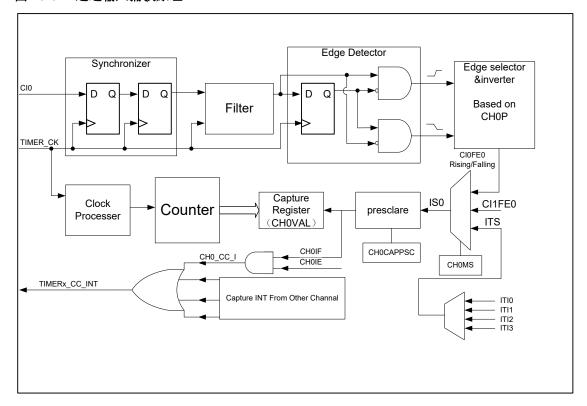

上溢或者下溢时,TIMERx_INTF 寄存器中的 UPIF 位都会被置 1,然而 CHxIF 位置 1 与 TIMERx_CTL0 寄存器中 CAM 的值有关。具体细节参考图 16-36.中央计数模式计数器时序图 如果 TIMERx_CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有影子寄存器(计数器自动重载寄存器,预分频寄存器)都将被更新。

下面这些图给出了一些例子,当 TIMERx_CAR=0x99,TIMERx_PSC=0x0 时,计数器的行为

图 16-36. 中央计数模式计数器时序图

输入捕获和输出比较通道


通用定时器 L0 拥有四个独立的通道用于捕获输入或比较输出是否匹配。每个通道都围绕一个通道捕获比较寄存器建立,包括一个输入级,通道控制器和输出级。

■ 通道输入捕获功能

通道输入捕获功能允许通道测量一个波形时序,频率,周期,占空比等。输入级包括一个数字滤波器,一个通道极性选择,边沿检测和一个通道预分频器。如果在输入引脚上出现被选择的边沿,TIMERx_CHxCV 寄存器会捕获计数器当前的值,同时 CHxIF 位被置 1,如果 CHxIE = 1 则产生通道中断。

图 16-37. 通道输入捕获原理

通 道 输 入 信 号 Clx 有 两 种 选 择 , 一 种 是 TIMERx_CHx 信 号 , 另 一 种 是 TIMERx_CH0,TIMERx_CH1 和 TIMERx_CH2 异或之后的信号。通道输入信号 Clx 先被 TIMER_CK 信号同步,然后经过数字滤波器采样,产生一个被滤波后的信号。通过边沿检测器,可以选择检测上升沿或者下降沿。通过配置 CHxP 选择使用上升沿或者下降沿。配置 CHxMS.,可以选择其他通道的输入信号,内部触发信号。配置 IC 预分频器,使得若干个输入事件后才产生一个有效的捕获事件。捕获事件发生,CHxVAL 存储计数器的值。

配置步骤如下:

第一步: 滤波器配置(TIMERx_CHCTL0寄存器中CHxCAPFLT): 根据输入信号和请求信号的质量,配置相应的CHxCAPFLT。

第二步: 边沿选择(TIMERx_CHCTL2寄存器中CHxP): 配置CHxP选择上升沿或者下降沿。

第三步: 捕获源选择 (TIMERx CHCTL0寄存器中CHxMS):

一旦通过配置 CHxMS 选择输入捕获源,必须确保通道配置在输入模式 (CHxMS!=0x0),而且TIMERx CHxCV寄存器不能再被写。

第四步: 中断使能(TIMERx_DMAINTEN寄存器中CHxIE 和 CHxDEN): 使能相应中断,可以获得中断和DMA请求。

第五步: 捕获使能(TIMERx_CHCTL2寄存器中CHxEN)。

结果: 当期望的输入信号发生时,TIMERx_CHxCV被设置成当前计数器的值,CHxIF为置1。 如果CHxIF位已经为1,则CHxOF位置1。根据TIMERx_DMAINTEN寄存器中CHxIE和 CHxDEN的配置,相应的中断和DMA请求会被提出。

直接产生: 软件设置CHxG位, 会直接产生中断和DMA请求。

通道输入捕获功能也可用来测量 TIMERx_CHx 引脚上信号的脉冲波宽度。例如,一个 PWM 波连接到 CIO。配置 TIMERx_CHCTLO 寄存器中 CH0MS 为 2'b01,选择通道 0 的捕获信号为 CIO 并设置上升沿捕获。配置 TIMERx_CHCTLO 寄存器中 CH1MS 为 2'b10,选择通道 1 捕获信号为 CIO 并设置下降沿捕获。计数器配置为复位模式,在通道 0 的上升沿复位。TIMERX CH0CV寄存器测量 PWM 的周期值,TIMERx CH1CV寄存器测量 PWM 占空比值。

■ 通道输出比较功能

在通道输出比较功能,TIMERx 可以产生时控脉冲,其位置,极性,持续时间和频率都是可编程的。当一个输出通道的 CHxCV 寄存器与计数器的值匹配时,根据 CHxCOMCTL 的配置,这个通道的输出可以被置高电平,被置低电平或者反转。当计数器的值与 CHxCV 寄存器的值匹配时,CHxIF 位被置 1,如果 CHxIE = 1则会产生中断,如果 CxCDE=1则会产生 DMA 请求。

配置步骤如下:

第一步: 时钟配置:

配置定时器时钟源, 预分频器等。

第二步: 比较模式配置:

设置CHxCOMSEN位来配置输出比较影子寄存器;

设置CHxCOMCTL位来配置输出模式(置高电平/置低电平/反转);

设置CHxP位来选择有效电平的极性;

设置CHxEN使能输出。

第三步: 通过CHxIE/CxCDE位配置中断/DMA请求使能。

第四步: 通过TIMERx CAR寄存器和TIMERx CHxCV寄存器配置输出比较时基:

CHxVAL可以在运行时根据你所期望的波形而改变。

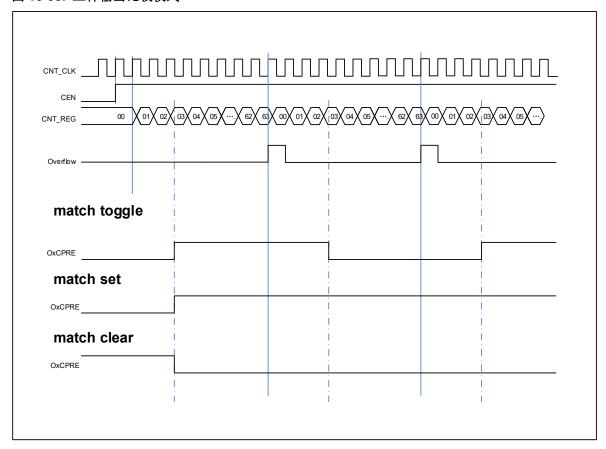

第五步:设置CEN位使能定时器。

图 16-38. 三种输出比较模式显示了三种比较输出模式: 反转/置高电平/置低电平, CAR=0x63,

CHxVAL=0x3。

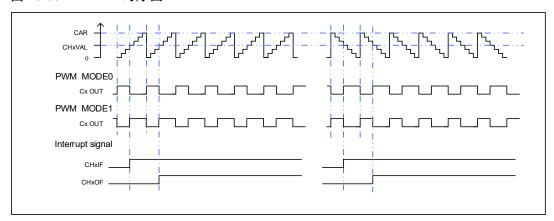
图 16-38. 三种输出比较模式

输出 PWM 功能

在 PWM 输出模式下 (PWM 模式 0 是配置 CHxCOMCTL 为 3'b110, PWM 模式 1 是配置 CHxCOMCTL 为 3'b111), 通道根据 TIMERx_CAR 寄存器和 TIMERx_CHxCV 寄存器的值, 输出 PWM 波形。

根据计数模式,我们可以分为两种 PWM 波: EAPWM(边沿对齐 PWM)和 CAPWM(中央对齐 PWM)。

EAPWM 的周期由 TIMERx_CAR 寄存器值决定,占空比由 TIMERx_CHxCV 寄存器值决定。 **图 16-39. EAPWM 时序图**显示了 EAPWM 的输出波形和中断。


CAPWM 的周期由(2*TIMERx_CAR 寄存器值)决定,占空比由(2*TIMERx_CHxCV 寄存器值)决定。 **图 16-40. CAPWM 时序图**显示了 CAPWM 的输出波形和中断。

在 PWM0 模式下 (CHxCOMCTL==3'b110), 如果 TIMERx_CHxCV 寄存器的值大于 TIMERx_CAR 寄存器的值,通道输出一直为有效电平。

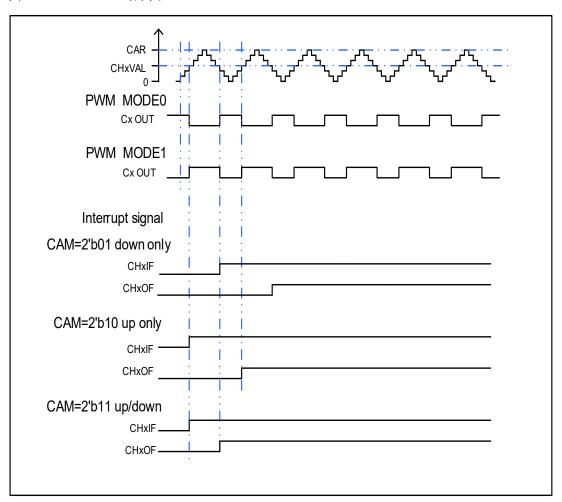

在 PWM0 模式下(CHxCOMCTL==3'b110), 如果 TIMERx_CHxCV 寄存器的值等于 0, 通道输出一直为无效电平。

图 16-39. EAPWM 时序图

图 16-40. CAPWM 时序图

通道输出准备信号

当 TIMERx 用于输出匹配比较模式下,设置 CHxCOMCTL 位可以定义 OxCPRE 信号(通道 x 准备信号)类型。OxCPRE 信号有若干类型的输出功能,包括,设置 CHxCOMCTL=0x00 可以保持原始电平;设置 CHxCOMCTL=0x01 可以将 OxCPRE 信号设置为高电平;设置 CHxCOMCTL=0x02 可以将 OxCPRE 信号设置为低电平;设置 CHxCOMCTL=0x03,在计数

器值和 TIMERx_CHxCV 寄存器的值匹配时,可以翻转输出信号。

PWM 模式 0 和 PWM 模式 1 是 OxCPRE 的另一种输出类型,设置 CHxCOMCTL 位域位 0x06 或 0x07 可以配置 PWM 模式 0/PWM 模式 1。在这些模式中,根据计数器值和 TIMERx_CHxCV 寄存器值的关系以及计数方向, OxCPRE 信号改变其电平。具体细节描述,请参考相应的位。

设置 CHxCOMCTL =0x04 或 0x05 可以实现 OxCPRE 信号的强制输出功能。输出比较信号能够直接由软件强置为有效或无效状态,而不依赖于 TIMERx_CHxCV 的值和计数器值之间间的比较结果。

设置 CHxCOMCEN=1, 当由外部 ETI 引脚信号产生的 ETIFE 信号为高电平时, OxCPRE 被强制为低电平。在下一次更新事件到来时, OxCPRE 信号才会回到有效电平状态。

正交译码器

参考<u>正交译码器</u>。

霍尔传感器接口功能

参考霍尔传感器接口功能。

主-从管理

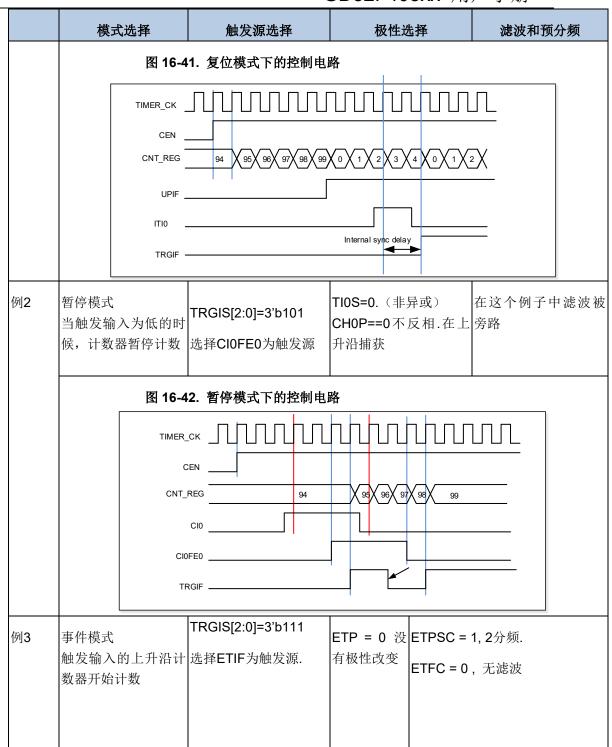
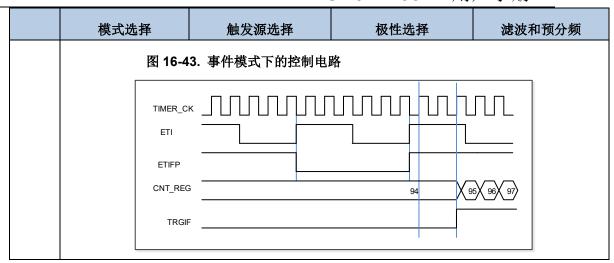

TIMERx 能在多种模式下同步外部触发,包括复位模式,暂停模式和事件模式,可以通过设置 TIMERx_SMCFG 寄存器中的 SMC[2:0]配置这些模式。这些模式的输入触发源可以通过设置 TIMERx_SMCFG 寄存器中的 TRGS[2:0]来选择。

表 16-5. 从模式列表和举例


	模式选择	触发源选择	极性选择	滤波和预分频
列举	3'b101 (暂停模式)	TRGS[2:0] 000: ITI0 001: ITI1 010: ITI2 011: ITI3 100: CI0F_ED 101: CI0FE0 110: CI1FE1 111: ETIFP	相 如果触发源是ETIF,配 罗ETP选择极性和反相	分频不可用 触 发 源 Clx , 配 置 CHxCAPFLT 设 置 滤
例1	复位模式 当触发输入上升沿, 计数器清零重启	TRGIS[2:0]=3'b000 选择ITI0为触发源	触发源是ITIO,极性选择不可用	触发源是 ITIO, 滤波 和预分频不可用

GD32F403xx 用户手册

单脉冲模式

参考<u>单脉冲模式</u>。

定时器互连

参考<u>高级定时器(TIMERx,x=0,7)互连</u>

定时器 DMA 模式

定时器 DMA 模式是指通过 DMA 模块配置定时器的寄存器。有两个跟定时器 DMA 模式相关的寄存器: TIMERx_DMACFG 和 TIMERx_DMATB。当然,必须要使能 DMA 请求,一些内部中断事件可以产生 DMA 请求。当中断事件发生,TIMERx 会给 DMA 发送请求。DMA 配置成 M2P 模式,PADDR 是 TIMERx_DMATB 寄存器地址,DMA 就会访问 TIMERx_DMATB 寄存器。实际上,TIMERx_DMATB 寄存器只是一个缓冲,定时器会将 TIMERx_DMATB 映射到一个内部寄存器,这个内部寄存器由 TIMERx_DMACFG 寄存器中的 DMATA 来指定。如果 TIMERx_DMACFG 寄存器的 DMATC 位域值为 0,表示 1 次传输,定时器的发送 1 个 DMA 请求就可以完成。如果 TIMERx_DMACFG 寄存器的 DMATC 位域值不为 1,例如其值为 3,表示 4 次传输,定时器就需要再多发 3 次 DMA 请求。在这 3 次请求下,DMA 对 TIMERx_DMATB 寄存器的访问会映射到访问定时器的 DMATA+0x4, DMATA+0x8, DMATA+0xc 寄存器。总之,发生一次 DMA 内部中断请求,定时器会连续发送(DMATC+1)次请求。

如果再来 1 次 DMA 请求事件, TIMERx 将会重复上面的过程。

定时器调试模式

当Cortex®-M4内核停止,DBG_CTL0寄存器中的TIMERx_HOLD配置位被置1,定时器计数器停止。

16.2.5. TIMERx 寄存器(x=1,2,3,4)

TIMER1基地址: 0x4000 0000

TIMER2基地址: 0x4000 0400

TIMER3基地址: 0x4000 0800

TIMER4基地址: 0x4000 0C00

控制寄存器 0 (TIMERx_CTL0)

地址偏移: 0x00 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留						CKDI	V[1:0]	ARSE	CAN	Л[1:0]	DIR	SPM	UPS	UPDIS	CEN
						r	w	rw	r	w	rw	rw	rw	rw	rw

位/位域	名称	描述
15:10	保留	必须保持复位值。
9:8	CKDIV[1:0]	时钟分频 通过软件配置CKDIV,规定定时器时钟(CK_TIMER) 与死区时间和数字滤波器采样 时钟(DTS)之间的分频系数。 00: fots=fck_timer 01: fots= fck_timer /2 10: fots= fck_timer /4 11: 保留
7	ARSE	自动重载影子使能 0: 禁能 TIMERx_CAR 寄存器的影子寄存器 1: 使能 TIMERx_CAR 寄存器的影子寄存器
6:5	CAM[1:0]	计数器对齐模式选择 00: 无中央对齐计数模式(边沿对齐模式)。 DIR位指定了计数方向 01: 中央对齐向下计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),只有在向下计数时,CHxF位置1 10: 中央对齐向上计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),只有在向上计数时,CHxF位置1 11: 中央对齐上下计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),在向上和向下计数时,CHxF位都会置1 当计数器使能以后,该位不能从 0x00 切换到非 0x00
4	DIR	方向

GigaDevice		GD32F403XX 用户手册
		0: 向上计数1: 向下计数当计数器配置为中央对齐计数模式或编码器模式时,该位只读。
3	SPM	单脉冲模式 0:单脉冲模式禁能。更新事件发生后,计数器继续计数 1:单脉冲模式使能。在下一次更新事件发生时,计数器停止计数
2	UPS	更新请求源 软件配置该位,选择更新事件源。 0:以下事件均会产生更新中断或DMA请求: UPG位被置1 计数器溢出/下溢 复位模式产生的更新 1:下列事件会产生更新中断或DMA请求: 计数器溢出/下溢
1	UPDIS	禁止更新. 该位用来使能或禁能更新事件的产生 0: 更新事件使能. 更新事件发生时,相应的影子寄存器被装入预装载值,以下事件均会产生更新事件:
0	CEN	计数器使能 0: 计数器禁能 1: 计数器使能 在软件将 CEN 位置 1 后,外部时钟、暂停模式和编码器模式才能工作。

控制寄存器 1 (TIMERx_CTL1)

地址偏移: 0x04 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	留				TIOS		MMC[2:0]		DMAS		保留	

位/位域	名称	描述
15:8	保留	必须保持复位值。

TI0S 通道0触发输入选择 0: 选择 TIMERx CH0 引脚作为通道 0 的触发输入 1: 选择 TIMERx_CH0, CH1 和 CH2 引脚异或的结果作为通道 0 的触发输入 6:4 MMC[2:0] 主模式控制 这些位控制 TRGO 信号的选择,TRGO 信号由主定时器发给从定时器用于同步功能 000: 当产生一个定时器复位事件后,输出一个TRGO信号,定时器复位源为: 主定时器产生一个复位事件 TIMERx SWEVG寄存器中UPG位置1 001: 当产生一个定时器使能事件后,输出一个TRGO信号,定时器使能源为: CEN位置1 在暂停模式下,触发输入置1 010: 当产生一个定时器更新事件后,输出一个TRGO信号,更新事件源由UPDIS和 UPS位决定 011: 当通道0在发生一次捕获或一次比较成功时,主模式控制器产生一个TRGO脉冲 100: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O0CPRE 101: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O1CPRE 110: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O2CPRE 111: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O3CPRE 3 **DMAS** DMA 请求源选择 0: 当通道捕获/比较事件发生时,发送通道 x 的 DMA 请求.

1: 当更新事件发生,发送通道 x 的 DMA 请求

2:0 保留 必须保持复位值

从模式配置寄存器(TIMERx_SMCFG)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETP	SMC1	ETPS	C[1:0]		ETFC	[3:0]		MSM		TRGS[2:0]		保留		SMC[2:0]	
rw	rw	r	N	rw				rw		rw				rw	

位/位域	名称	描述
31:16	保留	必须保持复位值
15	ETP	外部触发极性 该位指定 ETI 信号的极性
		0: ETI 高电平或上升沿有效 .

1: ETI 低电平或下降沿有效 .

14 SMC1

SMC 的一部分为了使能外部时钟模式 1

在外部时钟模式 1, 计数器由 ETIF 信号上的任意有效边沿驱动

- 0: 外部时钟模式 1 禁能
- 1: 外部时钟模式 1 使能

当从模式配置为复位模式,暂停模式和事件模式时,定时器仍然可以工作在外部时钟模式 1。但是 TRGS 必须不能为 3'b111。

如果外部时钟模式 0 和外部时钟模式 1 同时被被配置,外部时钟的输入是 ETIF 注意:外部时钟模式 0 使能在寄存器的 SMC[2:0]位域。

13:12 ETPSC[1:0]

外部触发预分频

外部触发信号 ETIFP 的频率不能超过 TIMER_CK 频率的 1/4。当输入较快的外部时钟时,可以使用预分频降低 ETIFP 的频率。

00: 预分频禁能

01:2分频

10: 4分频

11:8分频

11:8 ETFC[3:0]

外部触发滤波控制

外部触发信号可以通过数字滤波器进行滤波,该位域定义了数字滤波器的滤波能力。数字滤波器的基本原理是:以 fsamp 频率连续采样外部触发信号,同时记录采样相同电平的次数。当该次数达到配置的滤波能力时,则认为是一个有效的电平信号。

EXTFC[3:0]	次数	f _{SAMP}				
4'b0000	Filter	lisabled.				
4'b0001	2					
4'b0010	4	f _{CK_TIMER}				
4'b0011	8					
4'b0100	6	f /0				
4'b0101	8	f _{DTS_Cк} /2				
4'b0110	6	£ /A				
4'b0111	8	f _{DTS_Ск} /4				
4'b1000	6	£ /0				
4'b1001	8	f _{DTS_ск} /8				
4'b1010	5					
4'b1011	6	f _{DTS_CK} /16				
4'b1100	8					
4'b1101	5					
4'b1110	6	f _{DTS_Cк} /32				
4'b1111	8					

7 MSM

主-从模式

该位被用来同步被选择的定时器同时开始计数。通过 TRIGI 和 TRGO,定时器被连接在一起,TRGO 用做启动事件。

0: 主从模式禁能

1: 主从模式使能

6:4 TRGS[2:0] 触发选择

该位域用来指定选择哪一个信号作为用来同步计数器的触发输入源

000: ITI0 001: ITI1 010: ITI2 011: ITI3 100: CI0F_ED 101: CI0FE0

110: CI1FE1

111: ETIFP 从模式被使能后这些位不能改

3 保留 必须保持复位值

2:0 SMC[2:0] 从模式控制

000: 关闭从模式. 如果 CEN=1, 则预分频器直接由内部时钟驱动

001: 编码器模式 0. 根据 CI1FE1 的电平, 计数器在 CI0FE0 的边沿向上/下计数 010: 编码器模式 1. 根据 CIOFEO 的电平, 计数器在 CI1FE1 的边沿向上/下计数 011: 编码器模式 2. 根据另一个信号的输入电平, 计数器在 CI0FE0 和 CI1FE1 的

边沿向上/ 下计数

100: 复位模式. 选中的触发输入的上升沿重新初始化计数器,并且产生更新事件. 101: 暂停模式. 当触发输入为高时, 计数器的时钟开启。一旦触发输入变为低, 则 计数器时钟停止

110: 事件模式.计数器在触发输入的上升沿启动。

111: 外部时钟模式 0. 选中的触发输入的上升沿驱动计数器

DMA 和中断使能寄存器 (TIMERx_DMAINTEN)

地址偏移: 0x0C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	TRGDEN	保留	CH3DEN	CH2DEN	CH1DEN	CH0DEN	UPDEN	保留	TRGIE	保留	CH3IE	CH2IE	CH1IE	CH0IE	UPIE
	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw

位/位域	名称	描述
15	保留	必须保持复位值。
14	TRGDEN	触发 DMA 请求使能 0: 禁止触发 DMA 请求 1: 使能触发 DMA 请求
13	保留	必须保持复位值。

digubevice			GD32[403XX 用) 于测
12	CH3DEN	通道 3 比较/捕获 DMA 请求使能 0:禁止通道 3 比较/捕获 DMA 请求 1:使能通道 3 比较/捕获 DMA 请求	
11	CH2DEN	通道 2 比较/捕获 DMA 请求使能 0:禁止通道 2 比较/捕获 DMA 请求 1:使能通道 2 比较/捕获 DMA 请求	
10	CH1DEN	通道 1 比较/捕获 DMA 请求使能 0:禁止通道 1 比较/捕获 DMA 请求 1:使能通道 1 比较/捕获 DMA 请求	
9	CH0DEN	通道 0 比较/捕获 DMA 请求使能 0:禁止通道 0 比较/捕获 DMA 请求 1:使能通道 0 比较/捕获 DMA 请求	
8	UPDEN	更新 DMA 请求使能 0: 禁止更新 DMA 请求 1: 使能更新 DMA 请求	
7	保留	必须保持复位值。	
6	TRGIE	触发中断使能 0: 禁止触发中断 1: 使能触发中断	
5	保留	必须保持复位值。	
4	CH3IE	通道 3 比较/捕获中断使能 0: 禁止通道 3 中断 1: 使能通道 3 中断	
3	CH2IE	通道 2 比较/捕获中断使能 0:禁止通道 2 中断 1:使能通道 2 中断	
2	CH1IE	通道 1 比较/捕获中断使能 0: 禁止通道 1 中断 1: 使能通道 1 中断	
1	CH0IE	通道 0 比较/捕获中断使能 0: 禁止通道 0 中断 1: 使能通道 0 中断	
0	UPIE	更新中断使能 0:禁止更新中断 1:使能更新中断	

中断标志寄存器 (TIMERx_INTF)

地址偏移: 0x10 复位值: 0x0000

15	14	13	12	11	10	9	8 7	6	5	4	3	2	1	0
	保留		CH3OF	CH2OF	CH1OF	CH0OF	保留	TRGIF	保留	CH3IF	CH2IF	CH1IF	CH0IF	UPIF
			rc w0	rc w0	rc w0	rc w0		rc w0						

位/位域	名称	描述
15:13	保留	必须保持复位值。
12	CH3OF	通道 3 捕获溢出标志 参见 CH0OF 描述
11	CH2OF	通道 2 捕获溢出标志 参见 CH0OF 描述
10	CH1OF	通道 1 捕获溢出标志 参见 CH0OF 描述
9	CH0OF	通道 1 捕获溢出标志 当通道 0 被配置为输入模式时,在 CHOIF 标志位已经被置 1 后,捕获事件再次发生时,该标志位可以由硬件置 1。该标志位由软件清 0. 0: 无捕获溢出中断发生 1: 发生了捕获溢出中断
8:7	保留	必须保持复位值.
6	TRGIF	触发中断标志 当发生触发事件时,此标志会置 1,此位由软件清 0。当暂停模式使能时,触发输入的任意边沿都可以产生触发事件。否则,其它模式时,仅在触发输入端检测到有效边沿,产生触发事件。 0:无触发事件产生 1:触发中断产生
5	保留	必须保持复位值.
4	CH3IF	通道 3 比较/捕获中断标志 参见 CHOIF 描述
3	CH2IF	通道 2 比较/捕获中断标志 参见 CHOIF 描述
2	CH1IF	通道 1 比较/捕获中断标志 参见 CHOIF 描述
1	CH0IF	通道 0 比较/捕获中断标志

此标志由硬件置 1 软件清 0。当通道 0 在输入模式下时,捕获事件发生时此标志位被置 1;当通道 0 在输出模式下时,此标志位在一个比较事件发生时被置 1。当通道 0 在输入模式下时,读 TIMERx_CH0CV 会将此标志清 0。

0: 无通道 0 中断发生

1: 通道 0 中断发生

0 UPIF 更新中断标志

此位在任何更新事件发生时由硬件置 1, 软件清 0。

0: 无更新中断发生

1: 发生更新中断

软件事件产生寄存器 (TIMERx_SWEVG)

地址偏移: 0x14 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留					TRGG	保留.	CH3G	CH2G	CH1G	CH0G	UPG
									w		w	w	w	w	W

位/位域	名称	描述
15:7	保留	必须保持复位值。
6	TRGG	触发事件产生 此位由软件置 1,由硬件自动清 0.当此位被置 1,TIMERx_INTF 寄存器的 TRGIF 标志位被置 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA 传输。 0:无触发事件产生 1:产生触发事件
5	保留	必须保持复位值。
4	CH3G	通道 3 捕获或比较事件发生 参见 CH0G 描述
3	CH2G	通道 2 捕获或比较事件发生 参见 CH0G 描述
2	CH1G	通道 1 捕获或比较事件发生 参见 CH0G 描述
1	CH0G	通道 0 捕获或比较事件发生 该位由软件置 1,用于在通道 0 产生一个捕获/比较事件,由硬件自动清 0。当此位被置 1,CH0IF 标志位被置 1,若开启对应的中断和 DMA,则发出相应的中断和 DMA 请求。此外,如果通道 0 配置为输入模式,计数器的当前值被

TIMERx_CH0CV 寄存器捕获,如果 CH0IF 标志位已经为 1,则 CH0OF 标志位被

置 1。

0: 不产生通道 0 捕获或比较事件

1: 发生通道 0 捕获或比较事件

0UPG更新事件产生

此位由软件置 1,被硬件自动清 0。当此位被置 1,如果选择了中央对齐或向上计数模式,计数器被清 0。否则(向下计数模式)计数器将载入自动重载值,预分频计数器

将同时被清除。

0: 无更新事件产生

1: 产生更新事件

通道控制寄存器 0 (TIMERx_CHCTL0)

地址偏移: 0x18 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH1CON CEN		I1COMCTL[2:0]	CH1COM SEN	CH1COM FEN	CH1M	S[1:0]	CH0COM CEN		OCOMCTL[2	2:0]	CH0COM SEN	CH0COM FEN		/IS[1:0]
	CH1CAPFLT[3:0]		CH1CAP	PSC[1:0]				CH0CAP	FLT[3:0]		CH0CAP	PSC[1:0]			
	nw .		r	w	n	,		n	Λ/		n	Α/	r	1A/	

输出比较模式:

位/位域	名称	描述
15	CH1COMCEN	通道 1 输出比较清 0 使能
		参见 CH0COMCEN 描述
14:12	CH1COMCTL[2:0]	通道 1 输出比较模式
		参见 CH0COMCTL 描述
11	CH1COMSEN	通道 1 输出比较影子寄存器使能
		参见 CH0COMSEN 描述
10	CH1COMFEN	通道 1 输出比较快速使能
		参见 CH0COMFEN 描述
9:8	CH1MS[1:0]	通道 1 模式选择
		这些位定义了通道的方向和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄
		存器的 CH1EN 位被清 0)时这些位才可以写。
		00: 通道 1 配置为输出
		01: 通道 1 配置为输入,IS1 映射在 CI1FE1 上
		10: 通道 1 配置为输入,IS1 映射在 CI0FE1 上
		11:通道 1 配置为输入,IS1 映射在 ITS 上

注意: 当 CH1MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存器)选择内部触发输入。

7 CH0COMCEN

通道 0 输出比较清 0 使能

当此位被置 1,当检测到 ETIFP 信号输入高电平时,O0CPRE 参考信号被清 0

0: 禁止通道 0 输出比较清零

1: 使能通道 0 输出比较清零

6:4 CH0COMCTL[2:0]

通道 0 输出比较模式

此位定义了输出准备信号 OOCPRE 的输出比较模式,而 OOCPRE 决定了 CH0_O、CH0_ON 的值。另外,OOCPRE 高电平有效,而 CH0_O、CH0_ON 通道的极性取决于 CH0P、CH0NP 位。

000: 时基。输出比较寄存器 TIMERx_CH0CV 与计数器 TIMERx_CNT 间的比较对 O0CPRE 不起作用

001: 匹配时设置为高。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 O0CPRE 为高。

010: 匹配时设置为低。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 O0CPRE 为低。

011: 匹配时翻转。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 O0CPRE 翻转。

100: 强制为低。强制 O0CPRE 为低电平

101: 强制为高。强制 O0CPRE 为高电平

110: PWM 模式 0。在向上计数时,一旦计数器值小于 TIMERx_CH0CV 时,O0CPRE 为高电平,否则为低电平。在向下计数时,一旦计数器的值大于 TIMERx_CH0CV 时,O0CPRE 为低电平,否则为高电平。

111: PWM 模式 1。在向上计数时,一旦计数器值小于 TIMERx_CH0CV 时,O0CPRE 为低电平,否则为高电平。在向下计数时,一旦计数器的值大于 TIMERx_CH0CV 时,O0CPRE 为高电平,否则为低电平。

如果配置在 PWM 模式下,只有当输出比较模式从时基模式变为 PWM 模式或者比较结果改变时, O0CPRE 电平才改变。

当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH0MS =00 (比较模式) 时此位不能被改变。

3 CH0COMSEN

通道 0 输出比较影子寄存器使能

当此位被置 1, TIMERx_CH0CV 寄存器的影子寄存器被使能,影子寄存器在每次更新事件时都会被更新。

0: 禁止通道 0 输出/比较影子寄存器

1: 使能通道 0 输出/比较影子寄存器

仅在单脉冲模式下(SPM =1),可以在未确认影子寄存器的情况下使用 PWM 模式 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH0MS =00 时此位不能被改变。

2 CH0COMFEN

通道 0 输出比较快速使能

当该位为 1 时,如果通道配置为 PWM0 模式或者 PWM1 模式,会加快捕获/比较输出对触发输入事件的响应。输出通道将触发输入信号的有效边沿作为一个比较匹配,CH0 O 被设置为比较电平而与比较结果无关。

0: 禁止通道 0 输出比较快速.

1: 使能通道 0 输出比较快速。

1:0 CH0MS[1:0]

通道 0 I/O 模式选择

这些位定义了通道的工作模式和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄存器的 CH0EN 位被清 0)时这些位才可写。

00: 通道 0 配置为输出

01: 通道 0 配置为输入, ISO 映射在 CIOFEO 上

10: 通道 0 配置为输入, ISO 映射在 CI1FE0 上

11: 通道 0 配置为输入, ISO 映射在 ITS 上

注意: 当 CH0MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存

器)选择内部触发输入

输入捕获模式:

位/位域	名称	描述
15:12	CH1CAPFLT[3:0]	通道 1 输入捕获滤波控制 参见 CH0CAPFLT 描述
11:10	CH1CAPPSC[1:0]	通道 1 输入捕获预分频器 参见 CH0CAPPSC 描述
9:8	CH1MS[1:0]	通道 1 模式选择 与输出模式相同
7:4	CH0CAPFLT[3:0]	通道 0 输入捕获滤波控制

CIO 输入信号可以通过数字滤波器进行滤波,该位域配置滤波参数。

数字滤波器的基本原理:根据 fsamp 对 CIO 输入信号进行连续采样,并记录信号相同电平的次数。达到该位配置的滤波参数后,认为是有效电平。

滤波器参数配置如下:

CH0CAPFLT [3:0]	采样次数	f SAMP
4'b0000	j	
4'b0001	2	
4'b0010	4	fck_timer
4'b0011	8	
4'b0100	6	£ /0
4'b0101	8	f _{DTS} /2
4'b0110	6	£ //
4'b0111	8	f _{DTS} /4
4'b1000	6	f /0
4'b1001	8	f _{DTS} /8
4'b1010	5	
4'b1011	6	f _{DTS} /16
4'b1100	8	
4'b1101	5	f/22
4'b1110	6	f _{DTS} /32

		4'b1111	8	
3:2	CH0CAPPSC[1:0]	通道 0 输入捕获预分频器		
		这2位定义了通道0输入的	预分频系数。当	TIMERx_CHCTL2 寄存器中
		CH0EN =0 时,则预分频器	复位。	
		00: 无预分频器, 捕获输入	口上检测到的每	一个边沿都触发一次捕获
		01:每2个事件触发一次捕	获	
		10:每4个事件触发一次捕	获	
		11: 每8个事件触发一次捕	获	
1:0	CH0MS[1:0]	通道 0 模式选择		
	555[1.0]	与输出比较模式相同		

通道控制寄存器 1 (TIMERx_CHCTL1)

地址偏移: 0x1C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH3CC		CH3COMCTL[2:0]		CH3COM SEN	CH3COM FEN	CH3MS[1:0]		CH2COM CEN	CH2COMCTL[2:0]			CH2COM SEN	CH2COM FEN	CH2MS[1:0]		
	CH3CAPFLT[3:0]				CH3CAP	PSC[1:0]				CH2CAF	PFLT[3:0]		CH2CAF	PSC[1:0]		,

输出比较模式:

位/位域	名称	描述
15	CH3COMCEN	通道 3 输出比较清 0 使能
		参见 CH0COMCEN 描述
14:12	CH3COMCTL[2:0]	通道 3 输出比较模式
		参见 CH0COMCTL 描述
11	CH3COMSEN	通道3输出比较影子寄存器使能
		参见 CH0COMSEN 描述
10	CH3COMFEN	通道3输出比较快速使能
		参见 CH0COMFEN 描述
9:8	CH3MS[1:0]	通道3模式选择
		这些位定义了通道的方向和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄
		存器的 CH3EN 位被清 0)时这些位才可以写。
		00: 通道3配置为输出
		01: 通道 3 配置为输入, IS3 映射在 CI3FE3 上
		10: 通道 3 配置为输入, IS3 映射在 Cl2FE3 上
		11: 通道 3 配置为输入,IS3 映射在 ITS 上
		注意: 当 CH3MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存

器)选择内部触发输入

7 CH2COMCEN

通道 2 输出比较清 0 使能

当此位被置 1,当检测到 ETIFP 输入高电平时,O2CPRE 参考信号被清 0

0: 使能通道 2 输出比较清零

1: 禁止通道 2 输出比较清零

6:4 CH2COMCTL[2:0]

通道 2 输出比较模式

此位定义了输出准备信号 O2CPRE 的输出比较模式,而 O2CPRE 决定了 CH2_O、CH2_ON 的值。另外,O2CPRE 高电平有效,而 CH2_O、CH2_ON 通道的极性取决于 CH2P、CH2NP 位。

000: 时基。输出比较寄存器 TIMERx_CH2CV 与计数器 TIMERx_CNT 间的比较对 O2CPRE 不起作用

001: 匹配时设置为高。当计数器的值与捕获/比较值寄存器 TIMERx_CH2CV 相同时,强制 O2CPRE 为高。

010: 匹配时设置为低。当计数器的值与捕获/比较值寄存器 TIMERx_CH2CV 相同时,强制 O2CPRE 为低。

011: 匹配时翻转。当计数器的值与捕获/比较值寄存器 TIMERx_CH2CV 相同时,强制 O2CPRE 翻转。

100: 强制为低。强制 O2CPRE 为低电平

101: 强制为高。强制 O2CPRE 为高电平

110: PWM 模式 0。在向上计数时,一旦计数器值小于 TIMERx_CH2CV 时,O2CPRE 为高电平,否则为低电平。在向下计数时,一旦计数器的值大于 TIMERx_CH2CV 时,O2CPRE 为低电平,否则为高电平。

111: PWM 模式 1。在向上计数时,一旦计数器值小于 TIMERx_CH2CV 时,O2CPRE 为低电平,否则为高电平。在向下计数时,一旦计数器的值大于 TIMERx_CH2CV 时,O2CPRE 为高电平,否则为低电平。

如果配置在 PWM 模式下,只有当输出比较模式从时基模式变为 PWM 模式或者比较结果改变时,O2CPRE 电平才改变。

当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH2MS =00 (比较模式) 时此位不能被改变。

3 CH2COMSEN

通道 0 输出比较影子寄存器使能

当此位被置 1, TIMERx_CH2CV 寄存器的影子寄存器被使能,影子寄存器在每次更新事件时都会被更新。

0: 禁止通道 2 输出/比较影子寄存器

1: 使能通道 2 输出/比较影子寄存器

仅在单脉冲模式下(SPM =1),可以在未确认影子寄存器情况下使用 PWM 模式 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH2MS =00 时此位不能被改变。

2 CH2COMFEN

通道 2 输出比较快速使能

当该位为 1 时,如果通道配置为 PWM0 模式或者 PWM1 模式,会加快捕获/比较输出对触发输入事件的响应。输出通道将触发输入信号的有效边沿作为一个比较匹配,CH2 O 被设置为比较电平而与比较结果无关。

0:禁止通道 2 输出比较快速.

1: 使能通道 2 输出比较快速。

1:0 CH2MS[1:0] 通道 2 I/O 模式选择

这些位定义了通道的工作模式和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄存器的 CH2EN 位被清 0)时这些位才可写。

00: 通道2配置为输出

01: 通道 2 配置为输入, IS2 映射在 CI2FE2 上

10: 通道 2 配置为输入, IS2 映射在 CI3FE2 上

11: 通道 2 配置为输入,IS2 映射在 ITS 上.

注意: 当 CH2MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存

器)选择内部触发输入

输入捕获模式:

位/位域	名称	描述
15:12	CH3CAPFLT[3:0]	通道 3 输入捕获滤波控制 参见 CH0CAPFLT 描述
11:10	CH3CAPPSC[1:0]	通道 3 输入捕获预分频器 参见 CH0CAPPSC 描述
9:8	CH3MS[1:0]	通道 3 模式选择 与输出模式相同
7:4	CH2CAPFLT[3:0]	通道 2 输入捕获滤波控制

CI2 输入信号可以通过数字滤波器进行滤波,该位域配置滤波参数。

数字滤波器的基本原理:根据 fsamp 对 Cl2 输入信号进行连续采样,并记录信号相同电平的次数。达到该位配置的滤波参数后,认为是有效电平。

滤波器参数配置如下:

CH2CAPFLT [3:0]	采样次数	f SAMP			
4'b0000	j				
4'b0001	2				
4'b0010	4	fck_timer			
4'b0011	8				
4'b0100	6	£ /0			
4'b0101	8	f _{DTS} /2			
4'b0110	6	£ //			
4'b0111	8	f _{DTS} /4			
4'b1000	6	f /0			
4'b1001	8	f _{DTS} /8			
4'b1010	5				
4'b1011	6	f _{DTS} /16			
4'b1100	8				
4'b1101	5	f/22			
4'b1110	6	f _{DTS} /32			

3:2 CH2CAPPSC[1:0] 通道 2 输入捕获预分频器 这 2 位定义了通道 2 输入的预分频系数。当 TIMERx_CHCTL2 寄存器中的 CH2EN =0 时,则预分频器复位。 00: 无预分频器,捕获输入口上检测到的每一个边沿都触发一次捕获 01: 每 2 个事件触发一次捕获 10: 每 4 个事件触发一次捕获 11: 每 8 个事件触发一次捕获 11: 每 8 个事件触发一次捕获

通道控制寄存器 2 (TIMERx_CHCTL2)

地址偏移: 0x20 复位值: 0x0000

5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	СНЗР	CH3EN	保	:留	CH2P	CH2EN	保質	留	CH1P	CH1EN	保	留	CH0P	CH0EN
	nu.	F144			D4/	nu.			nu.	24			nu.	24

位/位域	名称	描述
15:14	保留	必须保持复位值。
13	СНЗР	通道 3 极性 参考 CH0P 描述
12	CH3EN	通道 3 使能 参考 CH0EN 描述
11:10	保留	必须保持复位值。
9	CH2P	通道 2 极性 参考 CH0P 描述
8	CH2EN	通道 2 使能 参考 CH0EN 描述
7:6	保留	必须保持复位值。
5	CH1P	通道 1 极性 参考 CH0P 描述
4	CH1EN	通道 1 使能 参考 CH0EN 描述
3:2	保留	必须保持复位值。

1 CH0P 通道 0 极性

当通道 0 配置为输出模式时,此位定义了输出信号极性。

0: 通道0高电平为有效电平

1: 通道0低电平为有效电平

当通道 0 配置为输入模式时,此位定义了 CIO 信号极性

CHOP 将选择 CIOFEO 或者 CI1FEO 的有效边沿或者捕获极性

CHOP==0:把 CIxFEO 的上升沿作为捕获或者从模式下触发的有效信号,并且

CIxFE0 不会被翻转。

CH0P==1: 把 ClxFE0 的下降沿作为捕获或者从模式下触发的有效信号,并且

ClxFE0 会被翻转。

当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 或 10 时此位不能被更改。

D CH0EN 通道 0 捕获/比较使能

当通道 0 配置为输出模式时,将此位置 1 使能 CH0_O 信号有效。当通道 0 配置为

输入模式时,将此位置1使能通道0上的捕获事件。

0: 禁止通道 0

1: 使能通道 0

计数器寄存器 (TIMERx_CNT)

地址偏移: 0x24 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw

位/位域 名称 描述

15:0 CNT[15:0] 这些位是当前的计数值。写操作能改变计数器值。

预分频寄存器 (TIMERx_PSC)

地址偏移: 0x28 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw

位/位域 名称 描述

15:0 PSC[15:0] 计数器时钟预分频值

计数器时钟等于 TIMER_CK 时钟除以(PSC+1),每次当更新事件产生时,PSC 的

值被装入到对应的影子寄存器。

计数器自动重载寄存器 (TIMERx_CAR)

地址偏移: 0x2C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CARL[15:0]

rw

位/位域 名称 描述

15:0 CARL[15:0] 计数器自动重载值

这些位定义了计数器的自动重载值。

注意: 在定时器被配置为输入捕获模式时,该寄存器需要被配置成一个大于用户期望值的非 0 值(例如 0xFFFF)。

通道 0 捕获/比较值寄存器 (TIMERx_CH0CV)

地址偏移: 0x34 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH0VAL[15:0]

rw

位/位域 名称 描述

15:0 CH0VAL[15:0]

通道0的捕获或比较值

当通道 0 配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存器为只读。

当通道 0 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子 寄存器后,影子寄存器值随每次更新事件更新。

通道 1 捕获/比较值寄存器 (TIMERx_CH1CV)

地址偏移: 0x38 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH1VAL[15:0]

rw

位/位域	名称	描述
15:0	CH1VAL[15:0]	通道 1 的捕获或比较值
		当通道 1 配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存
		器为只读。
		当通道 1 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子
		寄存器后,影子寄存器值随每次更新事件更新。

通道 2 捕获/比较值寄存器 (TIMERx_CH2CV)

地址偏移: 0x3C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH2VAL[15:0]

rw

位/位域	名称	描述
15:0	CH2VAL[15:0]	通道2的捕获或比较值
		当通道2配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存
		器为只读。
		当通道2配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子
		寄存器后,影子寄存器值随每次更新事件更新。

通道 3 捕获/比较值寄存器 (TIMERx_CH3CV)

地址偏移: 0x40 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•						AL[15:0]					•	•	

rw

位/位域	名称	描述
15:0	CH3VAL[15:0]	通道3的捕获或比较值
		当通道 3 配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存
		器为只读。
		当通道 3 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子
		寄存器后,影子寄存器值随每次更新事件更新。

DMA 配置寄存器 (TIMERx_DMACFG)

地址偏移: 0x48 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
保留			DMATC[4:0]					保留			DMATA [4:0]					
rw													rw			

位/位域 描述 名称 必须保持复位值。 15:14 保留 12:8 **DMATC** [4:0] DMA 传输计数 该位域定义了 DMA 访问(读写) TIMERx_DMAVB 寄存器的数量 n, n = (DMATC [4:0] +1). DMATC [4:0] 从 5'b0_0000 到 5'b1_0001 7:5 保留 必须保持复位值。 **DMATA** [4:0] DMA 传输起始地址 4:0 该位域定义了 DMA 访问 TIMERx_DMAVB 寄存器的第一个地址。当通过 TIMERx_DMA 第一次访问时,访问的就是该位域指定的地址。第二次访问 TIMERx_DMAVB 时,将访问起始地址+0x4。

DMA 发送缓冲区寄存器 (TIMERx_DMATB)

地址偏移: 0x4C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMATB[15:0]

rw

 位/位域
 名称
 描述

 15:0
 DMATB [15:0]
 DMA 发送缓冲

 对这个寄存器的读或写, (起始地址+传输次数*4) 地址范围内的寄存器会被访问传输次数由硬件计算, 范围为 0 到 DMATC。

配置寄存器 (TIMERx_CFG)

地址偏移: 0xFC 复位值: 0x0000

GD32F403xx 用户手册

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保	:留							CHVSEL	保留

rw

位/位域	名称	描述
15:2	保留	必须保持复位值。
1	CHVSEL	写捕获比较寄存器选择位 此位由软件写 1 或清 0。 1: 当写入捕获比较寄存器的值与寄存器当前值相等时,写入操作无效 0: 无影响
0	保留	必须保持复位值。

16.3. 通用定时器 L1(TIMERx, x=8,11)

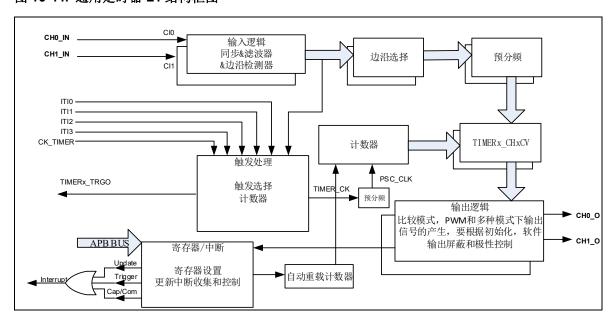
16.3.1. 简介

通用定时器 L1(Timer8, 11)是两通道定时器,支持输入捕获和输出比较,可以产生 PEM 信号控制电机和电源管理。通用定时器 L1 含有一个 16 位无符号计数器。

通用定时器 L1 是可编程的,可以被用来计数,其外部事件可以驱动其他定时器

定时器和定时器之间是相互独立,但是它们的计数器可以被同步在一起形成一个更大的定时器。

16.3.2. 主要特性


- 总通道数: 2;
- 计数器宽度: 16位;
- 时钟源可选:内部时钟,内部触发,外部输入;
- 计数模式:向上计数;
- 可编程的预分频器: 16位,运行时可以被改变;
- 每个通道可配置:输入捕获模式,输出比较模式,可编程的PWM模式,单脉冲模式;
- 自动重装载功能;
- 中断输出: 更新事件, 触发事件, 比较/捕获事件和中止事件;
- 多个定时器的菊链使得一个定时器可以同时启动多个定时器;
- 定时器的同步允许被选择的定时器在同一个时钟周期开始计数;
- 定时器主-从管理。

16.3.3. 结构框图

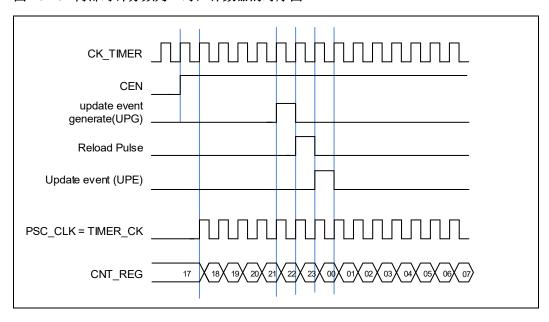
图 16-44. 通用定时器 L1 结构框图 提供了通用定时器 L1 的内部配置细节。

图 16-44. 通用定时器 L1 结构框图

16.3.4. 功能描述

时钟源配置

通用定时器L1可以由内部时钟源CK_TIMER或者由SMC(TIMERx_SMCFG寄存器位[2:0]) 控制的复用时钟源驱动。


■ SMC[2:0]==3'b000,定时器选择内部时钟源(连接到RCU模块的CK_TIMER)

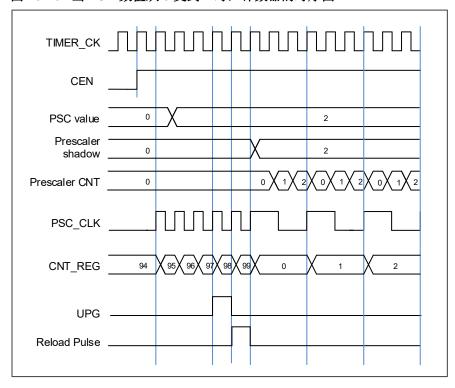
如果 SMC[2:0]==3'b000, 默认用来驱动计数器预分频器的是内部时钟源 CK_TIMER。当 CEN 置位, CK_TIMER 经过预分频器(预分频值由 TIMERx_PSC 寄存器确定)产生 PSC_CLK。

如果将 TIMERx_SMCFG 寄存器的 SMC[2:0]设置为 0x1、0x2、0x3 和 0x7, 预分频器被其他时钟源(由 TIMERx_SMCFG 寄存器的 TRGS [2:0]区域选择)驱动,在下文说明。当 SMC 位被设置为 0x4、0x5 和 0x6,计数器预分频器时钟源由内部时钟 CK TIMER 驱动。

图 16-45. 内部时钟分频为 1 时, 计数器的时序图

■ SMC[2:0]==3'b111(外部时钟模式0),定时器选择外部输入引脚作为时钟源

计数器预分频器可以在 TIMERx_CI0/ TIMERx_CI1 引脚的每个上升沿或下降沿计数。这种模式可以通过设置 SMC [2:0]为 0x7 同时设置 TRGS [2:0]为 0x4, 0x5 或 0x6 来选择。CIx 是 TIMERx_CIx 通过数字滤波器采样后的信号。


计数器预分频器也可以在内部触发信号 ITI0/1/2/3 的上升沿计数。这种模式可以通过设置 SMC [2:0]为 0x7 同时设置 TRGS [2:0]为 0x0, 0x1, 0x2 或者 0x3。

时钟预分频器

预分频器可以将定时器的时钟(TIMER_CK)频率按 1 到 65536 之间的任意值分频,分频后的时钟 PSC_CLK 驱动计数器计数。分频系数受预分频寄存器 TIMERx_PSC 控制,这个控制寄存器带有缓冲器,它能够在运行时被改变。新的预分频器的参数在下一次更新事件到来时被采用。

图 16-46. 当 PSC 数值从 0 变到 2 时, 计数器的时序图

计数器向上计数模式

在这种模式,计数器的计数方向是向上计数。计数器从 0 开始向上连续计数到自动加载值(定义在 TIMERx_CAR 寄存器中),一旦计数器计数到自动加载值,会重新从 0 开始向上计数并产生上溢事件。在向上计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 应该被设置成 0。

当通过 TIMERx_SWEVG 寄存器的 UPG 位置 1 来设置更新事件时,计数值会被清 0,并产生更新事件。

如果 TIMERx_CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有影子寄存器(计数器自动重载寄存器,预分频寄存器)都将被更新。

下面一些图给出了一些例子,当 TIMERx_CAR=0x99 时,计数器在不同预分频因子下的行为。

图 16-47. 向上计数时序图, PSC=0/2

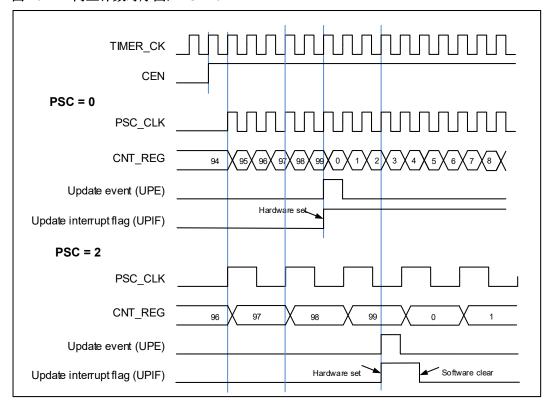
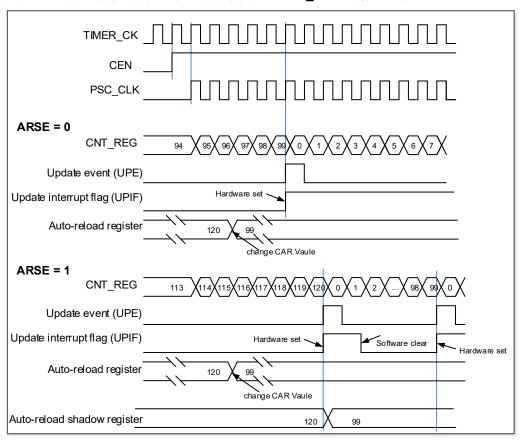
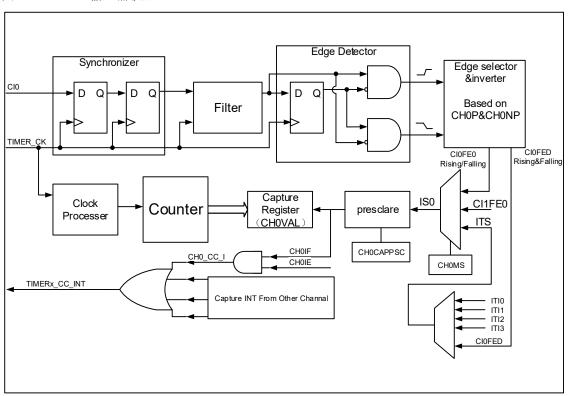



图 16-48. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值


输入捕获和输出比较通道

通用定时器 L1 拥有两个独立的通道用于捕获输入或比较输出是否匹配。每个通道都围绕一个通道捕获比较寄存器建立,包括一个输入级,通道控制器和输出级。

■ 通道输入捕获功能

通道输入捕获功能允许通道测量一个波形时序,频率,周期,占空比等。输入级包括一个数字滤波器,一个通道极性选择,边沿检测和一个通道预分频器。如果在输入引脚上出现被选择的边沿,TIMERx_CHxCV寄存器会捕获计数器当前的值,同时 CHxIF 位被置 1,如果 CHxIE = 1 则产生通道中断。

图 16-49. 通道输入捕获原理

通道输入信号 Clx 先被 TIMER_CK 信号同步,然后经过数字滤波器采样,产生一个被滤波后的信号。通过边沿检测器,可以选择检测上升沿或者下降沿。通过配置 CHxP 选择使用上升沿或者下降沿。配置 CHxMS.,可以选择其他通道的输入信号,内部触发信号。配置 IC 预分频器,使得若干个输入事件后才产生一个有效的捕获事件。捕获事件发生,TIMERx_CHxCV 存储计数器的值。

第一步: 滤波器配置(TIMERx_CHCTL0寄存器中CHxCAPFLT): 根据输入信号和请求信号的质量,配置相应的CHxCAPFLT。

第二步: 边沿选择(TIMERx_CHCTL2寄存器中CHxP/CHxNP): 配置CHxP/CHxNP选择上升沿或者下降沿。

第三步: 捕获源选择(TIMERx_CHCTL0寄存器中CHxMS):

一旦通过配置 CHxMS 选择输入捕获源,必须确保通道配置在输入模式 (CHxMS!=0x0),而且TIMERx_CHxCV寄存器不能再被写。

第四步: 中断使能(TIMERx DMAINTEN寄存器中CHxIE 和 CHxDEN):

使能相应中断,可以获得中断和DMA请求。

第五步: 捕获使能(TIMERx CHCTL2寄存器中CHxEN)。

结果: 当期望的输入信号发生时,TIMERx_CHxCV被设置成当前计数器的值,CHxIF为置1。如果CHxIF位已经为1,则CHxOF位置1。根据TIMERx_DMAINTEN寄存器中CHxIE和CHxDEN的配置,相应的中断和DMA请求会被提出。

直接产生:软件设置CHxG位,会直接产生中断和DMA请求。

通道输入捕获功能也可用来测量 TIMERx_CHx 引脚上信号的脉冲波宽度。例如,一个 PWM 波连接到 CIO。配置 TIMERx_CHCTLO 寄存器中 CH0MS 为 2′b01,选择通道 0 的捕获信号为 CIO 并设置上升沿捕获。配置 TIMERx_CHCTLO 寄存器中 CH1MS 为 2′b10,选择通道 1 捕获信号为 CIO 并设置下降沿捕获。计数器配置为复位模式,在通道 0 的上升沿复位。TIMERX_CH0CV寄存器测量 PWM 的周期值,TIMERx_CH1CV寄存器测量 PWM 占空比值。

■ 通道输出比较功能

在通道输出比较功能,TIMERx 可以产生时控脉冲,其位置,极性,持续时间和频率都是可编程的。当一个输出通道的 TIMERx_CHxCV 寄存器与计数器的值匹配时,根据 CHxCOMCTL 的配置,这个通道的输出可以被置高电平,被置低电平或者反转。当计数器的值与 TIMERx_CHxCV 寄存器的值匹配时,CHxIF 位被置 1,如果 CHxIE = 1 则会产生中断,如果 CxCDE=1 则会产生 DMA 请求。

配置步骤如下:

第一步: 时钟配置:

配置定时器时钟源, 预分频器等。

第二步: 比较模式配置:

设置CHxCOMSEN位来配置输出比较影子寄存器;

设置CHxCOMCTL位来配置输出模式(置高电平/置低电平/反转);

设置CHxP/CHxNP位来选择有效电平的极性;

设置CHxEN使能输出。

第三步: 通过CHxIE/CxCDE位配置中断/DMA请求使能。

第四步:通过TIMERx CAR寄存器和TIMERx CHxCV寄存器配置输出比较时基:

TIMERx_CHxCV可以在运行时根据你所期望的波形而改变。

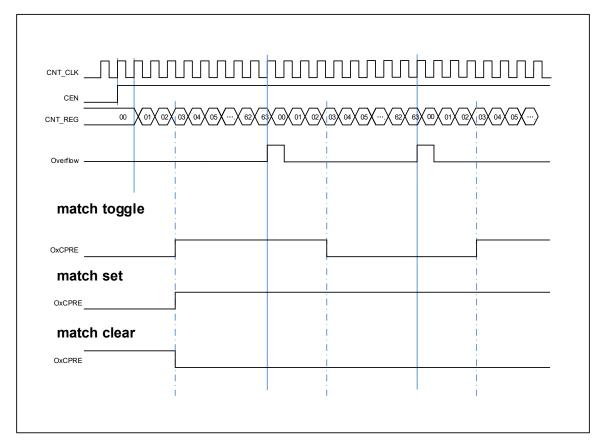

第五步:设置CEN位使能定时器。

图 16-50. 三种输出比较模式显示了三种比较输出模式: 反转/置高电平/置低电平, CAR=0x63,

CHxVAL=0x3。

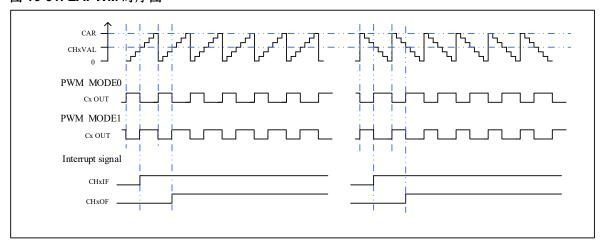
图 16-50. 三种输出比较模式

输出 PWM 功能

在PWM输出模式下(PWM模式0是配置CHxCOMCTL为3'b110,PWM模式1是配置CHxCOMCTL为3'b111),通道根据TIMERx_CAR寄存器和TIMERx_CHxCV寄存器的值,输出PWM波形。

根据计数模式,我们可以分为两种PWM波: EAPWM(边沿对齐PWM)和CAPWM(中央对齐PWM)。

EAPWM 的周期由 TIMERx_CAR 寄存器值决定,占空比由 TIMERx_CHxCV 寄存器值决定。 **图 16-51. EAPWM** 时序图显示了 EAPWM 的输出波形和中断。


CAPWM 的周期由(2*TIMERx_CAR 寄存器值)决定,占空比由(2*TIMERx_CHxCV 寄存器值)决定。**图 16-52.** CAPWM 时序图显示了 CAPWM 的输出波形和中断。

在 PWM0 模式下 (CHxCOMCTL==3'b110), 如果 TIMERx_CHxCV 寄存器的值大于 TIMERx_CAR寄存器的值,通道输出一直为有效电平。

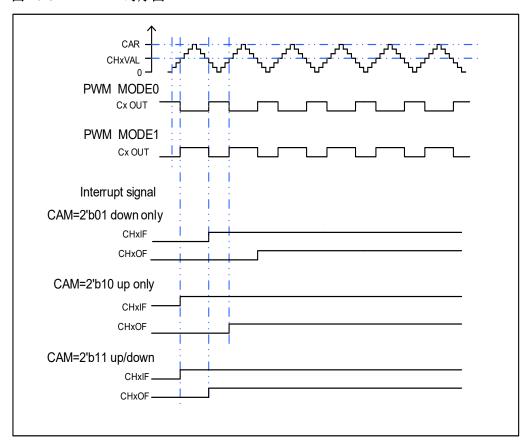

在PWM0模式下(CHxCOMCTL==3'b110),如果TIMERx_CHxCV寄存器的值等于0,通道输出一直为无效电平。

图 16-51. EAPWM 时序图

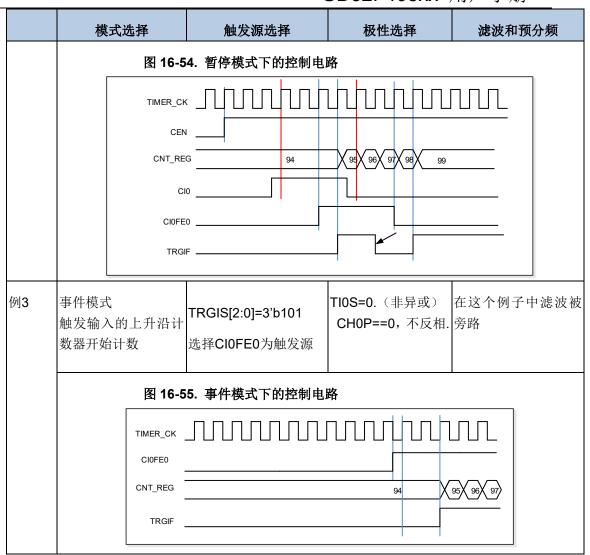
图 16-52. CAPWM 时序图

通道输出准备信号

当 TIMERx 用于输出匹配比较模式下,设置 CHxCOMCTL 位可以定义 OxCPRE 信号(通道 x 准备信号)类型。OxCPRE 信号有若干类型的输出功能,包括,设置 CHxCOMCTL=0x00 可以保持原始电平;设置 CHxCOMCTL=0x01 可以将 OxCPRE 信号设置为高电平;设置 CHxCOMCTL=0x02 可以将 OxCPRE 信号设置为低电平;设置 CHxCOMCTL=0x03,在计数器值和 TIMERx_CHxCV 寄存器的值匹配时,可以翻转输出信号。

PWM 模式 0 和 PWM 模式 1 是 OxCPRE 的另一种输出类型,设置 CHxCOMCTL 位域位 0x06 或 0x07 可以配置 PWM 模式 0/PWM 模式 1。在这些模式中,根据计数器值和 TIMERx_CHxCV 寄存器值的关系以及计数方向, OxCPRE 信号改变其电平。具体细节描述,请参考相应的位。

设置 CHxCOMCTL =0x04 或 0x05 可以实现 OxCPRE 信号的强制输出功能。输出比较信号能够直接由软件强置为有效或无效状态,而不依赖于 TIMERx_CHxCV 的值和计数器值之间间的比较结果。


主-从管理

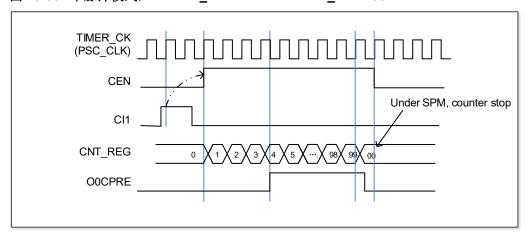
TIMERx 能在多种模式下同步外部触发,包括复位模式,暂停模式和事件模式,可以通过设置 TIMERx_SMCFG 寄存器中的 SMC[2:0]配置这些模式。这些模式的输入触发源可以通过设置 TIMERx_SMCFG 寄存器中的 TRGS[2:0]来选择。

表 16-6. 从模式列表和举例

7. 10 0.	从快入外衣和半例 								
	模式选择	触发源选择	极性选择	滤波和预分频					
列举	SMC[2:0] 3'b100 (复位模式) 3'b101 (暂停模式) 3'b110 (事件模式)	TRGS[2:0] 000: ITI0 001: ITI1 010: ITI2 011: ITI3 100: CI0F_ED 101: CI0FE0 110: CI1FE1		触发源ITIx,滤波和预分频不可用 触 发 源 Clx , 配 置 CHxCAPFLT 设 置 滤 波,分频不可用					
例1	复位模式 当触发输入上升沿, 计数器清零重启	TRGIS[2:0]=3'b000 选择ITI0为触发源	触发源是ITIO,极性 选择不可用	触发源是 ITIO, 滤波和预分频不可用					
	图 16-5	3. 复位模式下的控制电路							
	TIMER_CK CEN CNT_REG UPIF ITI0 TRGIF	94 \ 95\ 96\ 97\ 98\ 99\ (OX1X2X3X4X0X1	2X —					
例2	暂停模式 当触发输入为低的时 候,计数器暂停计数	TRGIS[2:0]=3'b101 选择Cl0FE0为触发源	TIOS=0.(非异或) CHOP==0,不反相. 在上升沿捕获	在这个例子中滤波被 旁路					

单脉冲模式

单脉冲模式与重复模式是相反的,设置 TIMERx_CTL0 寄存器的 SPM 位置 1,则使能单脉冲模式。当 SPM 置 1,计数器在下次更新事件到来后清零并停止计数。为了得到脉冲波,可以通过设置 CHxCOMCTL 配置 TIMERx 为 PWM 模式或者比较模式。


一旦设置定时器运行在单脉冲模式下,没有必要设置 TIMERx_CTL0 寄存器的定时器使能位 CEN=1 来使能计数器。触发信号沿或者软件写 CEN=1 都可以产生一个脉冲,此后 CEN 位一直保持为 1 直到更新事件发生或者 CEN 位被软件写 0。如果 CEN 位被软件清 0,计数器停止工作,计数值被保持。

在单脉冲模式下,有效的外部触发边沿会将 CEN 位置 1,使能计数器。然而,执行计数值和 TIMERx_CHxCV 寄存器值的比较结果依然存在一些时钟延迟。为了最大限度减少延迟,用户可以将 TIMERx_CHCTL0/1 寄存器的 CHxCOMFEN 位置 1。单脉冲模式下,触发上升沿产生之后,OxCPRE 信号将被立即强制转换为与发生比较匹配时相同的电平,但是不用考虑比较结果。只有输出通道配置为 PWM0 或 PWM1 输出运行模式下时 CHxCOMFEN 位才可用,触发源来源于触发信号。

图 16-56. 单脉冲模式, TIMERx CHxCV = 4 TIMERx CAR=99 展示了一个例子。

图 16-56. 单脉冲模式,TIMERx_CHxCV = 4 TIMERx_CAR=99

定时器互连

参考<u>高级定时器(TIMERx, x=0, 7)互连</u>

定时器调试模式

当Cortex®-M4内核停止,DBG_CTL0寄存器中的TIMERx_HOLD配置位被置1,定时器计数器停止

16.3.5. TIMERx 寄存器(x=8,11)

TIMER8基地址: 0x4001 4C00

TIMER11基地址: 0x4000 1800

控制寄存器 0 (TIMERx_CTL0)

地址偏移: 0x00 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	留			CKDI	V[1:0]	ARSE		保留		SPM	UPS	UPDIS	CEN
						n	N	rw				rw	rw	rw/	rw

位/位域	名称	描述
15:10	保留	必须保持复位值。
9:8	CKDIV[1:0]	时钟分频 通过软件配置CKDIV,规定定时器时钟(CK_TIMER) 与死区时间和数字滤波器采样 时钟(DTS)之间的分频系数。 00: fots=fck_timer 01: fots= fck_timer /2 10: fots= fck_timer /4 11: 保留
7	ARSE	自动重载影子使能 0: 禁能 TIMERx_CAR 寄存器的影子寄存器 1: 使能 TIMERx_CAR 寄存器的影子寄存器
6:4	保留	必须保持复位值。
3	SPM	单脉冲模式 0:单脉冲模式禁能。更新事件发生后,计数器继续计数 1:单脉冲模式使能。在下一次更新事件发生时,计数器停止计数
2	UPS	更新请求源 软件配置该位,选择更新事件源。 0:以下事件均会产生更新中断或DMA请求: UPG位被置1 计数器溢出/下溢 复位模式产生的更新 1:下列事件会产生更新中断或DMA请求: 计数器溢出/下溢
1	UPDIS	禁止更新.

该位用来使能或禁能更新事件的产生

0: 更新事件使能. 更新事件发生时,相应的影子寄存器被装入预装载值,以下事件均会产生更新事件:

UPG位被置1

计数器溢出/下溢 复位模式产生的更新

1: 更新事件禁能.

注意: 当该位被置 1 时,UPG 位被置 1 或者复位模式不会产生更新事件,但是计数器和预分频器被重新初始化

0 CEN

计数器使能

0: 计数器禁能

1: 计数器使能

在软件将 CEN 位置 1 后,外部时钟、暂停模式和编码器模式才能工作。

从模式配置寄存器 (TIMERx_SMCFG)

地址偏移: 0x08 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	:留				MSM		TRGS[2:0]		Res.		SMC[2:0]	
•	•				•	•	•	rw		rw	·	rw	•	rw	

位/位域	名称	描述
15:8	保留	必须保持复位值。
7	MSM	主-从模式 该位被用来同步被选择的定时器同时开始计数。通过 TRIGI 和 TRGO,定时器被连接在一起,TRGO 用做启动事件。 0: 主从模式禁能 1: 主从模式使能
6:4	TRGS[2:0]	触发选择 该位域用来指定选择哪一个信号作为用来同步计数器的触发输入源 000: ITI0 001: ITI1 010: ITI2 011: ITI3 100: CI0F_ED 101: CI0FE0 110: CI1FE1

3 保留 必须保持复位值。

2:0 SMC[2:0] 从模式控制
000: 关闭从模式. 如果 CEN=1,则预分频器直接由内部时钟驱动
001: 保留
010: 保留
011: 保留
100: 复位模式. 选中的触发输入的上升沿重新初始化计数器,并且产生更新事件.
101: 暂停模式. 当触发输入为高时,计数器的时钟开启。一旦触发输入变为低,则计数器时钟停止
110: 事件模式.计数器在触发输入的上升沿启动。
111: 外部时钟模式 0. 选中的触发输入的上升沿驱动计数器

DMA 和中断使能寄存器 (TIMERx_DMAINTEN)

地址偏移: 0x0C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留					TRGIE		保留		CH1IE	CH0IE	UPIE
									nw.				rw.	rw.	rw.

位/位域	名称	描述
15:7	保留	必须保持复位值。
6	TRGIE	触发中断使能 0:禁止触发中断 1:使能触发中断
5:3	保留	必须保持复位值。
2	CH1IE	通道 1 比较/捕获中断使能 0: 禁止通道 1 中断 1: 使能通道 1 中断
1	CH0IE	通道 0 比较/捕获中断使能 0:禁止通道 0 中断 1:使能通道 0 中断
0	UPIE	更新中断使能 0:禁止更新中断 1:使能更新中断

中断标志寄存器 (TIMERx_INTF)

地址偏移: 0x10

复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留			CH1OF	CH0OF	保留	i	TRGIF		保留		CH1IF	CH0IF	UPIF
						rc w0	rc w0			rc w0				rc w0	rc w0	rc w0

位/位域	名称	描述
15:11	保留	必须保持复位值。
10	CH1OF	通道 1 捕获溢出标志 参见 CH0OF 描述
9	CH0OF	通道 1 捕获溢出标志 当通道 0 被配置为输入模式时,在 CHOIF 标志位已经被置 1 后,捕获事件再次发生时,该标志位可以由硬件置 1。该标志位由软件清 0. 0: 无捕获溢出中断发生 1: 发生了捕获溢出中断
8:7	保留	必须保持复位值。
6	TRGIF	触发中断标志 当发生触发事件时,此标志会置 1,此位由软件清 0。当暂停模式使能时,触发输入的任意边沿都可以产生触发事件。否则,其它模式时,仅在触发输入端检测到有效边沿,产生触发事件。 0:无触发事件产生 1:触发中断产生
5:3	保留	必须保持复位值。
2	CH1IF	通道 1 比较/捕获中断标志 参见 CHOIF 描述
1	CH0IF	通道 0 比较/捕获中断标志 此标志由硬件置 1 软件清 0。当通道 0 在输入模式下时,捕获事件发生时此标志位 被置 1; 当通道 0 在输出模式下时,此标志位在一个比较事件发生时被置 1。 当通道 0 在输入模式下时,读 TIMERx_CH0CV 会将此标志清 0。 0: 无通道 0 中断发生 1: 通道 0 中断发生
0	UPIF	更新中断标志 此位在任何更新事件发生时由硬件置 1,软件清 0。 0:无更新中断发生 1:发生更新中断

软件事件产生寄存器 (TIMERx_SWEVG)

地址偏移: 0x14 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留					TRGG		保留		CH1G	CH0G	UPG
									w				w	w	w

位/位域	名称	描述
15:7	保留	必须保持复位值。
6	TRGG	触发事件产生 此位由软件置 1,由硬件自动清 0.当此位被置 1,TIMERx_INTF 寄存器的 TRGIF 标志位被置 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA 传输。 0:无触发事件产生 1:产生触发事件
5:3	保留	必须保持复位值。
2	CH1G	通道 1 捕获或比较事件发生 参见 CH0G 描述
1	CH0G	通道 0 捕获或比较事件发生 该位由软件置 1,用于在通道 0 产生一个捕获/比较事件,由硬件自动清 0。当此位 被置 1,CHOIF 标志位被置 1,若开启对应的中断和 DMA,则发出相应的中断和 DMA 请求。此外,如果通道 0 配置为输入模式,计数器的当前值被 TIMERx_CHOCV 寄存器捕获,如果 CHOIF 标志位已经为 1,则 CHOOF 标志位被 置 1。 0: 不产生通道 0 捕获或比较事件 1: 发生通道 0 捕获或比较事件
0	UPG	更新事件产生 此位由软件置 1,被硬件自动清 0。当此位被置 1,如果选择了中央对齐或向上计数 模式,计数器被清 0。否则(向下计数模式)计数器将载入自动重载值,预分频计数器 将同时被清除。 0:无更新事件产生 1:产生更新事件

通道控制寄存器 0 (TIMERx_CHCTL0)

地址偏移: 0x18 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

GD32F403xx 用户手册

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留	CH ⁻	1COMCTL[2:0] CH1COM CH1COM SEN FEN CH1MS		S[1:0]	保留	CH	COMCTL	2:0]	CH0COM SEN	CH0COM FEN		MS[1:0]			
		CH1CAPFLT[3:0]			CH1CAP	PSC[1:0]				CH0CAF	PFLT[3:0]		CH0CAP	PSC[1:0]		
		n	V		r	w	n	W		n	N		r	w		rw

输出比较模式:

位/位域	名称	描述
15	保留	必须保持复位值。
14:12	CH1COMCTL[2:0]	通道 1 输出比较模式 参见 CH0COMCTL 描述
11	CH1COMSEN	通道 1 输出比较影子寄存器使能 参见 CH0COMSEN 描述
10	CH1COMFEN	通道 1 输出比较快速使能 参见 CH0COMFEN 描述
9:8	CH1MS[1:0]	通道 1 模式选择 这些位定义了通道的方向和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄存器的 CH1EN 位被清 0)时这些位才可以写。 00:通道 1 配置为输出 01:通道 1 配置为输入,IS1 映射在 CI1FE1 上 10:通道 1 配置为输入,IS1 映射在 CI0FE1 上 11:通道 1 配置为输入,IS1 映射在 ITS 上 注意:当 CH1MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存器)选择内部触发输入。
7	保留	必须保持复位值。
6:4	CH0COMCTL[2:0]	通道 0 输出比较模式 此位定义了输出准备信号 OOCPRE 的输出比较模式,而 OOCPRE 决定了 CH0_O、CH0_ON 的值。另外,OOCPRE 高电平有效,而 CH0_O、CH0_ON 通道的极性取决于 CH0P、CH0NP 位。 000: 时基。输出比较寄存器 TIMERx_CH0CV 与计数器 TIMERx_CNT 间的比较对OOCPRE 不起作用 001: 匹配时设置为高。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 OOCPRE 为高。 010: 匹配时设置为低。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 OOCPRE 为低。 011: 匹配时翻转。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 OOCPRE 为低。 011: 匹配时翻转。当计数器的值与捕获/比较值寄存器 TIMERx_CH0CV 相同时,强制 OOCPRE 为低。

110:PWM 模式 0。在向上计数时,一旦计数器值小于 TIMERx_CH0CV 时,O0CPRE 为高电平,否则为低电平。在向下计数时,一旦计数器的值大于 TIMERx_CH0CV 时,

O0CPRE 为低电平,否则为高电平。

111: PWM 模式 1。在向上计数时,一旦计数器值小于 TIMERx_CH0CV 时,O0CPRE 为低电平,否则为高电平。在向下计数时,一旦计数器的值大于 TIMERx_CH0CV 时,O0CPRE 为高电平,否则为低电平。

如果配置在 PWM 模式下,只有当输出比较模式从时基模式变为 PWM 模式或者比较结果改变时,O0CPRE 电平才改变。

当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH0MS =00 (比较模式) 时此位不能被改变。

3 CH0COMSEN

通道 0 输出比较影子寄存器使能

当此位被置 1, TIMERx_CH0CV 寄存器的影子寄存器被使能,影子寄存器在每次更新事件时都会被更新。

- 0: 禁止通道 0 输出/比较影子寄存器
- 1: 使能通道 0 输出/比较影子寄存器

仅在单脉冲模式下(SPM =1),可以在未确认影子寄存器的情况下使用 PWM 模式当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH0MS =00 时此位不能被改变。

2 CH0COMFEN

通道 0 输出比较快速使能

当该位为 1 时,如果通道配置为 PWM0 模式或者 PWM1 模式,会加快捕获/比较输出对触发输入事件的响应。输出通道将触发输入信号的有效边沿作为一个比较匹配,CH0_O 被设置为比较电平而与比较结果无关。

- 0: 禁止通道 0 输出比较快速.
- 1: 使能通道 0 输出比较快速。

1:0 CH0MS[1:0]

通道 0 I/O 模式选择

这些位定义了通道的工作模式和输入信号的选择。只有当通道关闭(TIMERx CHCTL2 寄存器的 CH0EN 位被清 0)时这些位才可写。

- 00: 通道 0 配置为输出
- 01: 通道 0 配置为输入, ISO 映射在 CIOFEO 上
- 10: 通道 0 配置为输入, ISO 映射在 CI1FE0 上
- 11: 通道 0 配置为输入,ISO 映射在 ITS 上

注意: 当 CH0MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx SMCFG 寄存

器)选择内部触发输入

输入捕获模式:

位/位域	名称	描述
15:12	CH1CAPFLT[3:0]	通道 1 输入捕获滤波控制 参见 CH0CAPFLT 描述
11:10	CH1CAPPSC[1:0]	通道 1 输入捕获预分频器 参见 CH0CAPPSC 描述
9:8	CH1MS[1:0]	通道 1 模式选择 与输出模式相同
7:4	CH0CAPFLT[3:0]	通道 0 输入捕获滤波控制

CIO 输入信号可以通过数字滤波器进行滤波,该位域配置滤波参数。

数字滤波器的基本原理:根据 fsamp 对 CIO 输入信号进行连续采样,并记录信号相同电平的次数。达到该位配置的滤波参数后,认为是有效电平。

滤波器参数配置如下:

CH0CAPFLT [3:0]	采样次数	f SAMP
4'b0000	j	
4'b0001	2	
4'b0010	4	fck_timer
4'b0011	8	
4'b0100	6	fpts/2
4'b0101	8	IDTS/Z
4'b0110	6	£ //
4'b0111	8	f _{DTS} /4
4'b1000	6	fртs/8
4'b1001	8	IDTS/ o
4'b1010	5	
4'b1011	6	f _{DTS} /16
4'b1100	8	
4'b1101	5	
4'b1110	6	f _{DTS} /32
4'b1111	8	

3:2 CH0CAPPSC[1:0]

通道 0 输入捕获预分频器

这 2 位定义了通道 0 输入的预分频系数。当 TIMERx_CHCTL2 寄存器中的 CH0EN =0 时,则预分频器复位。

00: 无预分频器, 捕获输入口上检测到的每一个边沿都触发一次捕获

01: 每2个事件触发一次捕获 10: 每4个事件触发一次捕获

11: 每8个事件触发一次捕获

1:0 CH0MS[1:0]

通道 0 模式选择 与输出比较模式相同

通道控制寄存器 2 (TIMERx_CHCTL2)

地址偏移: 0x20 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留						CH1NP	保留	CH1P	CH1EN	CH0NP	保留	CH0P	CH0EN		
								rw		rw	rw	rw		rw	rw

位/位域 名称 名称

15:8	保留	必须保持复位值。
7	CH1NP	通道1互补输出极性 参考CHONP描述
6	保留	必须保持复位值。
5	CH1P	通道 1 极性 参考 CH0P 描述
4	CH1EN	通道 1 使能 参考 CH0EN 描述
3	CH0NP	通道 0 互补输出极性 当通道 0 配置为输出模式,此位定义了互补输出信号的极性。 0: 通道0互补输出高电平为有效电平 1: 通道0互补输出低电平为有效电平 当通道 0 配置为输入模式时,此位和 CHOP 联合使用,作为输入信号 CIO 的极性选择控制信号。 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 或 10 时此位不能被更改。
2	保留	必须保持复位值。
1	CH0P	通道 0 极性 当通道 0 配置为输出模式时,此位定义了输出信号极性。 0: 通道0高电平为有效电平 1: 通道0低电平为有效电平 当通道 0 配置为输入模式时,此位定义了 CIO 信号极性 [CH0NP, CH0P] 将选择 CI0FE0 或者 CI1FE0 的有效边沿或者捕获极性 [CH0NP==0, CH0P==0]: 把 ClxFE0 的上升沿作为捕获或者从模式下触发的有效信号,并且 ClxFE0 不会被翻转。 [CH0NP==0, CH0P==1]: 把 ClxFE0 的下降沿作为捕获或者从模式下触发的有效信号,并且 ClxFE0 会被翻转。 [CH0NP==1, CH0P==0]: 保留。 [CH0NP==1, CH0P==1]: 保留。 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 或 10 时此位不能被更改。
0	CH0EN	通道 0 捕获/比较使能 当通道 0 配置为输出模式时,将此位置 1 使能 CH0_O 信号有效。当通道 0 配置为输入模式时,将此位置 1 使能通道 0 上的捕获事件。 0: 禁止通道 0 1: 使能通道 0

计数器寄存器 (TIMERx_CNT)

地址偏移: 0x24 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw

位/位域 名称 描述

15:0 CNT[15:0] 这些位是当前的计数值。写操作能改变计数器值。

预分频寄存器 (TIMERx_PSC)

地址偏移: 0x28 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw

位/位域 名称 描述

15:0 PSC[15:0] 计数器时钟预分频值

计数器时钟等于 TIMER_CK 时钟除以(PSC+1),每次当更新事件产生时,PSC 的

值被装入到对应的影子寄存器。

计数器自动重载寄存器 (TIMERx_CAR)

地址偏移: 0x2C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CARL[15:0]

rw

位/位域 名称 描述

15:0 CARL[15:0] 计数器自动重载值

这些位定义了计数器的自动重载值。

注意: 在定时器被配置为输入捕获模式时,该寄存器需要被配置成一个大于用户期

望值的非 0 值(例如 0xFFFF)。

通道 0 捕获/比较值寄存器 (TIMERx_CH0CV)

地址偏移: 0x34 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH0VAL[15:0]

Rw

 位/位域
 名称
 描述

 15:0
 CH0VAL[15:0]
 通道 0 的捕获或比较值

 当通道 0 配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存器为只读。

当通道 0 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子寄存器后,影子寄存器值随每次更新事件更新。

通道 1 捕获/比较值寄存器 (TIMERx_CH1CV)

地址偏移: 0x38 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH1VAL[15:0]

1 17 12[10.0

位/位域 名称 描述

15:0 CH1VAL[15:0] 通道 1 的捕获或比较值

当通道 1 配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存器为只读。

当通道 1 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子寄存器后,影子寄存器值随每次更新事件更新。

配置寄存器 (TIMERx_CFG)

地址偏移: 0xFC 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 保留 CHVSEL 保留

w

位/位域	名称	描述
15:2	保留	必须保持复位值。
1	CHVSEL	写捕获比较寄存器选择位

此位由软件写1或清0。

- 1: 当写入捕获比较寄存器的值与寄存器当前值相等时,写入操作无效
- 0: 无影响

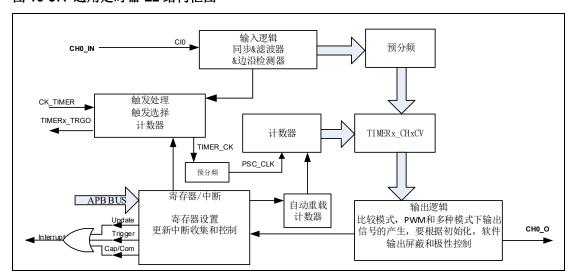
0 保留 必须保持复位值。

16.4. 通用定时器 L2(TIMERx, x=9,10,12,13)

16.4.1. 简介

通用定时器 L2 (TIMERx, x=9, 10, 12, 13)是单通道定时器,支持输入捕获和输出比较,产生 PWM 信号控制电机和电源管理。通用定时器 L2 含有一个 16 位无符号计数器。

通用定时器 L2 是可编程的,可以被用来计数,其外部事件可以驱动其他定时器


16.4.2. 主要特性

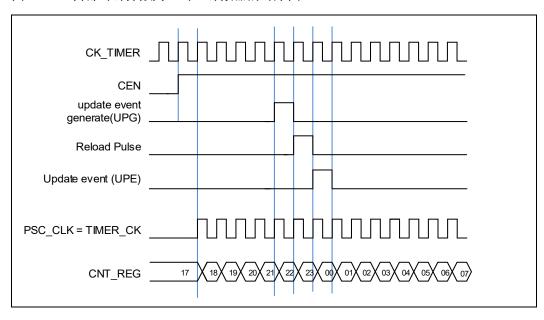
- 总通道数:1
- 计数器宽度: 16位
- 时钟源:内部时钟
- 计数模式: 向上计数, 向下计数和中央计数
- 可编程的预分频器: 16位,运行时可以被改变
- 每个通道可配置:输入捕获模式,输出比较模式,可编程的PWM模式,单脉冲模式
- 自动重装载功能.
- 中断输出: 更新事件, 比较/捕获事件

16.4.3. 结构框图

图 16-57. 通用定时器 L2 结构框图提供了通用定时器 L2 的内部配置细节

图 16-57. 通用定时器 L2 结构框图

16.4.4. 功能描述

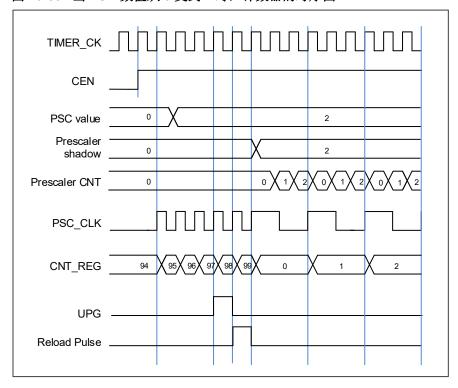

时钟源配置

通用定时器L2由内部时钟源CK_TIMER驱动

■ 定时器时钟TIMER_CK连接到RCU模块的CK_TIMER

通用定时器L2仅有一个时钟源CK_TIMER,用来驱动计数器预分频器。当CEN置位,CK_TIMER经过预分频器(预分频值由TIMERx_PSC寄存器确定)产生PSC_CLK。

图 16-58. 内部时钟分频为 1 时,计数器的时序图



时钟预分频器

预分频器可以将定时器的时钟(TIMER_CK)频率按1到65536之间的任意值分频,分频后的时钟PSC_CLK驱动计数器计数。分频系数受预分频寄存器TIMERx_PSC控制,这个控制寄存器带有缓冲器,它能够在运行时被改变。新的预分频器的参数在下一次更新事件到来时被采用。

图 16-59. 当 PSC 数值从 0 变到 2 时, 计数器的时序图

计数器向上计数模式

在这种模式,计数器的计数方向是向上计数。计数器从 0 开始向上连续计数到自动加载值(定义在 TIMERx_CAR 寄存器中),一旦计数器计数到自动加载值,会重新从 0 开始向上计数并产生上溢事件。在向上计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 应该被设置成 0。

当通过 TIMERx_SWEVG 寄存器的 UPG 位置 1 来设置更新事件时,计数值会被清 0,并产生更新事件。

如果 TIMERx_CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有影子寄存器(计数器自动重载寄存器,预分频寄存器)都将被更新。

图 16-60. 向上计数时序图,PSC=0/2 和图 16-61. 向上计数时序图,在运行时改变 TIMERx CAR 寄存器的值给出了一些例子,当 TIMERx_CAR=0x99 时,计数器在不同预分频

因子下的行为。

图 16-60. 向上计数时序图,PSC=0/2

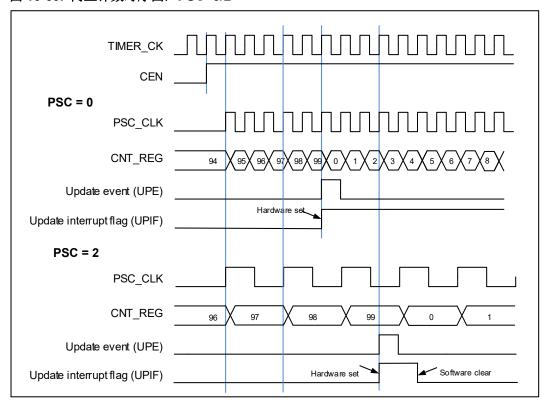
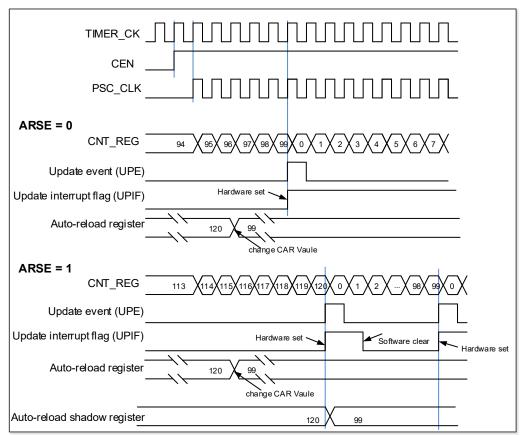
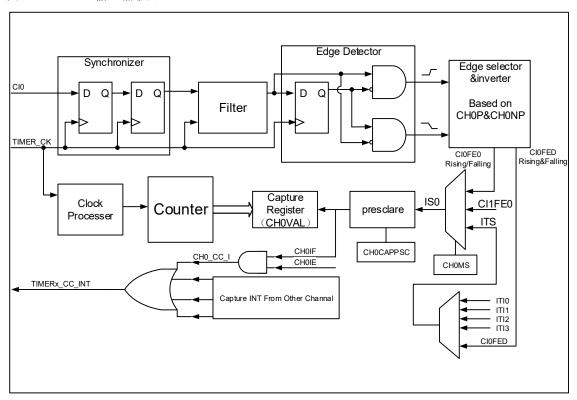



图 16-61. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值


输入捕获和输出比较通道

通用定时器 L2 只有一个独立的通道用于捕获输入或比较输出是否匹配。该通道通道都围绕一个通道捕获比较寄存器建立,包括一个输入级,通道控制器和输出级。

■ 通道输入捕获功能

捕获模式允许通道测量一个波形时序,频率,周期,占空比等。输入级包括一个数字滤波器,一个通道极性选择,边沿检测和一个通道预分频器。如果在输入引脚上出现被选择的边沿,TIMERx_CHxCV寄存器会捕获计数器当前的值,同时 CHxIF 位被置 1,如果 CHxIE = 1 则产生通道中断。

图 16-62. 通道输入捕获原理

通道输入信号CIx先被TIMER_CK信号同步,然后经过数字滤波器采样,产生一个被滤波后的信号。通过边沿检测器,可以选择检测上升沿或者下降沿。通过配置CHxP选择使用上升沿或者下降沿。配置CHxMS.,可以选择其他通道的输入信号,内部触发信号。配置IC预分频器,使得若干个输入事件后才产生一个有效的捕获事件。捕获事件发生,TIMERx_CHxCV存储计数器的值。

配置步骤如下:

第一步: 滤波器配置 (TIMERx_CHCTL0寄存器中CHxCAPFLT):

根据输入信号和请求信号的质量,配置相应的CHxCAPFLT。

第二步: 边沿选择(TIMERx CHCTL2寄存器中CHxP/CHxNP):

配置CHxP/CHxNP选择上升沿或者下降沿。

第三步: 捕获源选择 (TIMERx CHCTL0寄存器中CHxMS):

一旦通过配置CHxMS选择输入捕获源,必须确保通道配置在输入模式(CHxMS!=0x0),而且TIMERx CHxCV寄存器不能再被写。

第四步: 中断使能(TIMERx DMAINTEN寄存器中CHxIE):

使能相应中断, 可以获得中断。

第五步: 捕获使能(TIMERx CHCTL2寄存器中CHxEN)。

结果: 当期望的输入信号发生时,TIMERx_CHxCV被设置成当前计数器的值,CHxIF为置1。如果CHxIF位已经为1,则CHxOF位置1。根据TIMERx_DMAINTEN寄存器中CHxIE的配置,相应的中断会被提出。

直接产生:软件设置CHxG位,会直接产生中断。

输入捕获模式也可用来测量 TIMERx_CHx 引脚上信号的脉冲波宽度。例如,一个 PWM 波连接到 CIO。配置 TIMERx_CHCTLO 寄存器中 CH0MS 为 2′b01,选择通道 0 的捕获信号为 CIO 并设置上升沿捕获。配置 TIMERx_CHCTLO 寄存器中 CH1MS 为 2′b10,选择通道 1 捕获信号为 CIO 并设置下降沿捕获。计数器配置为复位模式,在通道 0 的上升沿复位。TIMERX CH0CV寄存器测量 PWM 的周期值,TIMERx CH1CV寄存器测量 PWM 占空比值。

■ 通道输出比较功能

在输出比较模式,TIMERx 可以产生时控脉冲,其位置,极性,持续时间和频率都是可编程的。 当一个输出通道的 TIMERx_CHxCV 寄存器与计数器的值匹配时,根据 CHxCOMCTL 的配置, 这个通道的输出可以被置高电平,被置低电平或者反转。当计数器的值与 TIMERx_CHxCV 寄 存器的值匹配时,CHxIF 位被置 1,如果 CHxIE = 1 则会产生中断,如果 CxCDE=1 则会产生 DMA 请求。

配置步骤如下:

第一步:时钟配置:

配置定时器时钟源, 预分频器等。

第二步: 比较模式配置:

设置CHxCOMSEN位来配置输出比较影子寄存器;

设置CHxCOMCTL位来配置输出模式(置高电平/置低电平/反转);

设置CHxP/CHxNP位来选择有效电平的极性;

设置CHxEN使能输出。

第三步: 通过CHxIE位配置中断使能。

第四步:通过TIMERx_CAR寄存器和TIMERx_CHxCV寄存器配置输出比较时基:

TIMERx_CHxCV可以在运行时根据你所期望的波形而改变。

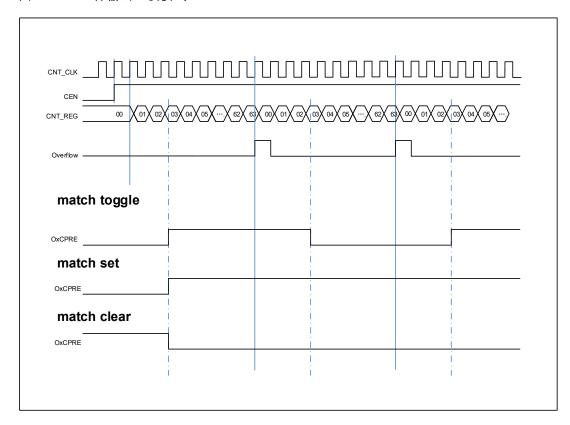

第五步:设置CEN位使能定时器。

图 16-63. 三种输出比较模式显示了三种比较输出模式: 反转/置高电平/置低电平,

CAR=0x63, CHxVAL=0x3。

图 16-63. 三种输出比较模式

通道输出准备信号

当 TIMERx 用于输出匹配比较模式下,设置 CHxCOMCTL 位可以定义 OxCPRE 信号(通道 x 准备信号)类型。OxCPRE 信号有若干类型的输出功能,包括,设置 CHxCOMCTL=0x00 可以保持原始电平;设置 CHxCOMCTL=0x01 可以将 OxCPRE 信号设置为高电平;设置 CHxCOMCTL=0x02 可以将 OxCPRE 信号设置为低电平;设置 CHxCOMCTL=0x03,在计数器值和 TIMERx_CHxCV 寄存器的值匹配时,可以翻转输出信号。

PWM 模式 0 和 PWM 模式 1 是 OxCPRE 的另一种输出类型,设置 CHxCOMCTL 位域位 0x06 或 0x07 可以配置 PWM 模式 0/PWM 模式 1。在这些模式中,根据计数器值和 TIMERx_CHxCV 寄存器值的关系以及计数方向, OxCPRE 信号改变其电平。具体细节描述,请参考相应的位。

设置 CHxCOMCTL =0x04 或 0x05 可以实现 OxCPRE 信号的强制输出功能。输出比较信号能够直接由软件强置为有效或无效状态,而不依赖于 TIMERx_CHxCV 的值和计数器值之间间的比较结果。

定时器互连

参考*高级定时器(TIMERx, x=0, 7)互连*

定时器调试模式

当Cortex®-M4内核停止,DBG_CTL0寄存器中的TIMERx_HOLD配置位被置1,定时器计数器

停止。

16.4.5. TIMERx 寄存器(x=9,10,12,13)

TIMER9基地址: 0x4001 5000

TIMER10基地址: 0x4001 5400

TIMER12基地址: 0x4000 1C00

TIMER13基地址: 0x4000 2000

控制寄存器 0 (TIMERx_CTL0)

地址偏移: 0x00 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留					CKD	IV[1:0]	ARSE		保	留		UPS	UPDIS	CEN	
						-	w	rw					rw	rw	rw

位/位域	名称	描述
15:10	保留	必须保持复位值。
9:8	CKDIV[1:0]	时钟分频 通过软件配置CKDIV,规定定时器时钟(CK_TIMER) 与死区时间和数字滤波器采样 时钟(DTS)之间的分频系数。 00: fots=fck_timer 01: fots= fck_timer /2 10: fots= fck_timer /4 11: 保留
7	ARSE	自动重载影子使能 0: 禁能 TIMERx_CAR 寄存器的影子寄存器 1: 使能 TIMERx_CAR 寄存器的影子寄存器
6:3	保留	必须保持复位值。
2	UPS	更新请求源 软件配置该位,选择更新事件源. 0:以下事件均会产生更新中断或DMA请求: UPG位被置1 计数器溢出/下溢 复位模式产生的更新 1:下列事件会产生更新中断或DMA请求: 计数器溢出/下溢
1	UPDIS	禁止更新. 该位用来使能或禁能更新事件的产生

0: 更新事件使能. 更新事件发生时,相应的影子寄存器被装入预装载值,以下事件均会产生更新事件:

UPG位被置1

计数器溢出/下溢

复位模式产生的更新

1: 更新事件禁能.

注意: 当该位被置 1 时,UPG 位被置 1 或者复位模式不会产生更新事件,但是计数器和预分频器被重新初始化

0 CEN

计数器使能

0: 计数器禁能

1: 计数器使能

在软件将 CEN 位置 1 后,外部时钟、暂停模式和编码器模式才能工作。

控制寄存器 1 (TIMERx_CTL1)

地址偏移: 0x04 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

rw

位/位域	名称	描述
15:8	保留	必须保持复位值。
7	保留	必须保持复位值。
6:4	MMC[2:0]	主模式控制 这些位控制 TRGO 信号的选择,TRGO 信号由主定时器发给从定时器用于同步功能 000: 当产生一个定时器复位事件后,输出一个TRGO信号,定时器复位源为: 主定时器产生一个复位事件 TIMERx_SWEVG寄存器中UPG位置1
		001: 当产生一个定时器使能事件后,输出一个TRGO信号,定时器使能源为:
		UPS位决定
		011: 当通道0在发生一次捕获或一次比较成功时,主模式控制器产生一个TRGO脉冲100: 当产生一次比较事件时,输出一个TRGO信号,比较事件源来自O0CPRE101: 保留110: 保留111: 保留

3 保留 必须保持复位值

2:0 保留 必须保持复位值

DMA 和中断使能寄存器 (TIMERx_DMAINTEN)

地址偏移: 0x0C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

w rw

位/位域	名称	描述
15:2	保留	必须保持复位值。
1	CH0IE	通道 0 比较/捕获中断使能 0: 禁止通道 0 中断 1: 使能通道 0 中断
0	UPIE	更新中断使能 0:禁止更新中断 1:使能更新中断

中断标志寄存器 (TIMERx_INTF)

地址偏移: 0x10 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	留			CH0OF				保留				CH0IF	UPIF
						rc w0								rc w0	rc w0

名称	描述
保留	必须保持复位值。
CH0OF	通道 0 捕获溢出标志
	当通道 0 被配置为输入模式时,在 CH0IF 标志位已经被置 1 后,捕获事件再次发生
	时,该标志位可以由硬件置 1。该标志位由软件清 0.
	0: 无捕获溢出中断发生
	1: 发生了捕获溢出中断
	保留

8:2	保留	必须保持复位值。
1	CH0IF	通道 0 比较/捕获中断标志 此标志由硬件置 1 软件清 0。当通道 0 在输入模式下时,捕获事件发生时此标志位 被置 1; 当通道 0 在输出模式下时,此标志位在一个比较事件发生时被置 1。 当通道 0 在输入模式下时,读 TIMERx_CH0CV 会将此标志清 0。 0: 无通道 0 中断发生 1: 通道 0 中断发生
0	UPIF	更新中断标志 此位在任何更新事件发生时由硬件置 1,软件清 0。 0:无更新中断发生 1:发生更新中断

软件事件产生寄存器 (TIMERx_SWEVG)

地址偏移: 0x14 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保	留							CH0G	UPG

位/位域 描述 名称 15:2 保留 必须保持复位值。 CH0G 通道 0 捕获或比较事件发生 该位由软件置 1,用于在通道 0产生一个捕获/比较事件,由硬件自动清 0。当此位 被置 1, CHOIF 标志位被置 1, 若开启对应的中断和 DMA,则发出相应的中断和 DMA 请求。此外,如果通道 0 配置为输入模式,计数器的当前值被 TIMERx CHOCV 寄存器捕获,如果 CHOIF 标志位已经为 1,则 CHOOF 标志位被 置 1。 0: 不产生通道 0 捕获或比较事件 1: 发生通道 0 捕获或比较事件 UPG 更新事件产生 此位由软件置 1,被硬件自动清 0。当此位被置 1 并且向上计数模式,计数器被清 0, 预分频计数器将同时被清除。 0: 无更新事件产生

通道控制寄存器 0 (TIMERx_CHCTL0)

1: 产生更新事件

地址偏移: 0x18

复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留					保留	CH	0COMCTL[2	2:0]	CH0COM SEN	CH0COM FEN		/IS[1:0]
									CH0CAF	PFLT[3:0]		CH0CAP	PSC[1:0]		

rw rw rw

输出比较模式:

	制山山权快八:	
位/位域	名称	描述
15:7	保留	必须保持复位值。
15:7 6:4	保留 CH0COMCTL[2:0]	必须保持复位值。 通道 0 输出比较模式 此位定义了输出准备信号 OOCPRE 的输出比较模式,而 OOCPRE 决定了 CHO_O、 CHO_ON 的值。另外,OOCPRE 高电平有效,而 CHO_O、CHO_ON 通道的极性取决于 CHOP、CHONP 位。 000: 时基。输出比较寄存器 TIMERx_CHOCV 与计数器 TIMERx_CNT 间的比较对 OOCPRE 不起作用 001: 匹配时设置为高。当计数器的值与捕获/比较值寄存器 TIMERx_CHOCV 相同时,强制 OOCPRE 为高。 010: 匹配时设置为低。当计数器的值与捕获/比较值寄存器 TIMERx_CHOCV 相同时,强制 OOCPRE 为低。 011: 匹配时翻转。当计数器的值与捕获/比较值寄存器 TIMERx_CHOCV 相同时,强制 OOCPRE 为低。 100: 强制为低。强制 OOCPRE 为低电平 101: 强制为高。强制 OOCPRE 为高电平 110: PWM 模式 0。在向上计数时,一旦计数器值小于 TIMERx_CHOCV 时,OOCPRE 为高电平,否则为高电平。在向下计数时,一旦计数器值小于 TIMERx_CHOCV 时,OOCPRE 为低电平,否则为高电平。在向下计数时,一旦计数器值小于 TIMERx_CHOCV 时,OOCPRE 为低电平,否则为高电平。在向下计数时,一旦计数器值小于 TIMERx_CHOCV 时,OOCPRE 为低电平,否则为高电平。在向下计数时,一旦计数器值小于 TIMERx_CHOCV 时,OOCPRE 为低电平,否则为高电平。在向下计数时,一旦计数器的值大于 TIMERx_CHOCV 时,OOCPRE 为高电平,否则为高电平。在向下计数时,一旦计数器的值大于 TIMERx_CHOCV 时,OOCPRE 为高电平,否则为低电平。
		如果配置在 PWM 模式下, 只有当输出比较模式从时基模式变为 PWM 模式或者比较结果改变时, O0CPRE 电平才改变。 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH0MS =00 (比较模式) 时此位不能被改变。
3	CH0COMSEN	通道 0 输出比较影子寄存器使能

通道 0 输出比较影子寄存器使能

当此位被置 1,TIMERx_CH0CV 寄存器的影子寄存器被使能,影子寄存器在每次更新事件时都会被更新。

0: 禁止通道 0 输出/比较影子寄存器

1: 使能通道 0 输出/比较影子寄存器

仅在单脉冲模式下(SPM =1),可以在未确认影子寄存器的情况下使用 PWM 模式 当 TIMERx_CCHP 寄存器的 PROT [1:0]=11 且 CH0MS =00 时此位不能被改变。

2 CH0COMFEN

通道 0 输出比较快速使能

当该位为 1 时,如果通道配置为 PWM0 模式或者 PWM1 模式,会加快捕获/比较输出对触发输入事件的响应。输出通道将触发输入信号的有效边沿作为一个比较匹配, CH0_O 被设置为比较电平而与比较结果无关。

0: 禁止通道 0 输出比较快速.

1: 使能通道 0 输出比较快速。

1:0 CH0MS[1:0]

通道 0 I/O 模式选择

这些位定义了通道的工作模式和输入信号的选择。只有当通道关闭(TIMERx_CHCTL2 寄存器的 CH0EN 位被清 0)时这些位才可写。

00: 通道 0 配置为输出

01: 通道 0 配置为输入, ISO 映射在 CIOFEO 上

10: 通道 0 配置为输入, ISO 映射在 CI1FE0 上

11: 通道 0 配置为输入, ISO 映射在 ITS 上

注意: 当 CH0MS[1:0]=11 时,需要通过 TRGS 位(位于 TIMERx_SMCFG 寄存

器)选择内部触发输入

输入捕获模式:

位/位域	名称	描述
15:8	保留	必须保持复位值。

7:4 CH0CAPFLT[3:0]

通道 0 输入捕获滤波控制

CIO 输入信号可以通过数字滤波器进行滤波,该位域配置滤波参数。

数字滤波器的基本原理:根据 fsamp 对 CIO 输入信号进行连续采样,并记录信号相同电平的次数。达到该位配置的滤波参数后,认为是有效电平。

滤波器参数配置如下:

CH0CAPFLT [3:0]	采样次数	f samp		
4'b0000	Ę			
4'b0001	2			
4'b0010	4	f _{CK_TIMER}		
4'b0011	8			
4'b0100	6	f/2		
4'b0101	8	f _{DTS} /2		
4'b0110	6	£ //		
4'b0111	8	f _{DTS} /4		
4'b1000	6	fors/8		
4'b1001	8	IDTS/8		
4'b1010	5			
4'b1011	6	f _{DTS} /16		
4'b1100	8			
4'b1101	5			
4'b1110	6	f _{DTS} /32		
4'b1111	8			

1:0

3:2 CH0CAPPSC[1:0] 通道 0 输入捕获预分频器

这2位定义了通道0输入的预分频系数。当 TIMERx CHCTL2 寄存器中的

CH0EN = 0 时,则预分频器复位。

00: 无预分频器, 捕获输入口上检测到的每一个边沿都触发一次捕获

01: 每2个事件触发一次捕获 10: 每4个事件触发一次捕获 11: 每8个事件触发一次捕获

CH0MS[1:0] 通道 0 模式选择

与输出比较模式相同

通道控制寄存器 2 (TIMERx_CHCTL2)

地址偏移: 0x20 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 保留.. CHONP 保留 CHOP CHOEN

描述 位/位域 名称 15:4 保留 必须保持复位值。 CH0NP 3 通道 0 互补输出极性 当通道 0 配置为输出模式,此位定义了互补输出信号的极性。 0: 通道0互补输出高电平为有效电平 1: 通道0互补输出低电平为有效电平 当通道 0 配置为输入模式时,此位和 CHOP 联合使用,作为输入信号 CIO 的极性选 择控制信号。 当 TIMERx CCHP 寄存器的 PROT [1:0]=11 或 10 时此位不能被更改。 2 保留 必须保持复位值。 CH0P 通道0极性 当通道 0 配置为输出模式时,此位定义了输出信号极性。 0: 通道0高电平为有效电平 1: 通道0低电平为有效电平 当通道 0 配置为输入模式时,此位定义了 CIO 信号极性 [CHONP, CHOP] 将选择 CIOFEO 或者 CI1FEO 的有效边沿或者捕获极性 [CHONP==0, CHOP==0]: 把 ClxFEO 的上升沿作为捕获或者从模式下触发的有效信 号,并且 ClxFE0 不会被翻转。 [CH0NP==0, CH0P==1]: 把 ClxFE0 的下降沿作为捕获或者从模式下触发的有效信 号,并且 ClxFE0 会被翻转。 [CH0NP==1, CH0P==0]: 保留。

[CH0NP==1, CH0P==1]: 保留。

当 TIMERx CCHP 寄存器的 PROT [1:0]=11 或 10 时此位不能被更改。

0 CH0EN 通道 0 捕获/比较使能

当通道 0 配置为输出模式时,将此位置 1 使能 CH0_O 信号有效。当通道 0 配置为

输入模式时,将此位置1使能通道0上的捕获事件。

0: 禁止通道 0

1: 使能通道 0

计数器寄存器 (TIMERx_CNT)

地址偏移: 0x24 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw

位/位域 名称 描述

15:0 CNT[15:0] 这些位是当前的计数值。写操作能改变计数器值。

预分频寄存器 (TIMERx_PSC)

地址偏移: 0x28 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw

位/位域 名称 描述

15:0 PSC[15:0] 计数器时钟预分频值

计数器时钟等于 TIMER_CK 时钟除以(PSC+1),每次当更新事件产生时,PSC 的值被装入到对应的影子寄存器。

计数器自动重载寄存器 (TIMERx_CAR)

地址偏移: 0x2C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CARL[15:0]

位/位域 描述 名称

15:0 CARL[15:0] 计数器自动重载值

这些位定义了计数器的自动重载值。

注意: 在定时器被配置为输入捕获模式时, 该寄存器需要被配置成一个大于用户期

望值的非 0 值(例如 0xFFFF)。

通道 0 捕获/比较值寄存器 (TIMERx_CH0CV)

地址偏移: 0x34 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 8 5 14 12

CH0VAL[15:0]

位/位域 名称 描述

CH0VAL[15:0] 通道 0 的捕获或比较值 15:0

当通道0配置为输入模式时,这些位决定了上次捕获事件的计数器值。并且本寄存

器为只读。

当通道 0 配置为输出模式时,这些位包含了即将和计数器比较的值。使能相应影子

寄存器后,影子寄存器值随每次更新事件更新。

配置寄存器 (TIMERx_CFG)

地址偏移: 0xFC 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 0

CHVSEL

保留 保留

位/位域	名称	描述
15:2	保留	必须保持复位值。
1	CHVSEL	写捕获比较寄存器选择位 此位由软件写 1 或清 0。
		1: 当写入捕获比较寄存器的值与寄存器当前值相等时,写入操作无效
		0: 无影响

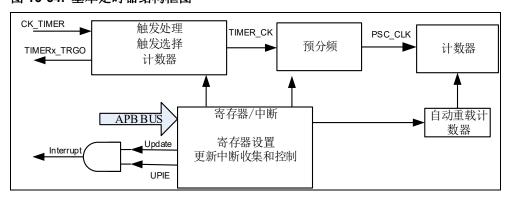
保留

必须保持复位值。

16.5. 基本定时器(TIMERx, x=5,6)

16.5.1. 简介

基本定时器(Timer5, 6)包含一个无符号 16 位计数器。可以被用作通用定时器和为 DAC (数字到模拟转换器)提供时钟。基本定时器可以配置产生 DMA 请求,TRGO 触发连接到 DAC。

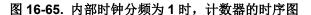

16.5.2. 主要特性

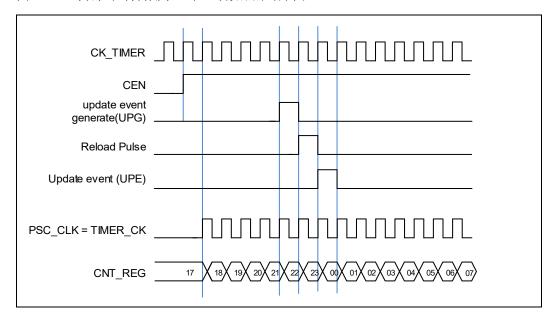
- 计数器宽度: 16位
- 时钟源只有内部时钟
- 计数模式: 向上计数
- 可编程的预分频器: 16位,运行时可以被改变
- 自动重装载功能.
- 中断输出和DMA请求: 更新事件

16.5.3. 结构框图

图 16-64. 基本定时器结构框图提供了基本定时器内部配置的细节

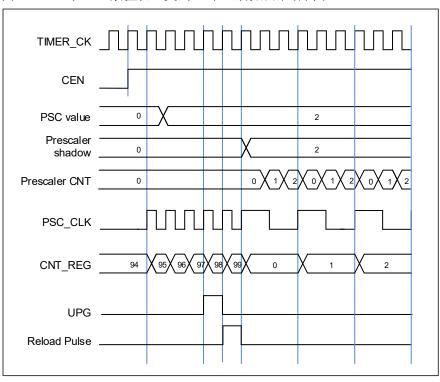
图 16-64. 基本定时器结构框图


16.5.4. 功能描述


时钟源配置

基本定时器可以由内部时钟源CK_TIMER驱动。

基本定时器仅有一个时钟源CK_TIMER,用来驱动计数器预分频器。当CEN置位,CK_TIMER 经过预分频器(预分频值由TIMERx_PSC寄存器确定)产生PSC_CLK。



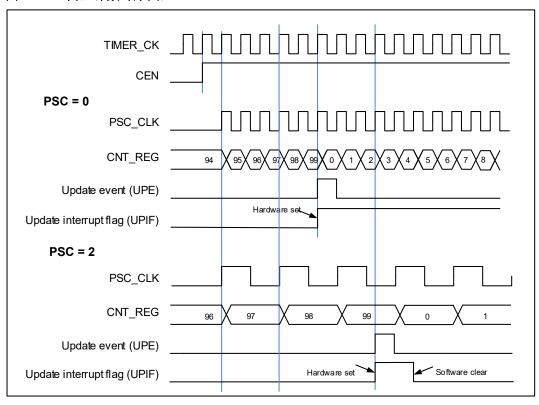
时钟预分频器

预分频器可以将定时器的时钟(TIMER_CK)频率按 1 到 65536 之间的任意值分频,分频后的时钟 PSC_CLK 驱动计数器计数。分频系数受预分频寄存器 TIMERx_PSC 控制,这个控制寄存器带有缓冲器,它能够在运行时被改变。新的预分频器的参数在下一次更新事件到来时被采用。

图 16-66. 当 PSC 数值从 0 变到 2 时,计数器的时序图

计数器向上计数模式

在这种模式,计数器的计数方向是向上计数。计数器从 0 开始向上连续计数到自动加载值(定义在 TIMERx_CAR 寄存器中),一旦计数器计数到自动加载值,会重新从 0 开始向上计数并产生上溢事件。在向上计数模式中,TIMERx_CTL0 寄存器中的计数方向控制位 DIR 应该被设置成 0。


当通过 TIMERx_SWEVG 寄存器的 UPG 位置 1 来设置更新事件时,计数值会被清 0,并产生更新事件。

如果 TIMERx_CTL0 寄存器的 UPDIS 置 1,则禁止更新事件。

当发生更新事件时,所有影子寄存器(计数器自动重载寄存器,预分频寄存器)都将被更新。

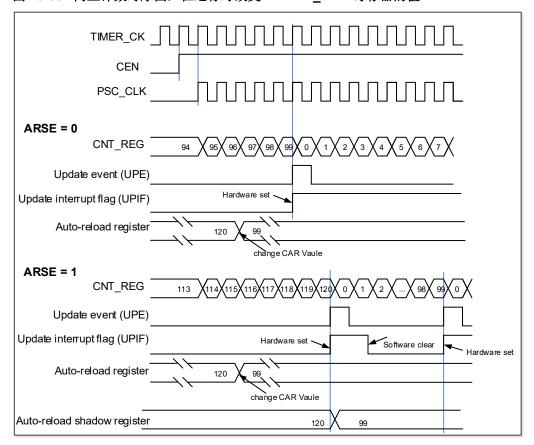

下面这些图给出了一些例子,当 TIMERx_CAR=0x99 时,计数器在不同预分频因子下的行为。

图 16-67. 向上计数时序图,PSC=0/2

图 16-68. 向上计数时序图,在运行时改变 TIMERx_CAR 寄存器的值

单脉冲模式

单脉冲模式与重复模式是相反的,设置TIMERx_CTL0寄存器的SPM位置1,则使能单脉冲模式。 当SPM置1,计数器在下次更新事件到来后清零并停止计数。

一旦设置定时器运行在单脉冲模式下,需要设置TIMERx_CTL0寄存器的定时器使能位CEN=1来使能计数器,此后CEN位一直保持为1直到更新事件发生或者CEN位被软件写0。如果CEN位被软件清0,计数器停止工作,计数值被保持。

定时器调试模式

当Cortex®-M4内核停止,DBG_CTL0寄存器中的TIMERx_HOLD配置位被置1,定时器计数器停止。

16.5.5. TIMERx 寄存器(x=5,6)

TIMER5基地址: 0x4000 1000

TIMER6基地址: 0x4000 1400

控制寄存器 0 (TIMERx_CTL0)

地址偏移: 0x00 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	留				ARSE		保留		SPM	UPS	UPDIS	CEN
								rw				rw	rw	rw	rw

位/位域	名称	描述
15:8	保留	必须保持复位值。
7	ARSE	自动重载影子使能 0: 禁能 TIMERx_CAR 寄存器的影子寄存器 1: 使能 TIMERx_CAR 寄存器的影子寄存器
6:4	保留	必须保持复位值。
3	SPM	单脉冲模式 0:单脉冲模式禁能。更新事件发生后,计数器继续计数 1:单脉冲模式使能。在下一次更新事件发生时,计数器停止计数
2	UPS	更新请求源 软件配置该位,选择更新事件源. 0:以下事件均会产生更新中断或DMA请求: UPG位被置1 计数器溢出/下溢 复位模式产生的更新 1:下列事件会产生更新中断或DMA请求: 计数器溢出/下溢
1	UPDIS	禁止更新. 该位用来使能或禁能更新事件的产生 0: 更新事件使能. 更新事件发生时,相应的影子寄存器被装入预装载值,以下事件均会产生更新事件: UPG位被置1 计数器溢出/下溢 复位模式产生的更新 1: 更新事件禁能.

注意: 当该位被置 1 时, UPG 位被置 1 或者复位模式不会产生更新事件,但是计数

器和预分频器被重新初始化

O CEN 计数器使能

0: 计数器禁能1: 计数器使能

在软件将 CEN 位置 1 后,外部时钟、暂停模式和编码器模式才能工作。

控制寄存器 1 (TIMERx_CTL1)

地址偏移: 0x04 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

rw

位/位域	名称	描述
15:7	保留	必须保持复位值。
6:4	MMC[2:0]	这些位控制 TRGO 信号的选择,TRGO 信号由主定时器发给从定时器用于同步功能 000: 当产生一个定时器复位事件后,输出一个TRGO信号,定时器复位源为: 主定时器产生一个复位事件 TIMERx_SWEVG寄存器中UPG位置1 001: 当产生一个定时器使能事件后,输出一个TRGO信号,定时器使能源为: CEN位置1 在暂停模式下,触发输入置1 010: 当产生一个定时器更新事件后,输出一个 TRGO 信号,更新事件源由 UPDIS 和 UPS 位决定
3:0	保留	必须保持复位值。

DMA 和中断使能寄存器 (TIMERx_DMAINTEN)

地址偏移: 0x0C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留				UPDEN				保留				UPIE
·	•			•		•	rw		•		•	•	•		rw

 位/位域
 名称
 描述

 15:9
 保留
 必须保持复位值。

8	UPDEN	更新 DMA 请求使能
		0: 禁止更新 DMA 请求
		1: 使能更新 DMA 请求
7:1	保留	必须保持复位值。
0	UPIE	更新中断使能
		0: 禁止更新中断
		1: 使能更新中断

中断标志寄存器 (TIMERx_INTF)

地址偏移: 0x10 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 保留 UPIF

rc_w0

位/位域	名称	描述
15:1	保留	必须保持复位值。
0	UPIF	更新中断标志 此位在任何更新事件发生时由硬件置 1,软件清 0。
		0: 无更新中断发生
		1: 发生更新中断

软件事件产生寄存器 (TIMERx_SWEVG)

地址偏移: 0x14 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保留								UPG

位/位域名称描述15:1保留必须保持复位值。0更新事件产生
此位由软件置 1,被硬件自动清 0。当此位被置 1 并且向上计数模式,计数器被清
0,预分频计数器将同时被清除。
0: 无更新事件产生

1: 产生更新事件

计数器寄存器 (TIMERx_CNT)

地址偏移: 0x24 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw

位/位域 名称 描述

15:0 CNT[15:0] 这些位是当前的计数值。写操作能改变计数器值。

预分频寄存器 (TIMERx_PSC)

地址偏移: 0x28 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw

位/位域 名称 描述

15:0 PSC[15:0] 计数器时钟预分频值

计数器时钟等于 TIMER_CK 时钟除以(PSC+1),每次当更新事件产生时,PSC 的 值被装入到对应的影子寄存器。

计数器自动重载寄存器 (TIMERx_CAR)

地址偏移: 0x2C 复位值: 0x0000

该寄存器可以按半字(16位)或字(32位)访问

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CARL[15:0]

rw

位/位域 名称 描述

15:0 CARL[15:0] 计数器自动重载值

这些位定义了计数器的自动重载值。

17. 通用同步异步收发器(USART)

17.1. 简介

通用同步异步收发器(USART)提供了一个灵活方便的串行数据交换接口,数据帧可以通过全双工或半双工,同步或异步的方式进行传输。USART提供了可编程的波特率发生器,能对UCLK(PCLK1或PCLK2)进行分频产生USART发送和接收所需的特定频率。

USART不仅支持标准的异步收发模式,还实现了一些其他类型的串行数据交换模式,如红外编码规范,SIR,智能卡协议,LIN,半双工以及同步模式。它还支持多处理器通信和Modem流控操作(CTS/RTS)。数据帧支持从LSB或者MSB开始传输。数据位的极性和TX/RX引脚都可以灵活配置。

USART支持DMA功能,以实现高速率的数据通信,除了UART4。

17.2. 主要特征

- NRZ标准格式 (Mark/Space)。
- 全双工异步通信。
- 可编程的波特率产生器:
 - 由外设时钟分频产生,其中USART0由PCLK2分频得到,USART1/2和UART3/4由PCLK1分频得到;
 - 16倍过采样;
 - 当时钟频率为168M,过采样为16,最高速度可到10.5MBits/s。
- 完全可编程的串口特性:
 - 偶校验位, 奇校验位, 无校验位的生成/检测;
 - 数据位(8或9位);
 - 产生0.5, 1, 1.5或者2个停止位。
- 发送器和接收器可分别使能。
- 支持硬件Modem流控操作(CTS/RTS)。
- DMA访问数据缓冲区。
- LIN断开帧的产生和检测。
- 支持红外数据协议(IrDA)。
- 同步传输模式以及为同步传输输出发送时钟。
- 支持兼容ISO7816-3的智能卡接口:
 - 字节模式 (T=0);
 - 块模式 (T=1);
 - 直接和反向转换。
- 多处理器通信:
 - 如果地址不匹配,则进入静默模式;
 - 通过线路空闲检测或者地址匹配检测从静默模式唤醒。
- 多种状态标志:

- 传输检测标志:接收缓冲区不为空(RBNE),发送缓冲区为空(TBE),传输完成(TC), 忙(BSY)。
- 错误检测标志: 过载错误(ORERR), 噪声错误(NERR), 帧格式错误(FERR), 奇偶校验错误(PERR)。
- 硬件流控操作标志: CTS变化(CTSF)。
- LIN模式标志: LIN断开检测(LBDF)。
- 多处理器通信模式标志: IDLE帧检测(IDLEF)。
- 智能卡模式标志:块结束(EBF)和接收超时(RTF)。
- 若相应的中断使能,这些事件发生将会触发中断。

USART0/1/2完全实现上述功能,但是UART3/4只实现了上面所介绍的部分功能,下面这些功能在UART3/4中没有实现:

- 智能卡模式
- 同步模式
- 硬件流操作(CTS/RTS);
- 设置数据极性。

17.3. 功能说明

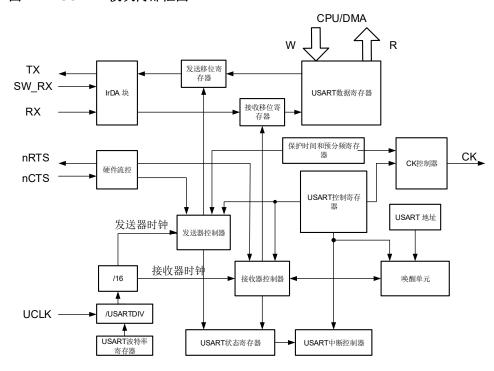
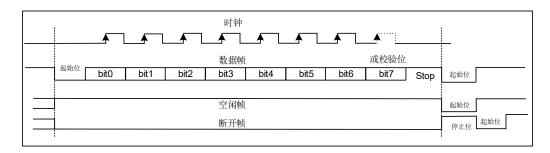

USART接口通过*表17-1. USART重要引脚描述*中主要引脚从外部连接到其他设备。

表 17-1. USART 重要引脚描述

引脚	类型	描述
RX	输入	接收数据
TX	输出	发送数据。当 USART 使能后,若无数据发送,默
17	I/O(单线模式/智能卡模式)	认为高电平
CK	输出	用于同步通信的串行时钟信号
nCTS	输入	硬件流控模式发送使能信号
nRTS	输出	硬件流控模式发送请求信号


图 17-1. USART 模块内部框图

17.3.1. USART 帧格式

USART数据帧开始于起始位,结束于停止位。USART_CTL0寄存器中WL位可以设置数据长度。将USART_CTL0寄存器中PCEN置位,最后一个数据位可以用作校验位。若WL位为0,第七位为校验位。若WL位置1,第八位为校验位。USART_CTL0寄存器中PM位用于选择校验位的计算方法。

图 17-2. USART 字符帧 (8 数据位和 1 停止位)

在发送和接收中,停止位可以由USART_CTL1寄存器中STB[1:0]位域配置。

表 17-2. 停止位配置

STB[1:0]	停止位长度(位)	功能描述
00	1	默认值
01	0.5	智能卡模式接收
10	2	标准 USART,单线以及调制解调模式
11	1.5	智能卡模式发送和接收

在一个空闲帧中,所有位都为1。数据帧长度与正常USART数据帧长度相同。

紧随停止位后多个低电平为中断帧。USART数据帧的传输速度由UCLK时钟频率,波特率发生器的配置共同决定。

17.3.2. 波特率发生

波特率分频系数是一个16位的数字,包含12位整数部分和4位小数部分。波特率发生器使用这两部分组合所得的数值来确定波特率。由于具有小数部分的波特率分频系数,将使USART能够产生所有标准波特率。

波特率分频系数(USARTDIV)与系统时钟具有如下关系:

$$USARTDIV = \frac{UCLK}{16 \times Baud Rate}$$
 (17-1)

例如, 当过采样是16:

- 1. 由USART_BAUD寄存器的值得到USARTDIV: 假设USART_BAUD=0x21D,则INTDIV=33(0x21)),FRADIV=13(0xD)。 UASRTDIV=33+13/16=33.81。
- 由USARTDIV得到USART_BAUD寄存器的值: 假设要求UASRTDIV=30.37, INTDIV=30 (0x1E)。 16*0.37=5.92,接近整数6,所以FRADIV=6 (0x6)。 USART BAUD=0x1E6。

注意: 若取整后FRADIV=16 (溢出),则进位必须加到整数部分。

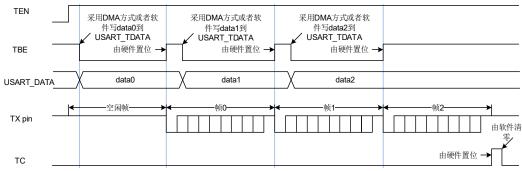
17.3.3. USART 发送器

如果USART_CTL0寄存器的发送使能位(TEN)被置位,当发送数据缓冲区不为空时,发送器将会通过TX引脚发送数据帧。TX引脚的极性可以通过USART_CTL3寄存器中TINV位来配置。时钟脉冲通过CK引脚输出。

TEN置位后发送器会发出一个空闲帧。TEN位在数据发送过程中是不可以被复位的。

系统上电后,TBE默认为高电平。在USART_STAT0寄存器中TBE置位时,数据可以在不覆盖前一个数据的情况下写入USART_DATA寄存器。当数据写入USART_DATA寄存器,TBE位将被清0。在数据由USART_DATA移入移位寄存器后,该位由硬件置1。如果数据在一个发送过程正在进行时被写入USART_DATA寄存器,它将首先被存入发送缓冲区,在当前发送过程完成时传输到发送移位寄存器中。如果数据在写入USART_DATA寄存器时,没有发送过程正在进行,TBE位将被清零然后迅速置位,原因是数据将立刻传输到发送移位寄存器。

假如一帧数据已经发送出去,并且TBE位已经置位,那么USART_STAT0寄存器中TC位将被置1。如果USART CTL0寄存器中的中断使能位(TCIE)为1,将会产生中断。


图 17-3. USART 发送步骤给出了 USART 发送步骤。软件操作按以下流程进行:

- 1. 在USART CTL0寄存器中置位UEN位,使能USART;
- 2. 通过USART_CTL0寄存器的WL设置字长;
- 3. 在USART CTL1寄存器中写STB[1:0]位来设置停止位的长度;

- 4. 如果选择了多级缓存通信方式,应该在USART CTL2寄存器中使能DMA (DENT位);
- 5. 在USART BAUD寄存器中设置波特率;
- 在USART CTL0寄存器中设置TEN位;
- 7. 等待TBE置位;
- 8. 向USART DATA寄存器写数据;
- 9. 若DMA未使能,每发送一个字节都需重复步骤7-8;
- 10. 等待TC=1, 发送完成。

图 17-3. USART 发送步骤

在禁用USART或进入低功耗状态之前,必须等待TC置位。先读USART_STAT0然后再写USART DATA可将TC位清0。在多级缓存通信方式(DENT=1)下,直接向TC写0,也能清TC。

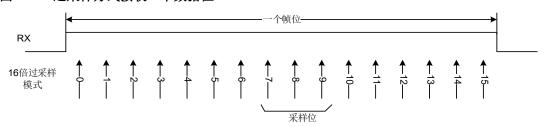
17.3.4. USART 接收器

上电后, USART接收器使能按以下步骤进行:

- 1. 在USART CTL0寄存器中置位UEN位,使能USART;
- 2. 写USART CTL0寄存器的WL去设置字长;
- 3. 在USART CTL1寄存器中写STB[1:0]位来设置停止位的长度;
- 4. 如果选择了多级缓存通信方式,应该在USART_CTL2寄存器中使能DMA(DENR位);
- 5. 在USART BAUD寄存器中设置波特率;
- 6. 在USART_CTL0中设置REN位。

接收器在使能后若检测到一个有效的起始脉冲便开始接收码流。在接收一个数据帧的过程中会检测噪声错误,奇偶校验错误,帧错误和过载错误。

当接收到一个数据帧,USART_STAT0寄存器中的RBNE置位,如果设置了USART_CTL0寄存器中相应的中断使能位RBNEIE,将会产生中断。在USART_STAT0寄存器中可以观察接收状态标志。


软件可以通过读USART_DATA寄存器或者DMA方式获取接收到的数据。不管是直接读寄存器还是通过DMA,只要是对USART_DATA寄存器的一个读操作都可以清除RBNE位。

在接收过程中,需使能REN位,不然当前的数据帧将会丢失。

在默认情况下,接收器通过获取三个采样点的值来估计该位的值。如果在3个采样点中有2个或3个为0,该数据位被视为0,否则为1。如果3个采样点中有一个采样点的值与其他两个不同,不管是起始位,数据位,奇偶校验位或者停止位,都将产生噪声错误(NERR)。如果使能DMA,并置位USART CTL2寄存器中ERRIE,将会产生中断。

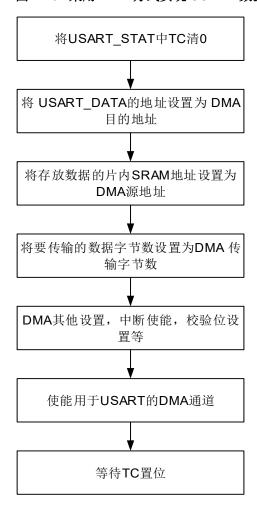
图 17-4. 过采样方式接收一个数据位

通过置位USART_CTL0寄存器中的PCEN位使能奇偶校验功能,接收器在接收一个数据帧时计算预期奇偶校验值,并将其与接收到的奇偶校验位进行比较。如果不相等,USART_STAT0寄存器中PERR被置位。如果设置了USART_CTL0寄存器中的PERRIE位,将产生中断。

如果在停止位传输过程中RX引脚为0,将产生帧错误,USART_STAT0寄存器中FERR置位。 如果使能DMA并置位USART CTL2寄存器中ERRIE位,将产生中断。

当接收到一帧数据,而RBNE位还没有被清零,随后的数据帧将不会存储在数据接收缓冲区中。 USART_STAT0 寄存器中的溢出错误标志位 ORERR将置位。如果使能DMA并置位 USART_CTL2寄存器中ERRIE位或者置位RBNEIE,将产生中断。

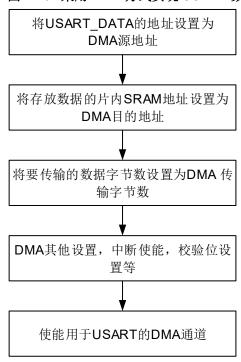
若接收过程中,产生了噪声错误(NERR)、校验错误(PERR)、帧错误(FERR)或溢出错误(ORERR),则NERR、PERR、FERR或ORERR将和RBNE同时置位。如果没有使能DMA,RBNE中断发生时,软件需检查是否有噪声错误、校验错误、帧错误或溢出错误产生。


17.3.5. DMA 方式访问数据缓冲区

为减轻处理器的负担,可以采用DMA访问发送缓冲区或者接收缓冲区。置位USART_CTL2寄存器中DENT位可以使能DMA发送,置位USART_CTL2寄存器中DENR位可以使能DMA接收。

当DMA用于USART发送时,DMA将数据从片内SRAM传送到USART的数据缓冲区。配置步骤如*图17-5. 采用DMA方式实现USART数据发送配置步骤*所示。

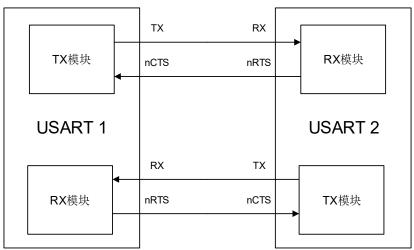
图 17-5. 采用 DMA 方式实现 USART 数据发送配置步骤



所有数据帧都传输完成后,USART_STAT0寄存器中TC位置1。如果USART_CTL0寄存器中TCIE置位,将产生中断。

当DMA用于USART接收时,DMA将数据从接收缓冲区传送到片内SRAM。配置步骤如<u>**图17-6.**</u> *采用DMA方式实现USART数据接收配置步骤*所示。如果将USART_CTL2寄存器中ERRIE位置 1,USART_STAT0寄存器中的错误标志位(FERR、ORERR和NERR)被置位时将产生中断。

图 17-6. 采用 DMA 方式实现 USART 数据接收配置步骤



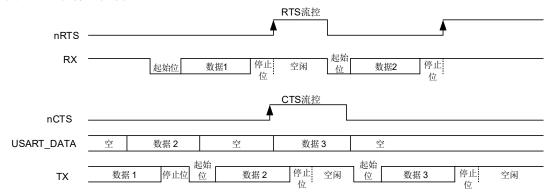
当USART接收到的数据数量达到了DMA传输数据数量,DMA模块将产生传输完成中断。

17.3.6. 硬件流控制

硬件流控制功能通过nCTS和nRTS引脚来实现。通过将USART_CTL2寄存器中RTSEN位置1来使能RTS流控,将USART_CTL2寄存器中CTSEN位置1来使能CTS流控。

图 17-7. 两个 USART 之间的硬件流控制

RTS 流控


USART接收器输出nRTS,它用于反映接收缓冲区状态。当一帧数据接收完成,nRTS变成高电平,这样是为了阻止发送器继续发送下一帧数据。当接收缓冲区满时,nRTS保持高电平,可以通过读USART DATA寄存器来清零。

CTS 流控

USART发送器监视nCTS输入引脚来决定数据帧是否可以发送。如果USART_STAT0寄存器中TBE位是0且nCTS为低电平,发送器发送数据帧。在发送期间,若nCTS信号变为高电平,发送器将会在当前数据帧发送完成后停止发送。

图 17-8. 硬件流控制

如果CTS流控制被使能,在nCTS引脚信号发生变化时,USART_STAT0寄存器中CTSF位会置 1。如果USART_CTL2寄存器中的CTSIE位被置位,将会产生中断。

17.3.7. 多处理器通信

在多处理器通信中,多个USART被连接成一个网络。对于一个设备来说,监视所有来自RX引脚的消息,是一种巨大的负担。为减轻设备负担,软件可以通过将USART_CTL0寄存器中RWU位置1使一个USART进入静默模式。

如果USART处于静默模式,所有的接收状态标志位将不会被置位。软件可以通过对RWU清零来唤醒USART。

此外,USART可以由硬件用以下两种方式中的一种来唤醒:空闲总线检测和地址匹配检测。

设备默认使用空闲总线检测方法唤醒USART。当在RX引脚检测到空闲帧时,硬件会将RWU清零,从而退出静默模式,但USART_STAT0寄存器中IDLEF位不会被置1。

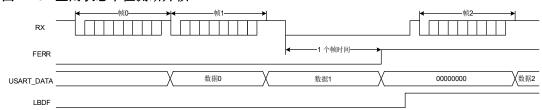
当USART_CTL0寄存器中WM被置位,数据最高位会被认为是地址标志位。如果地址标志位为1,该字节被认为是地址字节。如果地址字节的低4位与USART_CTL1寄存器中的ADDR[3:0]相同,硬件会将RWU清零,并退出静默模式。接收到将USART唤醒的数据帧,RBNE将置位。状态标志可以从USART_STAT0寄存器中获取。如果地址字节的低4位与USART_CTL1寄存器中的ADDR[3:0]不相同,硬件会置位RWU并进入静默模式。在这种情况下,RBNE不会被置位。

如果采用地址标记检测,默认情况下,接收器对地址字节不做奇偶校验。如果USART_CTL0寄存器中PCEN位被置位。地址字节最高位被视为校验位,其余位被视为地址。

17.3.8. LIN 模式

将USART_CTL1寄存器的LMEN置位即可使能本地互联网络模式。

在LIN模式下, USART CTL1寄存器中CKEN, WL, STB[1:0]以及USART CTL2的SCEN,


HDEN, IREN位都应该被清0。

在发送一个普通数据帧时,LIN发送过程与普通发送过程相同。当USART_CTL0寄存器中SBKCMD置位时,USART在发送完一个停止位后会连续发送13个0。

断开检测功能完全独立于普通USART接收器。因此,断开检测可以是在空闲状态下,也可以在数据传输过程中。USART_CTL1寄存器中LBLEN位可以选择断开帧长度。如果在RX引脚检测到大于或等于与预期断开帧长度相等数量的0(LBLEN=0时,10个0; LBLEN=1时,11个0),USART STAT0寄存器中LBDF置位。如果USART CTL1寄存器中LBDIE被置位,将产生中断。

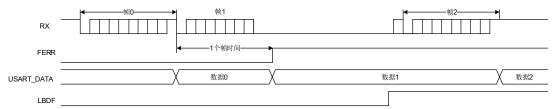

如<u>**图17-9**. 空闲状态下检测断开帧</u>所示,如果断开帧发生在空闲状态下,USART接收器会接收到一个全0数据帧,同时FERR置位。

图 17-9. 空闲状态下检测断开帧

如<u>**图17-10.** 数据传输过程中检测断开帧</u>所示,如果断开帧发生在数据传输过程中,当前传输帧 发生错误,**FERR**置位。

图 17-10. 数据传输过程中检测断开帧

17.3.9. 同步通信模式

USART支持主机模式下的全双工同步串行通信,可以通过置位USART_CTL1的CKEN位来使能。在同步模式下,USART_CTL1的LMEN和USART_CTL2的SCEN,HDEN,IREN位应该被清0。CK引脚作为USART同步发送器的时钟输出,仅仅当TEN位被使能时,它才被激活。在起始位和停止位传送期间,不会从CK引脚输出时钟脉冲。USART_CTL1的CLEN位用来决定在最低位(地址索引位)发送期间是否有时钟信号输出。USART_CTL1的CPH位用来决定数据在第一个时钟沿被采样还是在第二个时钟沿被采样。USART_CTL1的CPL位用来决定在USART同步模式空闲状态下,时钟引脚的电平。

CK引脚输出波形由USART_CTL1寄存器中CPL,CPH,CLEN位决定。软件仅在USART禁用(UEN=0)时才可以改变它们的值。

如果USART_CTL0寄存器中REN置位,接收器的工作方式与普通模式下接收方式是不同的。 接收器在时钟捕获沿采样数据,并无任何过采样。

图 17-11. 同步模式下的 USART 示例

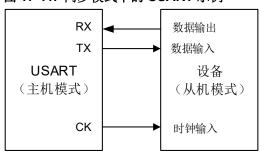
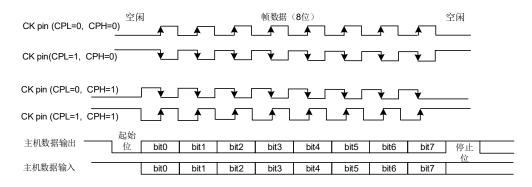
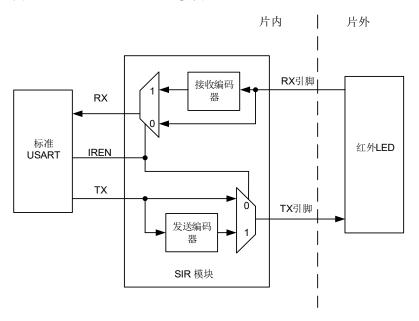



图 17-12. 8-bit 格式的 USART 同步通信波形(CLEN=1)

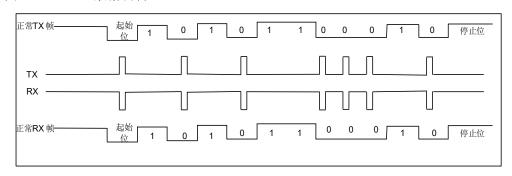


17.3.10. 串行红外(IrDA SIR)编解码功能模块

串行红外编解码功能通过置位USART_CTL2寄存器中IREN使能。在IrDA模式下,USART_CTL1寄存器的LMEN,STB[1:0],CKEN位和USART_CTL2寄存器的HDEN,SCEN位将被清0。

在IrDA模式下,USART数据帧由SIR发送编码器进行调制,调制后的信号经由红外LED进行发送,经解调后将数据发送至USART接收器。对于编码器而言,波特率应小于115200。

图 17-13. IrDA SIR ENDEC 模块



在IrDA模式下,TX引脚电平与RX引脚不同。TX引脚通常为低电平,RX引脚通常为高电平。IrDA引脚电平保持稳定代表逻辑'1',红外光源脉冲(RTZ信号)代表逻辑'0'。其脉冲宽度通常占一个位时间的3/16。IrDA无法检测到宽度小于一个1个PSC时钟的脉冲。如果脉冲宽度大于1但是小于2倍PSC时钟,IrDA则无法可靠的检测到。

由于IrDA是一种半双工协议,因此在IrDA SIR ENDEC模块中,发送和接收不得同时进行。

图 17-14. IrDA 数据调制

将USART_CTL2寄存器中IRLP置位可以使SIR子模块工作在低功耗模式下。发送编码器由PCLK分频得到的低速时钟来驱动。分频系数在USART_GP寄存器中PSC[7:0]位配置。TX引脚脉冲宽度可以为低功耗波特率的3倍。接收器解码器工作模式与正常IrDA模式相同。

17.3.11. 半双工通信模式

通过设置USART CTL2寄存器的HDEN位,可以使能半双工模式。

在半双工通信模式下,USART_CTL1寄存器的LMEN,CKEN位和USART_CTL2寄存器的SCEN,IREN位清零。

半双工模式下,TX引脚和RX引脚将从内部连接到一起,RX引脚不再使用。TX引脚应该被配置为开漏输出模式。通信冲突由软件处理。

17.3.12. 智能卡(ISO7816-3)模式

智能卡模式是一种异步通信模式,支持ISO7816-3协议。支持字节模式(T=0)和块模式(T=1)。将USART_CTL2寄存器的SCEN位置1,即可使能智能卡模式。在智能卡模式下,USART_CTL1寄存器的LMEN位和USART CTL2的HDEN,IREN位应该清0。

如果CKEN位被置位,USART通过CK引脚向智能卡提供一个由PCLK分频得到的时钟。分频系数可在USART_GP寄存器中PSC[4:0]配置。CK引脚只为智能卡提供时钟源。

智能卡模式是一种半双工通信协议模式。当与智能卡连接时,TX引脚需要被设置成开漏模式,外接上拉电阻,这个引脚将会与智能卡驱动同一条双向连线。智能卡模式下的帧格式为: 1起始位+9数据位(包括1奇偶校验位)+1.5停止位。其中0.5个停止位被配置为接收器的停止位。

字节模式(T=0)

相较于正常操作模式下的时序,从发送移位寄存器到TX引脚的传递时间延迟了半个波特率时钟,并且TC标志的置位将根据USART_GP寄存器的GUAT[7:0]设置延迟某一特定时间。在智能卡模式下,在最后一帧数据的停止位之后,内部保护时间计数器将开始计数,GUAT[7:0]的值配置为ISO7816-3协议的CGT减12。在保护时间寄存器向上计数这段时间TC将被强制拉低,当计数达到设定值时,TC被置位。

在USART发送期间,如果检测到有奇偶校验错误,TX引脚在停止位最后一个位时间内被拉低,智能卡发送一个NACK信号。根据协议,USART会自动重发SCRTNUM次。在重发数据帧前面会插入2.5位的帧间隔。最后一次重发字节后,TC会立即被置位。如果在最大重发次数后仍然收到NACK信号,USART将会停止发送,帧错误标志被置位。USART不会将NACK信号作为起始位。

在USART接收期间,如果在当前数据帧检测到校验错误,TX引脚在停止位的最后一个位时间内会被拉低。智能卡会接收到NACK信号。然后在智能卡端会产生一个帧错误。如果接收到的字节是错误的,RBNE中断和接收DMA请求都不会被激活。根据协议,智能卡将要重新发送数据。如果在最大的重新发送次数后(这个次数的具体值在SCRTNUM位域),接收到的字符仍然是错误的,USART停止发送NACK信号和标注这个错误为奇偶校验错误。将USART_CTL2寄存器中的NKEN置位可以使能NACK信号。

空闲帧和断开帧在智能卡模式下不适用。

块模式(T=1)

在T=1(块模式)下,USART_CTL2寄存器的NKEN位应该清零来关闭校验错误发送。

当要从智能卡读取数据时,软件必须将USART_RT寄存器设置成BWT(块等待)-11的值并将RBNEIE置位。这个超时时间体现在波特时间单元。如果这个时间到了,还没有从智能卡收到应答,USART_STAT1寄存器中RTF位被置位。如果设置了USART_CTL3寄存器中RTIE位,将会产生中断。如果在超时之前收到了第一个字节,则会引起RBNE中断。如果用DMA从智能卡读取数据,也只能在第一个字节接收好后再去使能DMA。

第一个字节接收到后,RT[23:0]的值设置成CWT(字节等待时间)-11来使能两个连续字节间最大帧间隔自动校验。如果在RT[23:0]周期内智能卡停止发送字节,USART_STAT1寄存器中RTF将被置位。

USART用一个块长度计数器统计收到的字节数,这个计数器在USART开始发送的时候自动清 0 (TBE=0)。这个块长度信息位于智能卡发出数据的第三个字节(序言部分),这个值必须写

入USART_RT寄存器BL[7:0]。块长度计数器从0开始计数到最大值BL[7:0]+4。在块计数器计数到最大值时,USART_STAT1寄存器中块结束状态标志位EBF置位。如果设置了USART_CTL3寄存器中的EBIE位,将会产生中断。如果块长度发生错误,RTF置位。

当使用DMA模式接收时,在块开始之前,这个寄存器必须被设定为最小值(0x0)。为了得到这个值,在收到第四个字节后,会引起一个中断。软件可以从接收缓冲区读取第三个字节作为块长度。

如果接收时不使用DMA方式,为避免产生EBF状态标志,BL[7:0]需首先配置为最大值0xFF。 在收到第三个字节后,真正的块长度值可以重新写入到BL[7:0]。

直接和反向转换

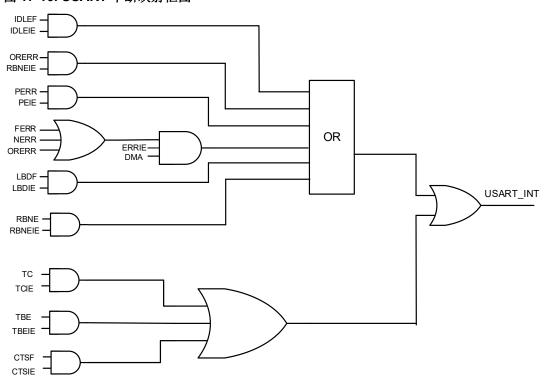
智能卡协议定义了两种转换方式:直接转换和反向转换。

如果选择直接转换,从数据帧的最低位开始传输,TX引脚高电平代表逻辑'1',偶校验。在这种情况下,USART_CTL3寄存器中MSBF位和DINV位都为0。

如果选择反向转换,从数据帧的最高位开始传输,TX引脚高电平代表逻辑'0',偶校验。在这种情况下,USART CTL3寄存器中MSBF位和DINV位都为1。

17.3.13. USART 中断

USART 中断事件和标志如表 17-3. USART 中断请求所示:


表 17-3. USART 中断请求

中断事件	事件标志	控制寄存器	使能控制位
发送数据寄存器空	TBE	USART_CTL0	TBEIE
CTS 标志	CTSF	USART_CTL2	CTSIE
发送结束	TC	USART_CTL0	TCIE
接收到的数据可以读取	RBNE	USART CTL0	RBNEIE
检测到过载错误	ORERR	USARI_CILU	RDINEIE
检测到线路空闲	IDLEF	USART_CTL0	IDLEIE
奇偶校验错误	PERR	USART_CTL0	PERRIE
LIN模式下,检测到断开标志	LBDF	USART_CTL1	LBDIE
接收超时错误	RTF	USART_CTL3	RTIE
发现块尾	EBF	USART_CTL3	EBIE
接收错误(噪声错误、溢出错误、 帧错误)当DMA接收使能时	NERR或ORERR或FERR	USART_CTL2	ERRIE

在发送给中断控制器之前,所有的中断事件是逻辑或的关系。因此在任何时候 USART 只能向控制器产生一个中断请求。不过软件可以在一个中断服务程序里处理多个中断事件。

图 17-16. USART 中断映射框图

17.4. USART 寄存器

USART0 基地址: 0x4001 3800 USART1 基地址: 0x4000 4400 USART2 基地址: 0x4000 4800 UART3 基地址: 0x4000 4C00 UART4 基地址: 0x4000 5000

17.4.1. 状态寄存器 0(USART_STAT0)

地址偏移: 0x00

复位值: 0x0000 00C0

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	留			CTSF	LBDF	TBE	TC	RBNE	IDLEF	ORERR	NERR	FERR	PERR
							rc w0	r	rc w0	rc w0	r	r	r	r	r

位/位域	名称	描述
31:10	保留	必须保持复位值。
9	CTSF	CTS变化标志 如果设置了USART_CTL2寄存器中CTSEN位,当nCTS输入变化时,该位由硬件置位。如果设置了USART_CTL2寄存器中CTSIE位,将产生中断。
		该位由软件清0。 0: nCTS状态线没有变化。 1: nCTS状态线发生变化。 该位对UART3/4无效。
8	LBDF	LIN断开检测标志。 寄存器USART_CTL1寄存器中LMEN置位,说明检测到LIN断开。如果USART_CTL1 寄存器中LBDIE被置位时,将产生中断。 该位由软件清0。 0:没有检测到LIN断开字符。 1:检测到LIN断开字符。
7	TBE	发送数据缓冲区空。 上电复位或待发送数据已发送至移位寄存器后,该位置1。USART_CTL0寄存器中 TBEIE被置位将产生中断。 该位在软件将待发送数据写入USART_DATA时被清0。 0:发送数据缓冲区不为空。

1: 发送数据缓冲区空。

6	TC	发送完成 上电复位后,该位被置1。如果TBE置位,在当前数据发送完成时该位置1。 USART_CTL0寄存器中TCIE被置位将产生中断。 该位由软件清0。 0: 发送没有完成 1: 发送完成
5	RBNE	读数据缓冲区非空。 当读数据缓冲区接收到来自移位寄存器的数据时,该位置1。当寄存器USART_CTLC 的RBNEIE位被置位,将会有中断产生。 软件可以通过对该位写0或读USART_DATA寄存器来将该位清0。 0. 读数据缓冲区为空。 1. 读数据缓冲区不为空。
4	IDLEF	空闲线检测标志 在一个帧时间内,在RX引脚检测到空闲状态,该位置1。当寄存器USART_CTL0的 IDLEIE位被置位,将会有中断产生。 软件先读USART_STAT0,再读USART_DATA可清除该位。 0:未检测到空闲帧 1:检测到空闲帧
3	ORERR	溢出错误 在RBNE置位的情况下,如果USART_DATA寄存器接收到来自移位寄存器的数据,该位置1。当寄存器USART_CTL2的ERRIE位被置位,将会有中断产生。 软件先读USART_STAT0,再读USART_DATA可清除该位。 0:没有检测到溢出错误。 1:检测到溢出错误。
2	NERR	噪声错误标志 在接收数据时,如果在RX引脚检测到噪声,该位被置位。当寄存器USART_CTL2的 ERRIE位被置位,将会有中断产生。 软件先读USART_STAT0,再读USART_DATA可清除该位。 0: 没检测到噪声错误。 1: 检测到噪声错误。
1	FERR	帧错误接收数据期间,在停止位传输过程中,RX引脚检测到低电平,该位被置位。当寄存器USART_CTL2的ERRIE位被置位,将会有中断产生。软件先读USART_STAT0,再读USART_DATA可清除该位。0:未检测到帧错误。1:检测到帧错误。
0	PERR	校验错误 当接收到的数据帧校验位与预期校验值不同时,该位置位。 软件先读USART_STAT0,再读USART_DATA可清除该位。 0:没检测到校验错误。

1: 检测到校验错误。

17.4.2. 数据寄存器(USART_DATA)

地址偏移: 0x04 复位值: 未定义

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留								DATA[8:0]				
						1									

IVV

位/位域	名称	描述
31:9	保留	必须保持复位值。
8:0	DATA[8:0]	发送或接收的数据值。 软件可以通过写这些位来改变发送数据,或读这些位的值来获取接收数据。 如果使能了奇偶校验,当发送数据被写入寄存器,数据的最高位(第7位或第8位取决于USART_CTL0寄存器的WL位)将被校验位取代。

17.4.3. 波特率寄存器(USART_BAUD)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

使能USART(UEN=1)时,不能写该寄存器。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	INTDIV [11:0]												FRAD	0IV[3:0]	
rw													r	w	

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:4	INTDIV[11:0]	波特率分频器的整数部分。
3:0	FRADIV [3:0]	波特率分频器的小数部分。

17.4.4. 控制寄存器 0(USART_CTL0)

地址偏移: 0x0C 复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留	UEN	WL	WM	PCEN	PM	PERRIE	TBEIE	TCIE	RBNEIE	IDLEIE	TEN	REN	RWU	SBKCMD

位/位域	名称	描述
31:14	保留	必须保持复位值。
13	UEN	USART使能 0: USART禁用 1: USART使能
12	WL	字长 0:8数据位 1:9数据位
11	WM	从静默模式唤醒方法 0: 空闲线 1: 地址匹配
10	PCEN	校验控制使能 0: 校验控制禁用 1: 校验控制被使能
9	РМ	校验模式 0: 偶校验 1: 奇校验
8	PERRIE	校验错误中断使能。 如果该位置1,USART_STAT0寄存器中PERR被置位时产生中断。 0:校验错误中断禁用。 1:校验错误中断使能。
7	TBEIE	发送缓冲区空中断使能。 如果该位置1,USART_STAT0寄存器中TBE被置位时产生中断。 0:发送缓冲区空中断禁止。 1:发送缓冲区空中断使能。
6	TCIE	发送完成中断使能。 如果该位置1,USART_STAT0寄存器中TC被置位时产生中断。

digubevice		GD32[403 XX 用)于加
		0: 发送完成中断禁用。 1: 发送完成中断使能。
5	RBNEIE	读数据缓冲区非空中断和过载错误中断使能。 如果该位置1,USART_STAT0寄存器中RBNE或ORERR被置位时产生中断。 0:读数据缓冲区非空中断和过载错误中断禁用。 1:读数据缓冲区非空中断和过载错误中断使能。
4	IDLEIE	IDLE线检测中断使能。 如果该位置1, USART_STAT0寄存器中IDLEF被置位时产生中断。 0: IDLE线检测中断禁用。 1: IDLE线检测中断禁用使能。
3	TEN	发送器使能 0: 发送器禁用 1: 发送器使能
2	REN	接收器使能 0:接收器禁用 1:接收器使能
1	RWU	接收器从静默模式中唤醒 软件可以通过将该位置1使得USART进入静默模式,将该位清0唤醒USART。 空闲帧唤醒模式下(WM=0),当检测到空闲帧时,该位由硬件清0。地址匹配模式 下(WM=1),当接收到一个地址匹配帧时,该位由硬件清0;或接收到一个地址非 匹配帧时,由硬件置1。 0:接收器处于正常工作模式。 1:接收器处于静默模式。
0	SBKCMD	发送断开帧 软件通过发送断开帧将该位置1。 断开帧传输结束由硬件清0。 0:没有发送断开帧 1:发送断开帧

17.4.5. 控制寄存器 1 (USART_CTL1)

地址偏移: 0x10

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								保	留							
L																
							_	_	_	_	_					
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留	LMEN	STB[1:0]		CKEN	CPL	СРН	CLEN	保留	LBDIE	LBLEN	保留		ADDI	R[3:0]	
		rw	rw		rw	rw	rw	rw		rw	rw			n	v	

位/位域	名称	描述
31:15	保留	必须保持复位值。
14	LMEN	LIN模式使能 0: LIN模式禁用。 1: LIN模式使能。
13:12	STB[1:0]	STOP位长 00: 1停止位 01: 0.5停止位 10: 2停止位 11: 1.5停止位 对于UART3/4,只有1位停止位和2位停止位是有效的。
11	CKEN	CK 引脚使能0: CK引脚禁用1: CK引脚使能该位对于UART3/4无效。
10	CPL	时钟极性 该位用来设定在同步模式下CK引脚的极性。 0: CK引脚不对外发送时保持为低电平。 1: CK引脚不对外发送时保持为高电平。 该位对于UART3/4无效。
9	СРН	时钟相位 该位用来设定在同步模式下CK引脚的相位。 0:在首个时钟边沿采样第一个数据。 1:在第二个时钟边沿采样第一个数据。 该位对于UART3/4无效。
8	CLEN	CK信号长度 该位用来设定在同步模式下CK信号的长度。 0:8位数据帧中有7个CK脉冲,9位数据帧中有8个CK脉冲。 1:8位数据帧中有8个CK脉冲,9位数据帧中有9个CK脉冲。 该位对于UART3/4无效。
7	保留	必须保持复位值。
6	LBDIE	LIN断开信号检测中断使能。 如果该位置1,当USART_STAT0寄存器中LBDF被置位时将产生中断。 0:断开信号检测中断禁用。 1:断开信号检测中断使能。
5	LBLEN	LIN断开帧长度 该位用来设定在断开帧长度。 0: 10位

1: 11位

4 保留 必须保持复位值。

3:0 ADDR[3:0] USART地址

地址匹配唤醒模式下(WM=1),如果接收到的数据帧低四位与ADDR[3:0]值不相等, USART就会进入静默模式;如果接收到的数据帧低四位与ADDR[3:0]值相等,

USART就会被唤醒。

17.4.6. 控制寄存器 2(USART_CTL2)

地址偏移: 0x14

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 保留
 CTSIE
 CTSEN
 RTSEN
 DENR
 SCEN
 NKEN
 HDENN
 IRLP
 IREN
 ERRIE

	保留	CTSIE	CTSEN	RTSEN	DENT	DENR	SCEN	NKEN	HDEN	IRLP	IREN	ERRIE
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
位/位域	名称	描述										

位/位域	名称	描述
31:11	保留	必须保持复位值。
10	CTSIE	CTS中断使能如果该位置1,当USART_STAT0寄存器中CTSF被置位时将产生中断。0:CTS中断禁用1:CTS中断使能该位对于UART3/4无效。
9	CTSEN	CTS使能 该位用于使能CTS硬件流控制功能。 0: CTS硬件流控制禁用。 1: CTS硬件流控制使能。 该位对于UART3/4无效。
8	RTSEN	RTS使能 该位用于使能RTS硬件流控制功能。 0: RTS硬件流控制禁用。 1: RTS硬件流控制使能。 该位对于UART3/4无效。
7	DENT	DMA发送使能0: DMA发送模式禁用。1: DMA发送模式使能。

digubevice		GD32F403XX 用户于加
6	DENR	DMA接收使能 0: DMA接收模式禁用。 1: DMA接收模式使能。
5	SCEN	智能卡模式使能。 该位用于使能智能卡模式。 0: 智能卡模式禁用。 1: 智能卡模式使能。 该位对于UART3/4无效。
4	NKEN	在智能卡模式NACK使能。 该位用于智能卡模式在奇偶校验错误发生时使能NACK发送。 0: 当出现校验错误时不发送NACK。 1: 当出现校验错误时发送NACK。 该位对于UART3/4无效。
3	HDEN	半双工使能该位用于使能半双工模式。0: 半双工模式禁用1: 半双工模式使能
2	IRLP	IrDA低功耗模式 该位用于为IrDA模式选择低功耗模式。 0:正常模式 1:低功耗模式
1	IREN	IrDA模式使能 0: IrDA禁用 1: IrDA使能
0	ERRIE	错误中断使能 当DMA接收模式(DENR=1)使能时,如果该位被置1,USART_STAT0寄存器中 FERR,ORERR,NERR被置位将产生中断。 0: 错误中断禁用。 1: 错误中断使能。

17.4.7. 保护时间和预分频器寄存器(USART_GP)

地址偏移: 0x18

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GUAT[7:0]						,			PSC						
Contract											[1.0]				

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:8	GUAT[7:0]	智能卡模式下的保护时间值。
		TC标志置位时间延时GUAT[7:0]个波特时钟周期。
		该位对于UART3/4无效。
7:0	PSC[7:0]	使能USART IrDA低功耗模式,这些位用来设定将外设时钟(PCLK1/PCLK2)分频
		产生低功耗频率的分频系数。
		00000000: 保留 – 不要写入该值。
		0000001: 对源时钟1分频。
		11111111: 对源时钟255分频。
		在IrDA正常模式下,PSC只能设置成0000001。
		在智能卡模式下,PSC[4:0]用于设定外设时钟(APB1/APB2)生成智能卡时钟的分
		频系数。实际的分频系数为PSC[4:0]设定值的两倍。
		00000: 保留 – 不要写入该值。
		00001: 对源时钟2分频。
		00010: 对源时钟4分频。
		11111: 对源时钟62分频。
		在智能卡模式下,PSC[7:5]保留。

17.4.8. 控制寄存器 3(USART_CTL3)

偏移地址: 0x80

复位值: 0x0000 0000

UART3/4未使用该寄存器

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		MSBF	DINV	TINV	RINV	保	:留	EBIE	RTIE	S	CRTNUM[2:	0]	RTEN	
				rw	rw	rw	rw	•		rw	rw		rw		rw

位/位域	名称	描述
31:12	保留	必须保持复位值。
11	MSBF	高位在前
		该位用于设定数据在发送或接收时的顺序。
		0: 数据发送/接收,采用低位在前。

alganevice		GD32F4U3XX 用厂于加
		1: 数据发送/接收,采用高位在前。 USART被使能(UEN=1)时,这一位不能被改写。
10	DINV	数据位反转 该位用于设定在发送或接收时数据位的极性。 0:数据位信号值没有反转。 1:数据位信号值被反转。 USART被使能(UEN=1)时,这一位不能被改写。
9	TINV	TX引脚电平反转。 该位用于设定TX引脚极性。 0: TX引脚信号值没有反转。 1: TX引脚信号值被反转。 USART被使能(UEN=1)时,这一位不能被改写。
8	RINV	RX引脚电平反转。 该位用于设定RX引脚极性。 0: RX引脚信号值没有反转。 1: RX引脚信号值被反转。 USART被使能(UEN=1)时,这一位不能被改写。
7:6	保留	必须保持复位值。
5	EBIE	块结束标志中断使能位。 如果该位置1,USART_STAT1寄存器中EBF被置位时产生中断。 0:块中断禁用。 1:块中断使能。
4	RTIE	接收超时标志中断使能位。 如果该位置1,USART_STAT1寄存器中RTF被置位时产生中断。 0:接收超时中断禁用。 1:接收超时中断使能。
3:1	SCRTNUM[2:0]	智能卡自动重试次数寄存器。 在智能卡模式下,这些位用来设定在发送和接收时重试的次数。 在发送模式下,一帧数据可以重发 SCRTNUM 次。如果一帧数据发送失败 SCRTNUM+1次,FERR被置位。 在接收模式下,USART接收一个数据帧可以执行SCRTNUM+1次。如果一个数据帧 校验位不匹配事件产生SCRTNUM+1次,RBNE位和PERR位被置位。 当这些位被设置为0x0时,在发送模式下这些位将不会自动发送。
0	RTEN	接收器超时使能。 该位用于使能USART接收超时。 0:接收器超时检测功能禁用。 1:接收器超时检测功能被使能。

接收超时寄存器(USART_RT) 17.4.9.

偏移地址: 0x84

复位值: 0x0000 0000 UART3/4未使用该寄存器

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BL[7:0]											RT[2	3:16]			
	rw										n	W			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RT[15:0]							

描述 位/位域 名称 31:24 BL[7:0] 块长度 这些位用于设定智能卡T=1的接收时,块的长度。它的值等于信息字节的长度+结束 部分的长度(1-LEC/2-CRC)-1。 这个值可以在块接收开始去设置(用于需要从块的序言提取块的长度的情形),这个 值在每一个接收时钟周期只能设置一次。在智能卡模式下,当TBE=0时,块的长度计 在其他模式下,当REN=0 (禁用接收器)或者当USART_STAT1寄存器的EBF位被写 0时,块的长度计数器被清0。 23:0 RT[23:0] 接收器超时阈值 该位域用于指定接收超时值,单位是波特时钟的时长。 标准模式下,如果在最后一个字节接收后,在RT规定的时长内,没有检测到新的起

始位,USART_STAT1寄存器中RTF标志被置位。

在智能卡模式,这个值被用来实现CWT和BWT。在这种情况下,超时检测是从最后 一个接收字节的起始位开始算的。

这些位可以在工作时改写。假如一个新数据到来的时间比RT规定的晚,RTF标志会 被置位。对于每个接收字符,这个值只能改写一次。

17.4.10. 状态寄存器 1(USART_STAT1)

偏移地址: 0x88

复位值: 0x0000 0000 UART3/4未使用该寄存器

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								BSY
															r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		EBF	RTF						保留					

wn wn

位/位域	名称	描述
31:17	保留	必须保持复位值。
16	BSY	忙标志 USART接收一帧数据时被置位。 0: USART接收通道空闲。 1: USART接收通道忙。
15:13	保留	必须保持复位值。
12	EBF	块结束标志 该位在接收字节数(从块起始开始计数,包含序言)等于或者大于BLEN+4时被置位。 USART_CTL3寄存器中EBIE被置位将产生中断。 软件可以通过写0清除该位。 0: 块结束事件没有发生。 1: 块结束事件发生。
11	RTF	接收超时标志 该位在RX引脚空闲时间已经超过RT值时被置位。USART_CTL3寄存器中RTIE被置 位将产生中断。 软件可以通过写0清除该位。 0:接收器超时事件没有发生。 1:接收器超时事件发生。
10:0	保留	必须保持复位值。

18. 内部集成电路总线接口(I2C)

18.1. 简介

I2C(内部集成电路总线)模块提供了符合工业标准的两线串行制接口,可用于 MCU 和外部 I2C 设备的通讯。I2C 总线使用两条串行线:串行数据线 SDA 和串行时钟线 SCL。

I2C 接口模块实现了 I2C 协议的标速模式, 快速模式以及快速+模式, 具备 CRC 计算和校验功能、支持 SMBus(系统管理总线)和 PMBus(电源管理总线), 此外还支持多主机 I2C 总线架构。I2C 接口模块也支持 DMA 模式, 可有效减轻 CPU 的负担。

18.2. 主要特征

- 并行总线至 I2C 总线协议的转换及接口;
- 同一接口既可实现主机功能又可实现从机功能;
- 主从机之间的双向数据传输;
- 支持 7 位和 10 位的地址模式和广播寻址;
- 支持 I2C 多主机模式;
- 支持标速(最高 100 KHz), 快速(最高 400 KHz)和快速+模式(最高 1MHz);
- 从机模式下可配置的 SCL 主动拉低;
- 支持 DMA 模式;
- 兼容 SMBus 2.0 和 PMBus;
- 两个中断:字节成功发送中断和错误事件中断;
- 可选择的 PEC (报文错误校验) 生成和校验。

18.3. 功能说明

I2C接口的内部结构如图 18-1. I2C 模块框图所示。

图 18-1. I2C 模块框图

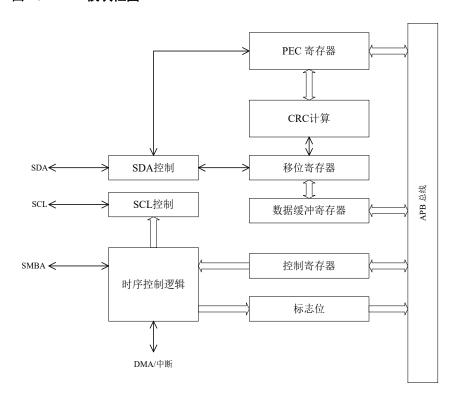
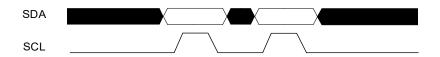


表 18-1. I2C 总线术语说明(参考飞利浦 I2C 规范)

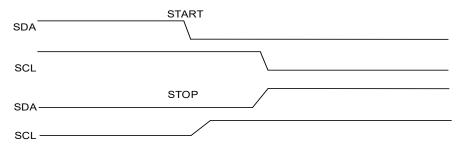
	dyland gray (\$ 2 dyland i=0 years)
术语	说明
发送器	发送数据到总线的设备
接收器	从总线接收数据的设备
主机	初始化数据传输,产生时钟信号和结束数据传输的设备
从机	由主机寻址的设备
多主	多个主机可以尝试在不破坏信息的前提下同时控制总线
同步	同步两个或更多设备之间的时钟信号的过程
仲裁	如果超过一个主机同时试图控制总线,只有一个主机被允许,且获胜 主机的信息不被破坏

18.3.1. SDA 线和 SCL 线


2C 模块有两条接口线: 串行数据 SDA 线和串行时钟 SCL 线。连接到总线上的设备通过这两根线互相传递信息。SDA 和 SCL 都是双向线,通过一个电流源或者上拉电阻接到电源正极。当总线空闲时,两条线都是高电平。连接到总线的设备输出极必须是开漏或者开集,以提供线与功能。I2C 总线上的数据在标准模式下可以达到 100 Kbit/s,在快速模式下可以达到 400 Kbit/s,当 I2C_FMPCFG 寄存器中 FMPEN 位被置位时,在快速+模式下可达 1Mbit/s。由于 I2C 总线上可能会连接不同工艺的设备(CMOS,NMOS,双极性器件),逻辑'0'和逻辑'1'的电平并不是固定的,取决于 Vpb 的实际电平。

18.3.2. 数据有效性

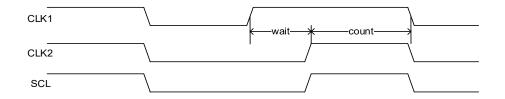
时钟信号的高电平期间 SDA 线上的数据必须稳定。只有在时钟信号 SCL 变低的时候数据线 SDA 的电平状态才能跳变(如*图 18-2. 数据有效性*)。每个数据比特传输需要一个时钟脉冲。


图 18-2. 数据有效性

18.3.3. 开始和停止信号

所有的数据传输起始于一个 START 结束于一个 STOP (参见 **图 18-3. 起始和停止信号**)。 START 信号定义为,在 SCL 为高时,SDA 线上出现一个从高到低的电平转换。STOP 信号定义为,在 SCL 为高时,SDA 线上出现一个从低到高的电平转换。

图 18-3. 起始和停止信号

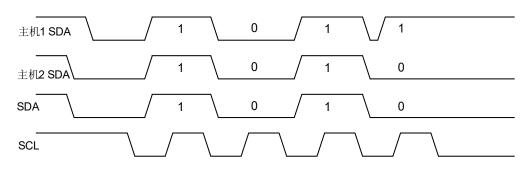


18.3.4. 时钟同步

两个主机可以同时在空闲总线上开始传送数据,因此必须通过一些机制来决定哪个主机获取总线的控制权并完成传输,这一般是通过时钟同步和仲裁来完成的。单主机系统下不需要时钟同步和仲裁机制。

时钟同步通过SCL线的线与来实现。这就是说SCL线的高到低切换会使器件开始计数它们的低电平周期,而且且当主机的时钟变低电平,它会使SCL线保持这种状态直到到达时钟的高电平(参见图18-4.时钟同步)。但是如果另一个时钟仍处于低电平周期,这个时钟的低到高切换不会改变SCL线的状态。因此SCL线被有最长低电平周期的器件保持低电平。此时低电平周期短的器件会进入高电平的等待状态。

图 18-4. 时钟同步

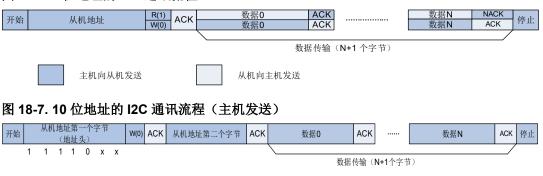

18.3.5. 仲裁

仲裁和同步一样,都是为了解决多主机情况下的总线控制冲突。仲裁的过程与从机无关。

只有在总线空闲的时候主机才可以启动传输。两个主机可能在START信号的最短保持时间内在 总线上产生一个有效的START信号,这种情况下需要仲裁来决定由哪个主机来完成传输。

仲裁逐位进行,在每一位的仲裁期间,当SCL为高时,每个主机都检查SDA电平是否和自己发送的相同。仲裁的过程需要持续很多位。理论上讲,如果两个主机所传输的内容完全相同,那么它们能够成功传输而不出现错误。如果一个主机发送高电平但检测到SDA电平为低,则认为自己仲裁失败并关闭自己的SDA输出驱动,而另一个主机则继续完成自己的传输。

图 18-5. SDA 线仲裁


18.3.6. I2C 通讯流程

每个I2C设备(不管是微控制器,LCD驱动,存储器或者键盘接口)都通过唯一的地址进行识别,根据设备功能,他们既可以是发送器也可作为接收器。

I2C从机检测到I2C总线上的START信号之后,就开始从总线上接收地址,之后会把从总线接收到的地址和自身的地址(通过软件编程)进行比较,当两个地址相同时,I2C从机将发送一个确认应答(ACK),并响应总线的后续命令:发送或接收所需数据。此外,如果软件开启了广播呼叫,则I2C从机始终对一个广播地址(0x00)发送确认应答。I2C模块始终支持7位和10位的地址。

I2C主机负责产生START信号和STOP信号来开始和结束一次传输,并且负责产生SCL时钟。

图 18-6. 7 位地址的 I2C 通讯流程

从机向主机发送

主机向从机发送

图 18-8. 10 位地址的 I2C 通讯流程 (主机接收)

18.3.7. 软件编程模型

一个I2C设备例如LCD驱动器可能只是作为一个接收器,但是一个存储器既可以接收数据,也能发送数据。除了按照发送/接收方来区分,I2C设备也分为数据传输的主机和从机。主机是指负责初始化总线上数据的传输并产生时钟信号的设备,此时任何被寻址的设备都是从机。

不管I2C设备是主机还是从机,都可以发送或接收数据,因此,I2C设备有以下4种运行模式:

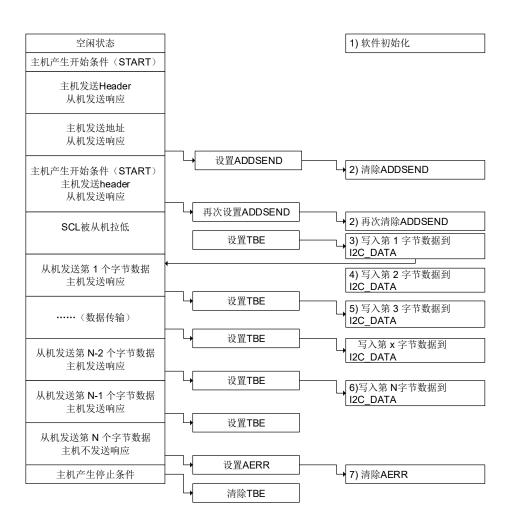
- 主机发送方;
- 主机接收方;
- 从机发送方;
- 从机接收方。

I2C模块支持以上四种模式。系统复位以后,I2C默认工作在从机模式下。通过软件配置使I2C在总线上发送一个START信号之后,I2C变为主机模式,软件配置在I2C总线上发送STOP信号后,I2C又变回从机模式。

从机发送模式下的软件流程

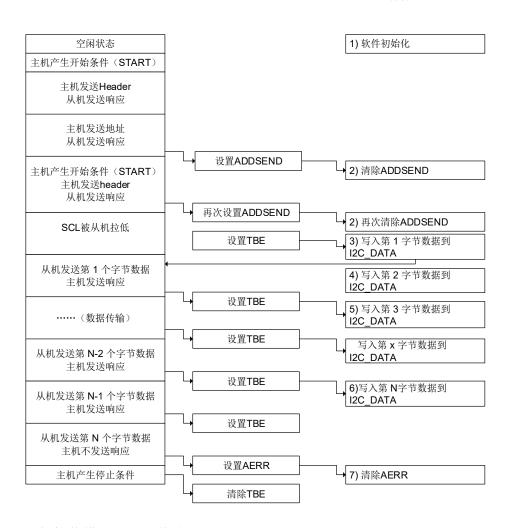
如<u>**图18-9**. 从机发送模式(10位地址模式)</u>所示,在从机模式下要发送数据,软件应该按照以下步骤来运行操作:

- 1. 首先,软件应该使能I2C外设时钟,以及配置I2C_CTL1中时钟相关寄存器来确保正确的 I2C时序。使能和配置以后,I2C运行在默认的从机模式状态,等待I2C总线上的START信号和地址。
- 2. 当接收到一个START信号及随后的地址后,地址可以是7位格式也可以是10位格式,I2C 硬件将I2C_STAT0寄存器的ADDSEND位置1,此位应该被软件查询或者中断监视,发现置位后,软件应该读I2C_STAT0寄存器然后读I2C_STAT1寄存器来清除ADDSEND位。如果地址是10位格式,I2C主机应该接着再产生一个START并发送一个地址头到I2C总线。从机在检测到START和紧接着的地址头之后会继续将ADDSEND位置1。软件可以通过读I2C STAT0寄存器和接着读I2C STAT1寄存器来第二次清除ADDSEND位。
- 3. 现在I2C进入数据发送状态,由于移位寄存器和数据寄存器I2C_DATA都是空的,硬件将TBE位置1。软件此时可以写入第一个字节数据到I2C_DATA寄存器,但是TBE位并没有被清0,因为写入I2C_DATA寄存器的字节被立即移入内部移位寄存器。当移位寄存器非空的时候,I2C开始发送数据到I2C总线。
- 4. 第一个字节的发送期间,软件可以写第二个字节到I2C_DATA,此时TBE位被清0,因为 I2C_DATA寄存器和移位寄存器都不是空。
- 5. 第一个字节的发送完成之后,TBE被再次置起,软件可以写第三个字节到I2C DATA,同



时TBE位被清0。在此之后,任何时候TBE被置1,只要依然有数据待被发送,软件都可以写入一个字节到I2C DATA寄存器。

- 6. 倒数第二个字节发送期间,软件写最后一个数据到I2C_DATA寄存器来清除TBE标志位, 之后就再不用关心TBE的状态。TBE位会在倒数第二个字节发送完成后置起,直到检测到 STOP信号时被清0。
- 7. 根据I2C协议,I2C主机将不会对接收到的最后一个字节发送应答,所以在最后一个字节发送 送结束后,I2C从机的AERR(应答错误)会置起以通知软件发送结束。软件写0到AERR 位可以清除此位。


图 18-9. 从机发送模式(10 位地址模式)

I2C总线状态 硬件行为 软件操作流程

I2C总线状态 硬件行为 软件操作流程

从机接收模式下的软件流程

如<u>**图18-10**. 从机接收模式(10位地址模式)</u>所示,在从机模式下接收数据时,软件应该遵循以下步骤来操作:

- 1. 首先,软件应该使能I2C外设时钟,以及配置I2C_CTL1中时钟相关寄存器来确保正确的 I2C时序。使能和配置以后,I2C运行在默认的从机模式状态,等待START信号以及地址。
- 2. 在接收到START起始信号和匹配的7位或10地址之后,I2C硬件将I2C状态寄存器0的 ADDSEND位置1,此位应该通过软件轮询或者中断来检测,发现置起后,软件通过先读 I2C_STAT0寄存器然后读I2C_STAT1寄存器来清除ADDSEND位。当ADDSEND位被清0 时,I2C就开始接收来自I2C总线的数据。
- 3. 当接收到第一个字节时,RBNE位被硬件置1,软件可以读取I2C_DATA寄存器的第一个字节,此时RBNE位也被清0。
- 4. 任何时候RBNE被置1,软件可以从I2C_DATA寄存器读取一个字节。
- 5. 接收到最后一个字节后, RBNE被置1, 软件可以读取最后的字节。
- 6. 当I2C检测到I2C总线上一个STOP信号,STPDET位被置1,软件通过先读I2C STAT0寄

存器再写I2C_CTL0寄存器来清除STPDET位。

图 18-10. 从机接收模式(10 位地址模式)

主机发送第 N个字节数据 从机发送响应

主机产生停止条件

I2C总线状态 硬件行为 软件操作流程 空闲状态 1) 软件初始化 主机产生开始条件(START) 主机发送Header 从机发送响应 主机发送地址 从机发送响应 设置ADDSEND → 2) 清除ADDSEND SCL被从机拉低 主机发送第1个字节数据 从机发送响应 设置RBNE 3) 读取第 1 字节数据 ····· (数据传输) 设置RBNE → 4) 读取第 x 字节数据 主机发送第 N个字节数据 从机发送响应 设置RBNE 5) 读取第N字节数据 主机产生停止条件 设置STPDET → 6) 清除STPDET 硬件行为 I2C总线状态 软件操作流程 空闲状态 1) 软件初始化 主机产生开始条件(START) 主机发送Header 从机发送响应 主机发送地址 从机发送响应 设置ADDSEND → 2) 清除ADDSEND SCL被从机拉低 主机发送第1个字节数据 从机发送响应 设置RBNE ★ 3) 读取第 1 字节数据 ····· (数据传输) 设置RBNE → 4) 读取第 x 字节数据

设置RBNE

设置STPDET

→ 5) 读取第N字节数据

→ 6) 清除STPDET

主机发送模式下的软件流程

如<u>**图18-11**. 主机发送模式(10位地址模式)</u>所示,在主机模式下发送数据到I2C总线时,软件应该遵循以下步骤来运行I2C模块:

- 1. 首先,软件应该使能I2C外设时钟,以及配置I2C_CTL1中时钟相关寄存器来确保正确的 I2C时序。使能和配置以后,I2C运行在默认的从机模式状态,等待START信号,随后等待 I2C总线寻址。
- 2. 软件将START位置1,在I2C总线上产生一个START信号。
- 3. 发送一个START信号后,I2C硬件将I2C_STAT0的SBSEND位置1然后进入主机模式。现在软件应该读I2C_STAT0寄存器然后写一个7位地址位或10位地址的地址头到I2C_DATA寄存器来清除SBSEND位。当SBSEND位被清0时,I2C就开始发送地址或者地址头到I2C总线。如果发送的地址是10位地址的地址头,硬件在发送地址头的时候会将ADD10SEND位置1,软件应该通过读I2C_STAT0寄存器然后写10位低地址到I2C_DATA来清除ADD10SEND位。
- 4. 7位或10位的地址位发送出去之后,I2C硬件将ADDSEND位置1,软件通过读I2C_STAT0 寄存器然后读I2C_STAT1寄存器清除ADDSEND位。
- 5. I2C进入数据发送状态,因为移位寄存器和数据寄存器I2C_DATA都是空的,所以硬件将TBE位置1。此时软件可以写第一个字节数据到I2C_DATA寄存器,但是TBE位此时不会被清零,因为写入I2C_DATA寄存器的字节会被立即移入内部移位寄存器。当移位寄存器非空时,I2C就开始发送数据到总线。
- 6. 在第一个字节的发送过程中,软件可以写第二个字节到I2C_DATA,此时TBE会被清零,因为I2C DATA寄存器和移位寄存器都不为空。
- 7. 任意时刻TBE被置1,软件都可以向I2C_DATA寄存器写入一个字节,只要还有数据待发送。
- 8. 在倒数第二个字节发送过程中,软件写入最后一个字节数据到I2C_DATA来清除TBE标志 位,此后就不用关心TBE位的状态。TBE位会在倒数第二个字节发送完成后被置起,直到 发送STOP信号时被清零。
- 9. 最后一个字节发送结束后,I2C主机将BTC位置起,因为移位寄存器和I2C_DATA寄存器此时都为空。软件此时应该配置STOP来发送一个STOP信号,此后TBE和BTC状态位都将被清0。

图 18-11. 主机发送模式 (10 位地址模式)

主机接收模式下的软件流程

在主机接收模式下,主机需要为最后一个字节接收产生NACK,然后发送STOP信号。因此,需要特别注意以确保最后接收到数据的正确性。下面提供了两种针对主机接收模式的软件编程方案:方案A和B。方案A需要保证软件能对I2C事件进行快速响应,方案B则不需要。

方案 A

- 1. 首先,软件应该使能I2C外设时钟,以及配置I2C_CTL1中时钟相关寄存器来确保正确的 I2C时序。使能和配置以后,I2C运行在默认的从机模式状态,等待START信号,随后等待 I2C总线寻址。
- 2. 软件将START位置1,从而在I2C总线上产生一个START信号。
- 3. 发送一个START信号后,I2C硬件将I2C_STAT0寄存器的SBSEND位置1然后进入主机模式。现在软件应该读I2C_STAT0寄存器然后写一个7位地址位或10位地址的地址头到I2C_DATA寄存器来清除SBSEND位。当SBSEND位被清0时,I2C就开始发送地址或者地址头到I2C总线。如果发送的地址是10位地址的地址头,硬件在发送地址头的时候会先将ADD10SEND位置1,软件应该通过读I2C_STAT0寄存器然后写10位低地址到I2C_DATA来清除ADD10SEND位。

- 4. 7位或10位的地址位发送出去之后,I2C硬件将ADDSEND位置1,软件应该通过读I2C_STAT0寄存器然后读I2C_STAT1寄存器清除ADDSEND位。如果地址是10位格式,软件应该再次将START位置1来重新产生一个START。在START产生后,SBSEND位会被置1。软件应该通过先读I2C_STAT0然后写地址头到I2C_DATA来清除SBSEND位,然后地址头被发到I2C总线,ADDSEND再次被置1。软件应该再次通过先读I2C_STAT0然后读I2C_STAT1来清除ADDSEND位。
- 5. 当接收到第一个字节时,硬件会将RBNE位置1。此时软件可以从I2C_DATA寄存器读取第一个字节,之后RBNE位被清0。
- 6. 此后任何时候RBNE被置1,软件就可以从I2C_DATA寄存器读取一个字节。
- 7. 接收完倒数第二个字节(N-1)数据之后,软件应该立即将ACKEN位清0,并将STOP位置 1,这一过程需要在最后一个字节接收完毕之前完成,以确保NACK发送给最后一个字节。
- 8. 最后一个字节接收完毕后,RBNE位被置1,软件可以读取最后一个字节。由于ACKEN已 经在前一步骤中被清0,I2C不再为最后一个字节发送ACK,并在最后一个字节发送完毕后 产生一个STOP信号。

以上步骤要求字节数目N>1,如果N=1,步骤7应该在步骤4之后就执行,且需要在字节接收完成之前完成。

图 18-12. 主机接收使用方案 A 模式(10 位地址模式)

方案 B

- 1. 首先,软件应该使能I2C外设时钟,配置I2C_CTL1中时钟相关寄存器来确保正确的I2C时序。初始化完成之后,I2C运行在默认的从机模式状态,等待START信号和地址。
- 2. 软件将START位置1,从而在I2C总线上产生一个START信号。
- 3. 发送一个START信号后,I2C硬件将I2C_STAT0寄存器的SBSEND位置1然后进入主机模式。现在软件应该读I2C_STAT0寄存器然后写一个7位地址位或10位地址的地址头到I2C_DATA寄存器来清除SBSEND位。当SBSEND位被清0时,I2C就开始发送地址或者地址头到I2C总线。如果发送的地址是10位地址的地址头,硬件在发送地址头之后会将ADD10SEND位置1,软件应该通过读I2C_STAT0寄存器然后写10位低地址到I2C_DATA来清除ADD10SEND位。
- 4. 7位或10位的地址位发送出去之后,I2C硬件将ADDSEND位置1,软件应该通过读

I2C_STAT0寄存器然后读I2C_STAT1寄存器清除ADDSEND位。如果地址是10位格式,软件应该接着将START位再次置1来产生一个开始信号,START被发送出去以后SBSEND位被再次置1。软件应该通过先读I2C_STAT0然后写地址头到I2C_DATA来清除SBSEND位,然后地址头被发到I2C总线,ADDSEND再次被置1。软件应该再次通过先读I2C_STAT0然后读I2C STAT1来清除ADDSEND位。

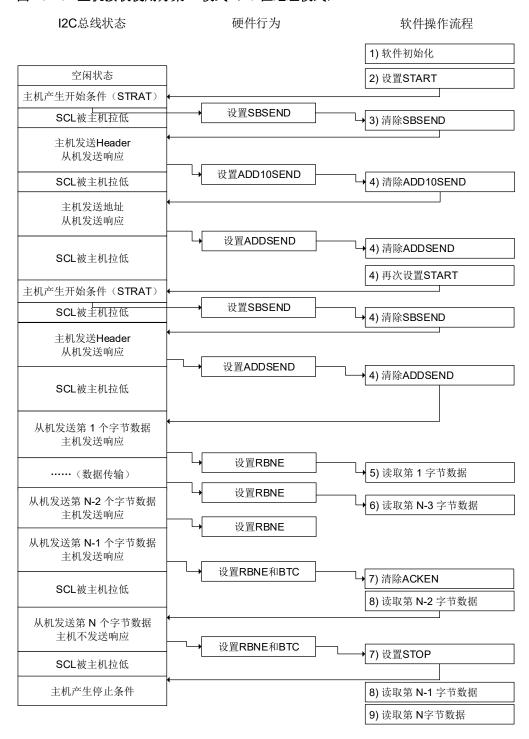
- 5. 当第一个字节被接收时,RBNE位会被硬件置1。此时软件可从I2C_DATA寄存器读取出第一个字节,同时RBNE位被清0。
- 6. 此后任何时刻,只要RBNE位被置1,软件就可以从I2C_DATA寄存器读取一个字节的数据, 直到主机接收了N-3个字节。

如**图18-13.** 主机接收使用方案B模式(10位地址模式)所示,第N-2个字节还没被软件读出, 之后第N-1个字节被接收,此时BTC和RBNE都被置位,总线就会被主机锁死以阻止最后一个字节的接收。然后软件应该清除ACKEN位。

- 7. 软件从I2C_DATA读出倒数第三个(N-2)字节数据,同时也将BTC位清0。此后第N-1个字节从移位寄存器被移到I2C_DATA,总线得到释放然后开始接收最后一个字节,由于ACKEN已经被清除,因此主机不会给最后一个字节数据发送ACK响应。
- 8. 最后一个字节接收完毕后,硬件再次把BTC位和RBNE置1,并拉低SCL,软件将STOP位置1,主机发出一个STOP信号。
- 9. 软件读取第N-1个字节,清除BTC。此后最后一个字节从移位寄存器被移动到I2C DATA。
- 10. 软件读取最后一个字节,清除RBNE。

以上步骤需要字节数字N>2, N=1和N=2的情况近似。

N=1


在第 4 步,软件应该在清除 ADDSEND 位之前将 ACKEN 位清 0,在清除 ADDSEND 位之后将 STOP 位置 1。当 N=1 时步骤 5 是最后一步。

N=2

在第2步,软件应该在START置1之前将POAP置1。在第4步,软件应该在清除ADDSEND位之前将ACKEN位清0。在第5步,软件应该一直等到BTC位被置1然后将STOP位置1且读取 I2C DATA两次。

图 18-13. 主机接收使用方案 B 模式(10 位地址模式)

18.3.8. SCL 线控制

SCL 线拉低功能是为了避免在接收时发生上溢错误以及在发送时发生下溢错误。如在软件编程模型中所示,在发送模式,当 TBE 和 BTC 被置位,发送器保持 SCL 线为低电平直到下一个发送数据写入传输缓冲区寄存器。在接收模式,当 RBNE 和 BTC 被置位,发送器保持 SCL 线为低电平直到传输缓冲区寄存器里的数据被读出。

当工作在从模式的时候,可以通过置位 I2C_CTLO 寄存器的 SS 位禁止 SCL 线拉低功能。如

果该位置位,软件要能足够快的处理 TBE, RBNE 和 BTC 状态, 否则上溢或下溢的情况可能会发生。

18.3.9. DMA 模式下数据传输

报文错误校验按照前面的软件流程,每当 TBE 位或 RBNE 位被置 1 之后,软件都应该写或读一个字节,这样将导致 CPU 的负荷较重。I2C 的 DMA 功能可以在 TBE 或 RBNE 位置 1 时,自动进行一次写或读操作,从而减轻了 CPU 的负荷,具体 DMA 的配置请参看 DMA 相关章节。

DMA 请求通过 I2C_CTL1 寄存器的 DMAON 位使能。该位应该在清除 ADDSEND 状态位之后被置位。如果一个从机的 SCL 线延长功能被禁止,DMAON 位应该在 ADDSEND 事件前被置位。

参考 DMA 控制器的关于 DMA 的配置方法说明。DMA 必须在 I2C 传输开始之前配置和使能。 当指定个数的字节已经传输完成,DMA 会发送一个传输结束(EOT)信号给 I2C 接口,并产 生一个 DMA 传输完成中断。

当主机接收两个或两个以上字节时,需将 I2C_CTL1 寄存器的 DMALST 位置位。在接收到最后一个字节之后,I2C 主机发送 NACK。在 DMA 传输完成中断 ISR 中,通过置位 STOP 位,产生一个停止信号。

当主机仅接收一个字节时,清除ADDSEND状态前ACKEN位必须被清除。在清除ADDSEND状态后或在DMA传输完成中断ISR中,通过置位STOP位,产生一个停止信号。

18.3.10. 报文错误校验

I2C模块中有一个PEC(包错误检查)模块,它使用CRC-8计算器来执行I2C数据的报文校验,CRC多项式为x8 + x2 + x + 1,和SMBus协议兼容。将PECEN位置1就可以使能PEC功能。PEC将会计算所有通过I2C总线发送的数据(包括地址)。软件可以通过配置PECTRANS来控制I2C在最后一个字节发送完毕后发送PEC值,或者在接收完成后检查接收到的PEC值是否正确。在DMA模式下,如果PECEN位和PECTRANS位被置1,I2C将自动发送或者检查PEC值。

18.3.11. SMBus 支持

系统管理总线(System Management Bus,简写为SMBus或SMB)是一种结构简单的单端双线制总线,可实现轻量级的通信需求。一般来说,SMBus最常见于计算机主板,主要用于电源传输ON/OFF指令的通信。SMBus是I2C的一种衍生总线形式,主要用于计算机主板上的低带宽设备间通信,尤其是与电源相关的芯片,例如笔记本电脑的可充电电池子系统(参见Smart Battery Data)。

SMBus 协议

SMBus上每个报文交互都遵从SMBus协议中预定义的格式。SMBus是I2C规范中数据传输格式的子集。只要I2C设备可通过SMBus协议之一进行访问,便视为兼容SMBus规范。不符合这些协议的I2C设备,将无法被SMBus和ACPI规范所定义的标准方法访问。

地址解析协议

超时特性SMBus是基于I2C硬件实现的,它使用了I2C的硬件寻址方式,但在I2C的基础上增加了二级软件处理,建立自己独特的系统。比较特别的是SMBus规范包含一个地址解析协议,可用于实现动态地址分配。动态识别硬件和软件使得总线设备能够支持热插拔,无需重启系统便能即插即用。总线中的设备将被自动识别并分配唯一地址。这个优点非常有利于实现即插即用的用户接口。在此协议中,系统中的host与设备之间有一个重要的区别,即host具有分配地址的功能。

超时特性

SMBus有一种超时特性:假如某个通信耗时太久,便会自动复位设备。这就解释了为什么最小时钟周期为10kHz——为了防止长时间锁死总线。I2C在本质上可以视为一个"直流"总线,也就是说当主机正在访问从机的时候,假如从机正在执行一些子程序无法及时响应,从机可以拉住主机的时钟。这样便可以提醒主机:从机正忙,但并不想放弃当前的通信。从机的当前任务结束之后,将可以继续I2C通信。I2C总线协议中并没有限制这个延时的上限,但在SMBus系统中,这个时间被限定为35ms。按照SMBus协议的假定,如果某个通信耗时太久,就意味着总线出了问题,此时所有设备都应当复位以消除这种问题。这样就并不允许从设备将时钟拉低太长时间。

报文错误校验

SMBus 2.0以及1.1都采用了报文错误校验(Packet Error Checking,缩写为PEC)。在这种模式中,每次通信最后都将传输PEC字节。该字节是按照CRC-8校验和的方式计算的,计算范围包括整个报文,包括地址以及读/写位。所采用的多项式为x8+x2+x+1(CRC-8-ATM HEC算法,初始化为0)。

SMBus 警报

SMBus还有一个额外的中断信号,称为SMBALERT#。从机上发生事件后,可通过这个信号通知主机来访问从机。SMBus中还定义了较少见的"主机提醒协议",基于I2C多主模式实现类似的提醒功能,但是可以传递更多数据。

SMBus 通讯流程

SMBus的通讯流程和标准I2C的流程相似。为了使用SMBus模式,在程序中需要配置几个SMBus特定的寄存器,响应一些SMBus特定标志位,实现那些在SMBus手册中介绍的上层协议。

- 1. 在通信之前,需要将I2C_CTL0中SMBEN位置1,并且根据需求,配置SMBSEL和ARPEN的信。
- 2. 为了支持ARP协议(ARPEN=1),在SMBus主机模式下(SMBSEL=1),软件需要响应标志位HSTSMB(在SMBus从机模式下,响应DEFSMB标志位),并实现ARP协议中的功能。
- 3. 为了支持SMBus警告模式,软件应该响应SMBALT标志位,并实现相应的功能。

18.3.12. 状态、错误和中断

I2C有一些状态、错误标志位,通过设置一些寄存器位,便可以从这些标志触发中断(详情参见<u>I2C*寄存器*</u>)。

表 18-2. 事件状态标志位

事件标志位名称	说明
SBSEND	主机发送 START 信号
ADDSEND	地址发送和接收
ADD10SEND	10 位地址模式中地址头发送
STPDET	监测到 STOP 信号
BTC	字节发送结束
TBE	发送时 I2C_DATA 为空
RBNE	接收时 I2C_DATA 非空

表 18-3. I2C 错误标志位

M IO OI ITO M WOMING THE					
错误名称	说明				
BERR	总线错误				
LOSTARB	仲裁丢失				
OUERR	当禁用 SCL 拉低后,发生了上溢或下溢				
AERR	没有接收到应答				
PECERR	CRC 值不相同				
SMBTO	SMBus 模式下总线超时				
SMBALT	SMBus 警报				

18.4. I2C 寄存器

I2C0基地址: 0x4000 5400

I2C1基地址: 0x4000 5800

18.4.1. 控制寄存器 0(I2C_CTL0)

地址偏移: 0x00

复位值: 0x0000 0000

该寄存器可以按半字(16位)或字(32位)访问。

31 16 保留 12 7 PECTRA STOP SRESET 保留 SALT POAP ACKEN START SS GCEN PECEN ARPEN SMBSEL SMBEN I2CEN NS rw rw rw rw rw rw rw rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
15	SRESET	件复位 I2C,软件应该在 I2C 总线被释放时复位 I2C。0: I2C 未复位
		1: I2C 复位
14	保留	必须保持复位值。
13	SALT	SMBus 警报
		通过 SMBA 引脚发出警报。
		软件置 1 和清 0,硬件清 0。
		0: 不通过 SMBA 发布警告
		1: 通过 SMBA 引脚发送警告
12	PECTRANS	PEC 传输
		软件置 1 和清 0,硬件在以下条件下清除此位: PEC 传输完成,或监测到 START /
		STOP 信号,或 I2CEN=0。
		0: 不传输 PEC 值
		1: 传输的 PEC 值
11	POAP	ACK/PEC 的位置含义
		软件置 1 和清 0, 当 I2CEN=0 时, 硬件清 0。
		0: ACKEN 位决定对当前正在接收的字节是否发送 ACK/NACK; PECTRANS 位表
		明 PEC 是否处于移位寄存器中
		1: ACKEN 位决定是否对下一个字节发送 ACK/NACK, PECTRANS 位表明下一个
		即将被接收的字节是 PEC

GigaDevice	2	GD32F403xx 用尸手册
10	ACKEN	是 ACK 使能 软件置 1 和清 0,当 I2CEN=0 时硬件清 0。 0:不发送 ACK 1:发送 ACK
9	STOP	I2C 总线上产生一个 STOP 信号 软件置 1 和清 0, SMBus 超时时, 硬件置 1, 监测到 STOP 信号时, 硬件清 0。 0: 不发送 STOP 1: 发送 STOP
8	START	I2C 总线上产生一个 START 信号 软件置 1 和清 0, 当监测到 START 信号或 I2CEN=0 时由硬件清 0。 0: 不发送 START 1: 发送 START
7	SS	SCL 拉低 在从机模式下数据未就绪是否将 SCL 拉低 软件置 1 和清 0。 0: 拉低 SCL 1: 不拉低 SCL
6	GCEN	广播呼叫使能是否响应对地址(0x00)的广播呼叫 0: 从机不响应广播呼叫 1: 从机将响应广播呼叫
5	PECEN	PEC 使能 0: PEC 计算禁用 1: PEC 计算使能
4	ARPEN	SMBus 下 ARP 协议开关 0: 关闭 ARP 1: 开启 ARP
3	SMBSEL	SMBus 类型选择 0: 从机 1: 主机
2	保留	必须保持复位值。
1	SMBEN	SMBus/I2C 模式开关 0: I2C 模式 1: SMBus 模式
0	I2CEN	I2C 外设使能 0: 禁用 I2C 1: 使能 I2C

18.4.2. 控制寄存器 1 (I2C_CTL1)

地址偏移: 0x04

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		DMALST	DMAON	BUFIE	EVIE	ERRIE	保	留			I2CCL	.K[5:0]	•	
									•						

位/位域	名称	描述
31:13	保留	必须保持复位值。
12	DMALST	DMA 最后传输配置 0: 下一个 DMA EOT 不是最后传输 1: 下一个 DMA EOT 是最后传输
11	DMAON	DMA 模式开关 0: DMA 模式关 1: DMA 模式开
10	BUFIE	缓冲区中断使能 0: 禁用缓存区中断 : 使能缓存区中断,如果 EVIE1 = 1,当 TBE = 1或 RBNE = 1时产生中断。
9	EVIE	事件中断使能 0: 禁用事件中断 1: 使能事件中断,意味着当 SBSEND、ADDSEND、ADD10SEND、STPDET 或 BTC 标志位有效或当 BUFIE=1 时 TBE=1 或 RBNE=1 时产生中断。
8	ERRIE	错误中断使能 0:禁用错误中断 1:使能错误中断,意味着当BERR、LOSTARB、AERR、OUERR、PECERR、SMBTO或SMBALT标志位生效时产生中断。
7	保留	必须保持复位值。
56:0	I2CCLK[6:0]	I2C 外设时钟频率 I2CCLK[6:0]应该是输入 APB1 时钟频率,最低 2MHz。 00d – 1d: 无时钟 110012d – 60d: 2 MHz~60MHz 61d – 127d: 由于 APB1 时钟限制,无时钟 注意: 在标准模式下,APB1 时钟频率需大于或者等于 2MHz。在快速模式下,APB1 时钟

频率需大于或者等于 8MHz。在快速+模式下,APB1 时钟频率需大于或者等于 24MHz。

18.4.3. 从机地址寄存器 0(I2C_SADDR0)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
															_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADDFOR			In in			ADDDE	.0010-01				DDDE0017	41			ADDRES
MAT			保留			ADDRE	SS[9:8]			Al	DDRESS[7:	1]			S0
rw						r	w				rw				rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
15	ADDFORMAT	2C 从机地址格式 0:7 位地址
		1: 10 位地址
14:10	保留	必须保持复位值。
9:8	ADDRESS[9:8]	10 位地址的最高两位
7:1	ADDRESS[7:1]	7 位地址或者 10 位地址的第 7-1 位
0	ADDRESS0	10 位地址的第 0 位

18.4.4. 从机地址寄存器 1(I2C_SADDR1)

地址偏移: 0x0C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	:留						ΑĽ	DRESS2[7	:1]			DUADEN

位/位域	名称	描述
31:8	保留	必须保持复位值。
7:1	ADDRESS2[7:1]	从机在双重地址模式下第二个 I2C 地址

DUADEN

重地址模式使能 0:禁用双重地址模式

1: 使能双重地址模式

18.4.5. 传输缓冲区寄存器(I2C_DATA)

地址偏移: 0x10

复位值: 0x0000 0000

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	留							TRB	[7:0]			

rw

位/位域	名称	描述	
31:8	保留	必须保持复位值。	
7:0	TRB[7:0]	数据发送接收缓冲区	

18.4.6. 传输状态寄存器 0(I2C_STAT0)

地址偏移: 0x14

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMBALT	SMBTO	保留	PECERR	OUERR	AERR	LOSTAR B	BERR	TBE	RBNE	保留	STPDET	ADD10S END	втс	ADDSEN D	SBSEND
rc w0	rc w0		rc w0	rc w0	rc w0	rc w0	rc w0	r	r		r	r	r	r	r

位/位域	名称	描述
31:16	保留	必须保持复位值。
15	SMBALT	SMBus 警报状态
		硬件置 1, 软件写 0 清 0。
		0: SMBA 引脚未被拉低(从机模式)或未监测到警报(主机模式)
		1: SMBA 引脚被拉低且接收到警报地址(从机模式)或监测到警报(主机模式)
14	SMBTO	SMBus 模式下超时信号
		硬件置 1, 软件写 0 清 0。
		0: 无超时错误

3		
		1: 超时事件发生(SCL 被拉低达 25ms)
13	保留	必须保持复位值。
12	PECERR	接收数据时 PEC 错误 硬件置 1,软件写 0 清 0。 0:接收到 PEC 且校验正确 1:接收到 PEC 但检验错误,此时 I2C 将无视 ACKEN 位直接发送 NACK
11	OUERR	当禁用 SCL 拉低功能后,在从机模式下发生了上溢或下溢事件。在从机接收模式下假如 I2C_DATA 中的最后一字节并未被读出,并且后续字节又接收完成,就会发生上溢错误。在从机发送模式下,假如当前字节已经发送完成,而 I2C_DATA 仍然为空,就会发生下溢错误。 硬件置 1,软件写 0 清 0。 0: 无上溢或下溢错误发生 1: 发生上溢或下溢错误
10	AERR	应答错误 硬件置 1, 软件写 0 清 0。 0: 未发生应答错误 1: 发生了应答错误
9	LOSTARB	主机模式下仲裁丢失 硬件置 1,软件写 0 清 0。 0:无仲裁丢失 1:发生仲裁丢失,I2C 模块返回从机模式。
8	BERR	总线错误,表示 I2C 总线上发生了预料之外的 START 信号或 STOP 信号。 硬件置 1,软件写 0 清 0。 0:无总线错误 1:发生了总线错误
7	TBE	发送期间 I2C_DATA 为空 硬件从 I2C_DATA 寄存器移动一个字节到移位寄存器之后将此位置 1,软件写一个字节到 I2C_DATA 寄存器清除该位。如果移位寄存器和 I2C_DATA 寄存器都是空的写 I2C_DATA 寄存器将不会清除 TBE 位(详见主机/从机发送模式下的软件操作流程) 0: I2C_DATA 非空 1: I2C_DATA 空,软件可以写
6	RBNE	接收期间 I2C_DATA 非空硬件从移位寄存器移动一个字节到 I2C_DATA 寄存器之后将此位置 1,读 I2C_DATA 可以清除此位。如果 BTC 和 RBNE 都被置 1,读 I2C_DATA 将不会清除 RBNE, 医为移位寄存器的字节将被立即移到 I2C_DATA。 0: I2C_DATA 为空 1: I2C_DATA 非空,软件可以读
5	保留	必须保持复位值。

Giganevice		GD32F4U3XX 用广ナボ
4	STPDET	从机模式下监测到 STOP 信号 此位被硬件置 1,先读 I2C_STAT0 然后写 I2C_CTL0 可以清除此位。 0:从机模式下未监测到 STOP 信号 1:从机模式下监测到 STOP 信号
3	ADD10SEND	主机模式下 10 位地址地址头被发送 该位由硬件置 1,软件读 I2C_STAT0 和写 I2C_DATA 清除此位。 0: 主机模式下未发送 10 位地址的地址头 1: 主机模式下发送 10 位地址的地址头
2	BTC	字节发送结束接收模式下,如果一个字节已经被移位寄存器接收但是此时 I2C_DATA 寄存器仍然是满的;或者发送模式下,一个字节已经被移位寄存器发送但是 I2C_DATA 寄存器仍然是空的,硬件就会置起 BTC 标志位。此位由硬件置 1。可由以下三种方式清除: 1 软件清除:读 I2C_STAT0,然后读或写 I2C_DATA 寄存器清除此位2 硬件清除:发送一个 STOP 或 START 信号3 寄存器 I2C_CTL0 中 I2CEN=00:未发生 BTC1:发生了BTC
1	ADDSEND	主机模式下:成功发送了地址并收到 ACK 从机模式下:接收到的地址与自身的地址匹配 此位由硬件置 1,软件读 I2C_STAT0 寄存器和读 I2C_STAT1 清 0。 0:从机模式下,未收到地址或者收到的地址不匹配;主机模式下,无地址被发送或地址已发送但未收到从机回复的 ACK 1:从机模式下,接收到的地址与自身的地址匹配;主机模式下,地址已发送并收到 ACK
0	SBSEND	主机模式下发送 START 信号 此位由硬件置 1,软件读 I2C_STAT0 和写 I2C_DATA 清 0。 0:未发送 START 信号 1: START 信号被发送
18.4.7.	传输状态寄存	器 1(I2C_STAT1)
	地址偏移: 0x18 复位值: 0x0000	
31 30		半字(16 位)或字(32 位)访问。 27 26 25 24 23 22 21 20 19 18 17 16

DUMODF HSTSMB DEFSMB RXGC

PECV[7:0]

I2CBSY MASTER

r r r r r r

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:8	PECV[7:0]	当 PEC 使能后硬件计算出的 PEC 值。
7	DUMODF	从机模式下双标志位表明哪个地址和双地址模式匹配 STOP 或 START 信号产生后或 I2CEN=0 时此位由硬件清 0。 0: 地址和 I2C_SADDR0 匹配 1: 地址和 I2C_SADDR1 匹配
6	HSTSMB	从机模式下监测到 SMBus 主机地址头 STOP 或 START 信号产生后或 I2CEN=0 时此位由硬件清 0。 0:未监测到 SMBus 主机地址头 1:监测到 SMBus 主机地址头
5	DEFSMB	SMBus 设备缺省地址 STOP 或 START 信号产生后或 I2CEN=0 时此位由硬件清 0。 0: SMBus 设备没有缺省地址 1: SMBus 设备接收到一个缺省地址
4	RXGC	是否接收到广播地址(0x00) STOP 或 START 起始位产生后或 I2CEN=0 时此位由硬件清 0。 0:未接收到广播呼叫地址(0x00) 1:接收到广播呼叫地址(0x00)
3	保留	必须保持复位值。
2	TR	发送端或接收端 该位表明 I2C 作为发送端还是接收端。STOP 或 START 信号产生后或 I2CEN 或 LOSTARB=1 时此位由硬件清 0。 0:接收端 1:发送端
1	I2CBSY	忙标志 STOP 信号后硬件清 0。 0: 无 I2C 通讯 1: I2C 正在通讯
0	MASTER	主机模式 表明 I2C 时钟在主机模式还是从机模式的标志位。 该位在 START 信号产生后由硬件置 1。 该位在 STOP 信号产生后或 I2CEN=0 或 LOSTARB=1 时此位由硬件清 0。 0: 从机模式 1: 主机模式

18.4.8. 时钟配置寄存器(I2C_CKCFG)

地址偏移: 0x1C

复位值: 0x0000 0000

该寄存器可以按半字(16位)或字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FAST	DTCY	保	留						CLKC	[11:0]					
nw.	nw.								n	M					

位/位域	名称	描述
31:16	保留	必须保持复位值。
15	FAST	主机模式下 I2C 速度选择
		0: 标准速度
		1: 快速
14	DTCY	快速模式下占空比
		10: T _{low} /T _{high} =2
		1: T _{low} /T _{high} =16/9
13:12	保留	必须保持复位值。
11:0	CLKC[11:0]	主机模式下 I2C 时钟控制
		标准速度模式下: T _{high} =T _{low} =CLKC*T _{PCLK1}
		如果 DTCY=0, 快速模式或快速+ 模式下:
		T_{high} =CLKC* T_{PCLK1} , T_{low} =2*CLKC* T_{PCLK1}
		如果 DTCY=1, 快速模式或快速+ 模式下:
		$T_{high}=9*CLKC*T_{PCLK1}$, $T_{low}=16*CLKC*T_{PCLK1}$
		注意:
		如果 DTCY=0,当 PCLK1 为 3 的整数倍时,波特率会比较准确。如果 DTCY=1,
		当 PCLK1 为 25 的整数倍时,波特率会比较准确。

18.4.9. 上升时间寄存器(I2C_RT)

地址偏移: 0x20

复位值: 0x0000 0002

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留							R	ISETIME[6:	0]	•	

rw

位/位域	名称	描述
31:7	保留	必须保持复位值。
6:0	RISETIME[6:0]	主机模式下最大上升时间
		RISETIME 值应该为 SCL 最大上升时间加 1

18.4.10. 快速+模式配置寄存器(I2C_FMPCFG)

地址偏移: 0x90

复位值: 0x0000 0000

		->1.4.14	, ,,	.42. 1 4	,				•						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							保留								FMPEN
															rw

位/位域	名称	描述
31:1	保留	必须保持复位值。
30	DFMPEN	快速+模式使能
		当该位被置 1 时,I2C 设备支持高达 1MHz

19. 串行外设接口/片上音频接口(SPI/I2S)

19.1. 简介

SPI/I2S 模块可以通过 SPI 协议或 I2S 音频协议与外部设备进行通信。

串行外设接口(Serial Peripheral Interface,缩写为 SPI)提供了基于 SPI 协议的数据发送和接收功能,可以工作于主机或从机模式。SPI 接口支持具有硬件 CRC 计算和校验的全双工和单工模式。SPI0 还支持 SPI 四线主机模式。

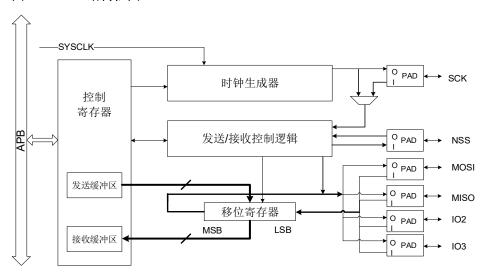
片上音频接口(Inter-IC Sound,缩写为 I2S)支持四种音频标准,分别是 I2S 飞利浦标准,MSB 对齐标准,LSB 对齐标准和 PCM 标准。它可以在四种模式下运行,包括主机发送模式,主机接收模式,从机发送模式和从机接收模式。

19.2. 主要特性

19.2.1. SPI 主要特性

- 具有全双工和单工模式的主从操作。
- 16位宽度,独立的发送和接收缓冲区。
- 8位或16位数据帧格式。
- 低位在前或高位在前的数据位顺序。
- 软件和硬件NSS管理。
- 硬件CRC计算、发送和校验。
- 发送和接收支持DMA模式。
- 支持SPI TI模式。
- 支持SPI NSS脉冲模式。
- 支持SPI四线功能的主机模式(仅在SPI0中)。

19.2.2. I2S 主要特性


- 具有发送和接收功能的主从操作;
- 支持四种I2S音频标准:飞利浦标准,MSB对齐标准,LSB对齐标准和PCM标准;
- 数据长度可以为16位,24位和32位;
- 通道长度为16位或32位:
- 16位缓冲区用于发送和接收;
- 通过I2S时钟分频器,可以得到8 kHz到192 kHz的音频采样频率;
- 可编程空闲状态时钟极性;
- 可以输出主时钟(MCK);
- 发送和接收支持DMA功能。

19.3. SPI 功能说明

19.3.1. .SPI 结构框图

图 19-1. SPI 结构框图

19.3.2. SPI 信号线描述

常规配置(非 SPI 四线模式)

表 19-1. SPI 信号描述

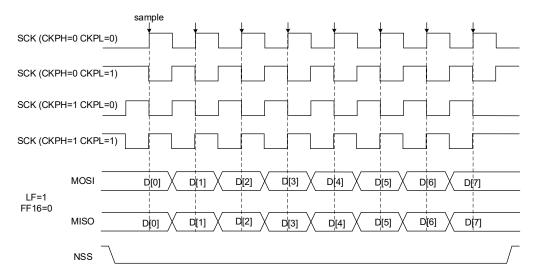
χ 13-1. 3F1	1H 3 1H.C	
引脚名称	方向	描述
SCK	1/0	主机: SPI 时钟输出
SCK	170	从机: SPI 时钟输入
		主机:数据接收线
MISO	1/0	从机:数据发送线
IVIISO	1/0	主机双向线模式:不使用
		从机双向性模式:数据发送和接收线
	1/0	主机:数据发送线
MOSI		从机:数据接收线
IVIOSI	170	主机双向线模式:数据发送和接收线
		从机双向线模式:不使用
		软件 NSS 模式:不使用
		主机硬件 NSS 模式: NSSDRV=1 时,为 NSS 输出,适用于
NSS	1/0	单主机模式; NSSDRV=0 时,为 NSS 输入,适用于多主机模
		式。
		从机硬件 NSS 模式:为 NSS 输入,作为从机的片选信号。

SPI 四线配置

SPI 默认配置为单路模式,当 SPI_QCTL 中的 QMOD 位置 1 时,配置为 SPI 四线模式(只适用于 SPI0)。SPI 四线模式只能工作在主机模式。

通过配置 SPI_QCTL 中的 IO23_DRV 位,在常规非四线 SPI 模式下,软件可以驱动 IO2 引脚和 IO3 引脚为高电平。

在 SPI 四线模式下, SPI 通过以下 6 个引脚与外部设备连接:


表 19-2. SPI 四线信号描述

引脚名称	方向	描述
SCK	0	SPI 时钟输出
MOSI	1/0	发送或接收数据 0 线
MISO	1/0	发送或接收数据 1 线
IO2	1/0	发送或接收数据 2 线
IO3	1/0	发送或接收数据 3 线
NSS	0	NSS 输出

19.3.3. SPI 时序和数据帧格式

SPI_CTL0 寄存器中的 CKPL 位和 CKPH 位决定了 SPI 时钟和数据信号的时序。CKPL 位决定了空闲状态时 SCK 的电平,CKPH 位决定了第一个或第二个时钟跳变沿为有效采样边沿。在 TI 模式下,这两位没有意义。

图 19-2. 常规模式下的 SPI 时序图

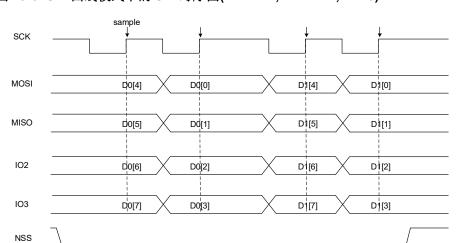


图 19-3. SPI 四线模式下的 SPI 时序图(CKPL=1, CKPH=1, LF=0)

在常规模式中,通过 SPI_CTL0 中的 FF16 位配置数据长度,当 FF16=1 时,数据长度为 16位,否则为 8 位。在 SPI 四线模式下,数据帧长度固定为 8 位。

通过设置 SPI_CTL0 中的 LF 位可以配置数据顺序,当 LF=1 时,SPI 先发送 LSB 位,当 LF=0 时,则先发送 MSB 位。在 TI 模式中,数据顺序固定为先发 MSB 位。

当访问 SPI_DATA 寄存器时,数据帧总是右对齐成一个字节(如果数据长度小于或等于一个字节)或一个半字。通讯时,只有数据长度内的位会随时钟输出。

19.3.4. NSS 功能

从机模式

当配置为从机模式(MSTMOD=0)时,在硬件 NSS 模式(SWNSSEN = 0)下,SPI 从 NSS 引脚获取 NSS 电平,在软件 NSS 模式(SWNSSEN = 1)下,SPI 根据 SWNSS 位得到 NSS 电平。只有当 NSS 为低电平时,才能发送或接收数据。在软件 NSS 模式下,不使用 NSS 引脚。

表 19-3. 从机模式 NSS 功能

模式	寄存器配置	描述
从机硬件 NSS 模式	MSTMOD = 0 SWNSSEN = 0	SPI 从机 NSS 电平从 NSS 引脚获取。
		SPI 从机 NSS 电平由 SWNSS 位决
从机软件 NSS 模式	MSTMOD = 0	定。
州机机计 NOO 	SWNSSEN = 1	SWNSS = 0: NSS 电平为低
		SWNSS = 1: NSS 电平为高

主机模式

在主机模式(MSTMOD=1)下,如果应用程序使用多主机连接方式,NSS 可以配置为硬件输入模式(SWNSSEN=0, NSSDRV=0)或者软件模式(SWNSSEN=1)。一旦 NSS 引脚(在硬

件 NSS 模式下)或 SWNSS 位(在软件 NSS 模式下)被拉低,SPI 将自动进入从机模式,并且产生主机配置错误,CONFERR 位置 1。

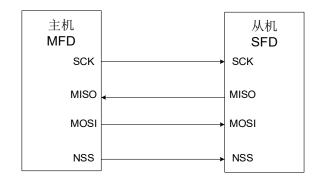
如果应用程序希望使用 NSS 引脚控制 SPI 从设备, NSS 应该配置为硬件输出模式 (SWNSSEN=0, NSSDRV=1)。使能 SPI 之后, NSS 保持高电平, 当发送或接收过程开始时, NSS 变为低电平。

应用程序可以使用一个通用 I/O 口作为 NSS 引脚,以实现更加灵活的 NSS 应用。

表 19-4. 主机模式 NSS 功能

模式	寄存器配置	描述
主机硬件 NSS 输出模式	MSTMOD = 1 SWNSSEN = 0 NSSDRV=1	适用于单主机模式,主机使用 NSS 引脚控制 SPI 从设备,此时 NSS 配置为硬件输出模式。使能 SPI 后 NSS 为低电平。
主机硬件 NSS 输入模式	MSTMOD = 1 SWNSSEN = 0 NSSDRV=0	适用于多主机模式,此时 NSS 配置为 硬件输入模式,一旦 NSS 引脚被拉低,SPI 将自动进入从机模式,并且产生主机配置错误,CONFERR 位置 1。
	MSTMOD = 1 SWNSSEN = 1 SWNSS = 0 NSSDRV:不要求	适用于多主机模式,一旦 SWNSS = 0, SPI 将自动进入从机模式,并且产生主机配置错误,CONFERR 位置 1。
主机软件 NSS 模式	MSTMOD = 1 SWNSSEN = 1 SWNSS = 1 NSSDRV:不要求	从机可以使用硬件或软件 NSS 模式

19.3.5. SPI 运行模式


表 19-5. SPI 运行模式

模式	描述	寄存器配置	使用的数据引脚
		MSTMOD = 1	
MFD	△ カエナ担 措 →	RO = 0	MOSI:发送
INIFD	全双工主机模式	BDEN = 0	MISO:接收
		BDOEN:不要求	
		MSTMOD = 1	
MTU	单向线连接主机发送模式	RO = 0	MOSI: 发送
IVITO		BDEN = 0	MISO:不使用
		BDOEN:不要求	
		MSTMOD = 1	
MRU	 単向线连接主机接收模式	RO = 1	MOSI:不使用
IVIINO	平的线廷按土机按拟侠八	BDEN = 0	MISO:接收
		BDOEN:不要求	
MTB	双向线连接主机发送模式	MSTMOD = 1	MOSI: 发送

模式	描述	寄存器配置	使用的数据引脚
		RO = 0	MISO:不使用
		BDEN = 1	
		BDOEN = 1	
		MSTMOD = 1	
MRB		RO = 0	MOSI:接收
MKB	双向线连接主机接收模式	BDEN = 1	MISO:不使用
		BDOEN = 0	
		MSTMOD = 0	
OED	4.世界 4.世界 4.世界 4.世界	RO = 0	MOSI:接收
SFD	全双工从机模式	BDEN = 0	MISO: 发送
		BDOEN:不要求	
		MSTMOD = 0	
STU	单向线连接从机发送模式	RO = 0	MOSI:不使用
510		BDEN = 0	MISO: 发送
		BDOEN:不要求	
		MSTMOD = 0	
CDLI	~ ~ \^\+\+\ 11 10 1\-\+\-\-\+\-\-\	RO = 1	MOSI:接收
SRU	单向线连接从机接收模式	BDEN = 0	MISO:不使用
		BDOEN:不要求	
		MSTMOD = 0	
STB	双向线连接从机发送模式	RO = 0	MOSI: 不使用
SIB		BDEN = 1	MISO: 发送
		BDOEN = 1	
		MSTMOD = 0	
CDD	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	RO = 0	MOSI:不使用
SRB	双向线连接从机接收模式	BDEN = 1	MISO:接收
		BDOEN = 0	

图 19-4. 典型的全双工模式连接

图 19-5. 典型的单工模式连接(主机:接收,从机:发送)

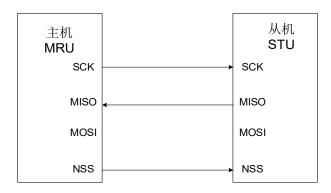


图 19-6. 典型的单工模式连接(主机: 只发送,从机:接收)

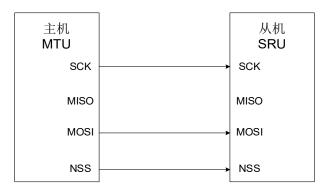
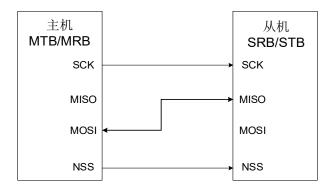



图 19-7. 典型的双向线连接

SPI 初始化流程

在发送或接收数据之前,应用程序应遵循如下的 SPI 初始化流程:

- 1. 如果工作在主机模式或从机TI模式,配置SPI_CTL0中的PSC[2:0]位来生成预期波特率的SCK信号,或配置TI模式下的Td时间。否则,忽略此步骤。
- 2. 配置数据格式(SPI CTL0中的FF16位)。
- 3. 配置时钟时序(SPI_CTL0中的CKPL位和CKPH位)。
- 4. 配置帧格式(SPI_CTL0中的LF位)。
- 5. 按照上文*NSS 功能*的描述,根据应用程序的需求,配置NSS模式(SPI_CTL0中的 SWNSSEN位和NSSDRV位)。
- 6. 如果工作在TI模式,需要将SPI_CTL1中的TMOD位置1。否则,忽略此步骤。
- 7. 如果工作在 NSSP 模式,需要将 SPI_CTL1 中的 NSSP 位置 1,否则,忽略此步骤。

- 8. 根据上面描述的运行模式,配置MSTMOD位、RO位、BDEN位和BDOEN位。
- 9. 如果工作在SPI四线模式,需要将SPI QCTL中的QMOD位置1。如果不是,则忽略此步骤。
- 10. 使能SPI(将SPIEN位置1)。

SPI 基本发送和接收流程

发送流程

在完成初始化过程之后,SPI 模块使能并保持在空闲状态。在主机模式下,当软件写一个数据到发送缓冲区时,发送过程开始。在从机模式下,当 SCK 引脚上的 SCK 信号开始翻转,且 NSS 引脚电平为低,发送过程开始。所以,在从机模式下,应用程序必须确保在数据发送开始前,数据已经写入发送缓冲区中。

当 SPI 开始发送一个数据帧时,首先将这个数据帧从数据缓冲区加载到移位寄存器中,然后开始发送加载的数据。在数据帧的第一位发送之后,TBE(发送缓冲区空)位置 1。TBE 标志位置 1,说明发送缓冲区为空,此时如果需要发送更多数据,软件应该继续写 SPI DATA 寄存器。

在主机模式下,若想要实现连续发送功能,那么在当前数据帧发送完成前,软件应该将下一个数据写入 SPI DATA 寄存器中。

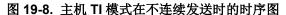
接收流程

在最后一个采样时钟边沿之后,接收到的数据将从移位寄存器存入到接收缓冲区,且 RBNE(接收缓冲区非空)位置 1。软件通过读 SPI_DATA 寄存器获得接收的数据,此操作会自动清除 RBNE 标志位。在 MRU 和 MRB 模式中,为了接收下一个数据帧,硬件需要连续发送时钟信号,而在全双工主机模式(MFD)中,当发送缓冲区非空时,硬件只接收下一个数据帧。

SPI 不同模式下的操作流程(非 SPI 四线模式, TI 模式或 NSSP 模式)

在全双工模式下,无论是 MFD 模式或者 SFD 模式,应用程序都应该监视 RBNE 标志位和 TBE 标志位,并且遵循上文描述的操作流程。

除了忽略 RBNE 位和 RXORERR 位,且只执行上述的发送流程之外,发送模式(MTU,MTB,STU 和 STB)与全双工模式类似。


在主机接收模式(MRU 或 MRB)下,全双工模式和发送模式是不同的。在 MRU 模式或 MRB 模式下,在 SPI 使能后,SPI 产生连续的 SCK 信号,直到 SPI 停止。所以,软件应该忽略 TBE 标志位,并且在 RBNE 位置 1 后及时读出接收缓冲区内的数据,否则,将会产生接收过载错误。

除了忽略 TBE 标志位,且只执行上述的接收流程之外,从机接收模式(SRU 或 SRB)与全双工模式类似。

SPI TI 模式

SPI TI 模式将 NSS 作为一种特殊的帧头标志信号,它的操作流程与上文描述的常规模式类似。上文描述的模式(MFD, MTU, MRU, MTB, MRB, SFD, STU, SRU, STB 和 SRB)都支持 TI 模式。但是,在 TI 模式中,SPI_CTL0 中的 CKPL 位和 CKPH 位是没有意义的,SCK 信号的采样边沿为下降沿。

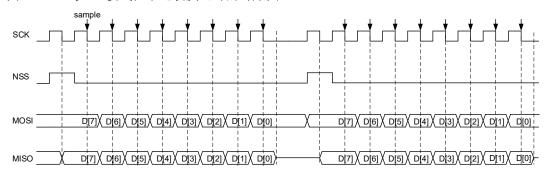
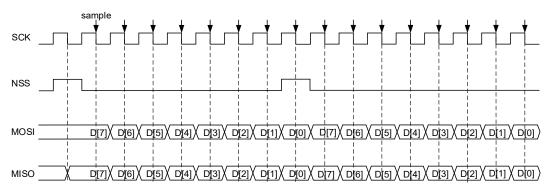
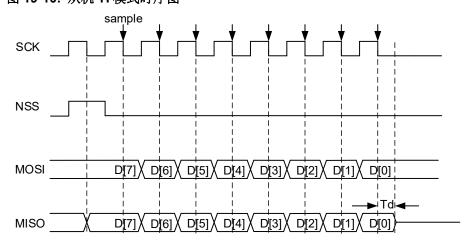




图 19-9. 主机 TI 模式在连续发送时的时序图

在主机 TI 模式下,SPI 模块可实现连续传输或者不连续传输。如果主机写 SPI_DATA 的速度 很快,那么就是连续传输,否则,为不连续传输。在不连续传输中,在每个字节传输前需要一个额外的时钟周期。但是在连续传输中,额外的时钟周期只存在于第一个字节之前,随后字节的起始时钟周期被前一个字节的最后一位的时钟周期覆盖。

图 19-10. 从机 TI 模式时序图

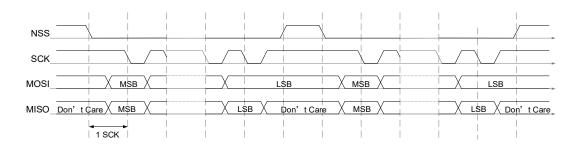
在从机 TI 模式中,在 SCK 信号的最后一个上升沿,从机开始发送最后一个字节的 LSB 位,在半位的时间之后,主机开始采集数据。为了确保主机采集到正确的数据,在释放该引脚之前,从机需要在 SCK 信号的下降沿之后继续驱动该位一段时间,这段时间称为 T_a , T_a 通过 SPI_CTLO 寄存器中的 PSC[2:0]位来设置。

$$T_d = \frac{T_{\text{bit}}}{2} + 5 * T_{\text{pclk}}$$
 (21-1)

例如,如果 PSC[2:0] = 010,那么 T_d 数值为 9*Tpclk。

在从机模式下,从机需要监视 NSS 信号,如果检测到错误的 NSS 信号,将会置位 FERR 标志位。例如,NSS 信号在一个字节的中间位发生翻转。

NSS 脉冲模式操作流程


配置 SPI_CTL1 寄存器中的 NSSP 位使能该功能,为了确保使用该功能实现,需满足以下几个条件: 配置设备为主机模式,使用普通 SPI 协议的数据帧格式,同时在第一个时钟跳变沿采样数据。

总之: NSSP = 1, MSTMOD = 1, CKPH = 0。

当使用 NSS 脉冲模式时,根据内部数据发送缓冲区的状态,NSS 脉冲会在两个连续的数据帧之间产生,且持续时间至少为 1 个 SCK 时钟周期。如果数据发送缓冲区保持为空,可能会持续多个 SCK 时钟周期。NSS 脉冲功能专为单一的主从应用设计,支持从机锁存数据。

下图描述了 NSS 脉冲模式在主机连续发送时的时序图。

图 19-11. NSS 脉冲模式时序图 (主机连续发送)

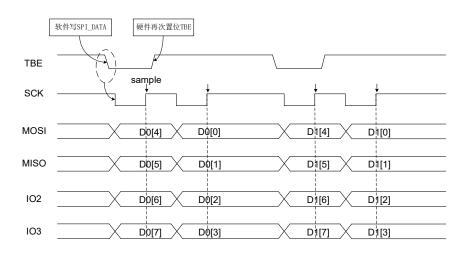
SPI 四线模式操作流程

SPI 四线模式用于控制四线 SPI flash 外设。

要配置成 SPI 四线模式,首先要确认 TBE 位置 1,且 TRANS 位清零,然后将 SPI_QCTL 寄存器中的 QMOD 位置 1。在 SPI 四线模式,SPI_CTL0 寄存器中 BDEN 位、BDOEN 位、CRCEN 位、CRCNT 位、FF16 位、RO 位和 LF 位保持清零,且 MSTMOD 位置 1,以保证SPI 工作于主机模式。SPIEN 位、PSC 位、CKPL 位和 CKPH 位根据需要进行配置。

SPI 四线模式有两种运行模式: 四线写模式和四线读模式,通过 SPI_QCTL 寄存器中的 QRD 位进行配置。

四线写模式

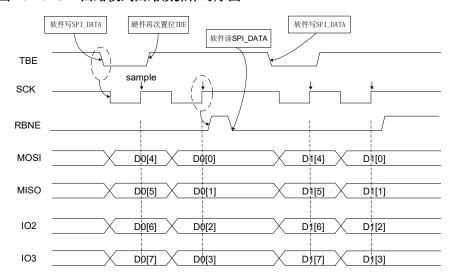

当 SPI_QCTL 寄存器中的 QMOD 位置 1 且 QRD 位清零时,SPI 工作在四路写模式。在四路写模式中,MOSI、MISO、IO2 和 IO3 都用作输出引脚。在 SCK 产生时钟信号后,一旦数据写入 SPI_DATA 寄存器(TBE 位清零)且 SPIEN 位置 1 时,SPI 将会通过这四个引脚发送写入的数据。一旦 SPI 开始数据传输,它总是在数据帧结束时检查 TBE 标志位的状态,若不能满足条件则停止传输。

四路模式下发送操作流程:

- 1. 根据应用需求,配置SPI_CTL0和SPI_CTL1中的时钟预分频、时钟极性、相位等参数;
- 2. 将SPI QCTL中的QMOD位置1,然后将SPI CTL0中的SPIEN位置1来使能SPI功能;
- 3. 向SPI DATA寄存器中写入一个字节的数据,TBE标志位将会清零;
- 4. 等待硬件将TBE位重新置位,然后写入下一个字节数据。

图 19-12. SPI 四线模式四线写操作时序图

四线读模式


当 SPI_QCTL 寄存器中的 QMOD 位和 QRD 位都置 1 时,SPI 工作在四路读模式。在四路读模式中,MOSI、MISO、IO2 和 IO3 都用作输入引脚。当数据写入 SPI_DATA 寄存器(此时 TBE 位被清零)且 SPIEN 位置 1 时,SPI 开始在 SCK 信号线上产生时钟信号。写数据到 SPI_DATA 寄存器只是为了产生 SCK 时钟信号,所以可以写入任何数据。SPI 开始数据传输之后,每发送一个数据帧都要检测 SPIEN 位和 TBE 位,若条件不满足则停止传输。所以软件需要一直向 SPI_DATA 写空闲数据,以产生 SCK 时钟信号。

四路模式下接收操作流程:

- 根据应用需求,配置SPI CTL0和SPI CTL1中时钟预分频、时钟极性、相位等参数;
- 2. 将SPI_QCTL中的QMOD位和QRD位置1,然后将SPI_CTL0中的SPIEN位置1来使能SPI 功能:
- 3. 写任意数据(例如0xFF)到SPI_DATA寄存器;
- 4. 等待RBNE位置1, 然后读SPI DATA寄存器来获取接收的数据;
- 5. 写任意数据(例如0xFF)到SPI_DATA寄存器,以接收下一个字节数据。

图 19-13. SPI 四路模式四路读操作时序图

SPI 停止流程

不同运行模式下采用不同的流程来停止 SPI 功能。

MFD SFD

等待最后一个 RBNE 位并接收最后一个数据,等待 TBE=1 和 TRANS=0。最后,通过清零 SPIEN 位关闭 SPI。

MTU MTB STU STB

将最后一个数据写入 SPI_DATA 寄存器,等待 TBE 位置 1。然后等待 TRANS 位清零,通过清零 SPIEN 位关闭 SPI。

MRU MRB

等待倒数第二个 RBNE 位置 1,从 SPI_DATA 寄存器读数据,等待一个 SCK 时钟周期,然后通过清零 SPIEN 位关闭 SPI。等待最后一个 RBNE 位置 1,并从 SPI DATA 读数据。

SRU SRB

当应用程序不想接收数据时,可以禁用 SPI,然后等待 TRANS=0 以确保正在进行的传输完成。

TI 模式

TI模式的停止流程与上面描述过程相同。

NSS 脉冲模式

NSS 脉冲模式的停止流程与上面描述过程相同。

SPI 四路模式

在禁用 SPI 四路模式或者关闭 SPI 功能之前,软件应该先检查: TBE 位置 1,TRANS 位清零, SPI_QCTL 中的 QMOD 位和 SPI_CTL0 中的 SPIEN 位清零。

19.3.6. DMA 功能

DMA 功能在传输过程中将应用程序从数据读写过程中释放出来,从而提高了系统效率。

通过置位 SPI_CTL1 寄存器中的 DMATEN 位和 DMAREN 位,使能 SPI 模式的 DMA 功能。为了使用 DMA 功能,软件首先应当正确配置 DMA 模块,然后通过初始化流程配置 SPI 模块,最后使能 SPI。

SPI 使能后,如果 DMATEN 位置 1,每当 TBE=1 时,SPI 将会发出一个 DMA 请求,然后 DMA 应答该请求,并自动写数据到 SPI_DATA 寄存器。如果 DMAREN 位置 1,每当 RBNE=1 时,SPI 将会发出一个 DMA 请求,然后 DMA 应答该请求,并自动从 SPI DATA 寄存器读取数据。

19.3.7. CRC 功能

SPI 模块包含两个 CRC 计算单元:分别用于发送数据和接收数据。CRC 计算单元使用 SPI CRCPOLY 寄存器中定义的多项式。

通过配置 SPI_CTL0 中的 CRCEN 位使能 CRC 功能。对于数据线上每个发送和接收的数据,CRC 单元逐位计算 CRC 值,计算得到的 CRC 值可以从 SPI_TCRC 寄存器和 SPI_RCRC 寄存器中读取。

为了传输计算得到的 CRC 值,应用程序需要在最后一个数据写入发送缓冲区之后,设置 SPI_CTL0 中的 CRCNT 位。在全双工模式(MFD 或 SFD),当 SPI 发送一个 CRC 值并且准备校验接收到的 CRC 值时,会将最新接收到的数据当作 CRC 值。在接收模式(MRB,MRU, SRU 和 SRB)下,在倒数第二个数据帧被接收后,软件应该把 CRCNT 位置 1。在 CRC 校验失败时,CRCERR 错误标志位将会置 1。

如果使能了 DMA 功能,软件不需要设置 CRCNT 位,硬件将会自动处理 CRC 传输和校验。

注意: 当SPI处于从机模式且CRC功能使能时,无论SPI是否使能,CRC计算器都对输入SCK时钟敏感。只有当时钟稳定时,软件才能启用CRC,以避免错误的CRC计算。当SPI作为从机工作时,在数据阶段和CRC阶段之间,内部NSS信号需要保持低电平。

19.4. SPI 中断

状态标志位

■ 发送缓冲区空标志位(TBE)

当发送缓冲区为空时,TBE 置位。软件可以通过写 SPI_DATA 寄存器将下一个待发送数据写入发送缓冲区。

■ 接收缓冲区非空标志位(RBNE)

当接收缓冲区非空时,RBNE 置位,表示此时接收到一个数据,并已存入到接收缓冲区中,软件可以通过读 SPI DATA 寄存器来读取此数据。

■ SPI 通信进行中标志位(TRANS)

TRANS 位是用来指示当前传输是否正在进行或结束的状态标志位,它由内部硬件置位和清除,

无法通过软件控制。该标志位不会产生任何中断。

错误标志

■ 配置错误标志(CONFERR)

在主机模式中,CONFERR 位是一个错误标志位。在硬件 NSS 模式中,如果 NSSDRV 没有使能,当 NSS 被拉低时,CONFERR 位被置 1。在软件 NSS 模式中,当 SWNSS 位为 0 时,CONFERR 位置 1。当 CONFERR 位置 1 时,SPIEN 位和 MSTMOD 位由硬件清除,SPI 关闭,设备强制进入从机模式。

在 CONFERR 位清零之前, SPIEN 位和 MSTMOD 位保持写保护, 从机的 CONFERR 位不能置 1。在多主机配置中,设备可以在 CONFERR 位置 1 时进入从机模式,这意味着发生了系统控制的多主冲突。

■ 接收过载错误(RXORERR)

在 RBNE 位为 1 时,如果再有数据被接收,RXORERR 位将会置 1。这说明,上一帧数据还未被读出而新的数据已经接收了。接收缓冲区的内容不会被新接收的数据覆盖,所以新接收的数据丢失。

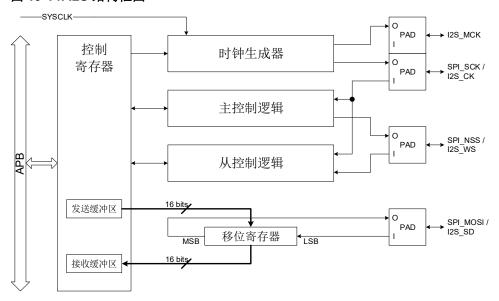
■ 帧错误(FERR)

在 TI 从机模式下,从机也要监视 NSS 信号,如果检测到错误的 NSS 信号,将会置位 FERR 标志位。例如,NSS 信号在一个字节的中间位发生翻转。

■ CRC错误(CRCERR)

当 CRCEN 位置 1 时, SPI_RCRC 寄存器中接收到的 CRC 值将会和紧随着最后一帧数据接收到的 CRC 值进行比较。当两者不同时,CRCERR 位将会置 1。

表 19-6. SPI 中断请求


中断事件	描述	清除方式	中断使能位	
TBE	发送缓冲区空	写SPI_DATA寄存器	TBEIE	
RBNE	接收缓冲区非空	读SPI_DATA寄存器	RBNEIE	
CONFERR	配置错误	读或写 SPI_STAT 寄存器,然后写		
CONFERR	11.11.11 次	SPI_CTL0 寄存器		
RXORFRR	接收过载错误	读SPI_DATA寄存器,然后读	ERRIE	
KAUKEKK	按似过纸相庆	SPI_STAT寄存器	ERRIE	
CRCERR	CRC错误	CRC错误 写0到CRCERR位		
FERR	TI模式帧错误	写0到FERR位		

19.5. I2S 功能说明

19.5.1. I2S 结构框图

图 19-14. I2S 结构框图

I2S 功能有 5 个子模块,分别是控制寄存器、时钟生成器、主机控制逻辑、从机控制逻辑和移位寄存器。所有的用户可配置寄存器都在控制寄存器模块实现,其中包括发送缓冲区和接收缓冲区。时钟生成器用来在主机模式下生成 I2S 通信时钟。主机控制逻辑用来在主机模式下生成 I2S_WS 信号并控制通信。从机控制逻辑根据接收到的 I2SCK 和 I2S_WS 信号来控制从机模式的通信。移位寄存器控制 I2S SD 上的串行数据发送和接收。

19.5.2. I2S 信号线描述

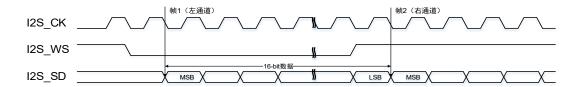
I2S 接口有 4 个引脚,分别是 I2S_CK、I2S_WS、I2S_SD 和 I2S_MCK。I2S_CK 是串行时钟信号,与 SPI_SCK 共享引脚。I2S_WS 是数据帧控制信号,与 SPI_NSS 共享引脚。I2S_SD 是串行数据信号,与 SPI_MOSI 共享引脚。I2S_MCK 是主时钟信号,它提供了一个 256 倍于Fs 的时钟频率,其中Fs 是音频采样率。

19.5.3. I2S 功能描述

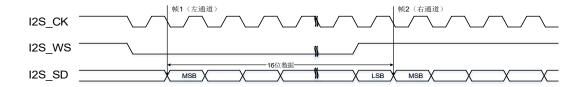
19.5.4. I2S 音频标准

I2S 音频标准是通过设置 SPI_I2SCTL 寄存器中的 I2SSTD 位来选择的,可以选择四种音频标准: I2S 飞利浦标准,MSB 对齐标准,LSB 对齐标准和 PCM 标准。除 PCM 之外的所有标准都是两个通道(左通道和右通道)的音频数据分时复用 I2S 接口的,并通过 I2S_WS 信号来区分当前数据属于哪个通道。对于 PCM 标准,I2S_WS 信号表示帧同步信息。

数据长度和通道长度可以通过 SPI_I2SCTL 寄存器中的 DTLEN 位和 CHLEN 位来设置。由于通道长度必须大于或等于数据长度, 所以有四种数据包类型可供选择。它们分别是: 16 位数据


打包成 16 位数据帧格式, 16 位数据打包成 32 位数据帧格式, 24 位数据打包成 32 位数据帧格式, 32 位数据打包成 32 位数据帧格式。用于发送和接收的数据缓冲区都是 16 位宽度。所以,要完成数据长度为 24 位或 32 位的数据帧传输,SPI_DATA 寄存器需要被访问 2 次;而要完成数据长度为 16 位的数据帧传输,SPI_DATA 寄存器只需被访问 1 次。如需将 16 位数据打包成 32 位数据帧,硬件会自动插入 16 位 0 将 16 位数据扩展为 32 位格式。

对于所有标准和数据包类型来说,数据的最高有效位总是最先被发送的。对于所有基于两通道 分时复用的标准来说,总是先发送左通道,然后是右通道。


I2S 飞利浦标准

对于 I2S 飞利浦标准, I2S_WS 和 I2S_SD 在 I2S_CK 的下降沿变化, I2S_WS 在数据的前一个时钟开始有效。各种配置情况的时序图如下所示。

图 19-15. I2S 飞利浦标准时序图(DTLEN=00, CHLEN=0, CKPL=0)

图 19-16. I2S 飞利浦标准时序图(DTLEN=00, CHLEN=0, CKPL=1)

当 16 位数据打包成 16 位数据帧时,每完成一帧数据的传输只需要访问 SPI_DATA 寄存器一次。

图 19-17. I2S 飞利浦标准时序图(DTLEN=10, CHLEN=1, CKPL=0)

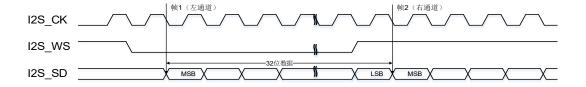
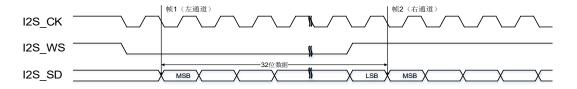
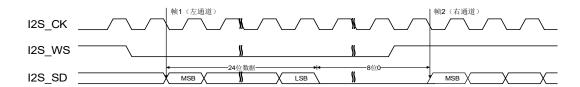
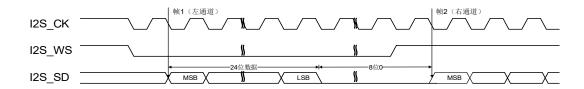



图 19-18. I2S 飞利浦标准时序图(DTLEN=10, CHLEN=1, CKPL=1)



当 32 位数据打包成 32 位数据帧的帧格式时,每完成 1 帧数据的传输需要访问 SPI DATA 寄



存器 2 次。在发送模式下,如果要发送一个 32 位数据,第一个写入 SPI_DATA 寄存器的数据 应该是高 16 位数据,第二个数据应该是低 16 位数据。在接收模式下,如果要接收一个 32 位数据,第一个从 SPI_DATA 寄存器读到的数据应该是高 16 位数据,第二个数据应该是低 16 位数据。

图 19-19. I2S 飞利浦标准时序图(DTLEN=01, CHLEN=1, CKPL=0)

图 19-20. I2S 飞利浦标准时序图(DTLEN=01, CHLEN=1, CKPL=1)

当 24 位数据打包成 32 位数据帧的帧格式时,每完成 1 帧数据的传输需要访问 SPI_DATA 寄存器 2 次。在发送模式下,如果要发送一个 24 位数据 D[23:0],第一个写入 SPI_DATA 寄存器的数据应该是高 16 位数据 D[23:8],第二个数据应该是一个 16 位数据,该 16 位数据的高 8 位是 D[7:0],低 8 位数据可以是任意值。在接收模式下,如果要接收一个 24 位数据 D[23:0],第一个从 SPI_DATA 寄存器读到的数据应该是高 16 位数据 D[23:8],第二个数据应该是一个 16 位数据,该 16 位数据的高 8 位是 D[7:0],低 8 位数据全是 0。

图 19-21. I2S 飞利浦标准时序图(DTLEN=00, CHLEN=1, CKPL=0)

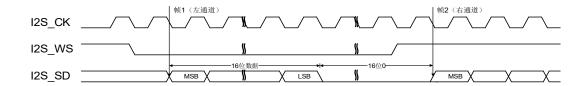
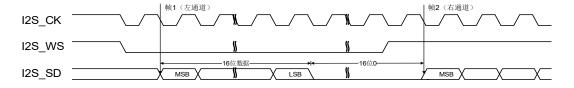
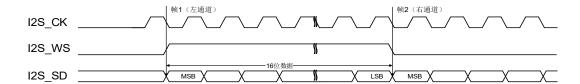
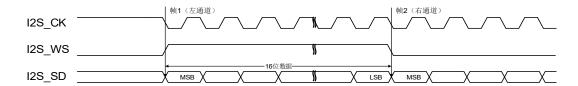
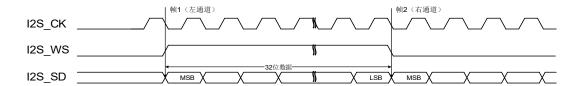



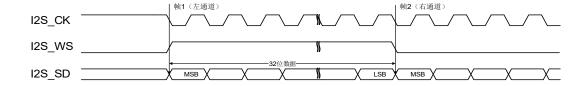
图 19-22. I2S 飞利浦标准时序图(DTLEN=00, CHLEN=1, CKPL=1)


当 16 位数据打包成 32 位数据帧时,每完成一帧数据的传输只需要访问 SPI_DATA 寄存器一次。为了将该 16 位数据扩展成 32 位数据,剩下的 16 位被硬件强制填充为 0x0000。


MSB 对齐标准

对于 MSB 对齐标准, I2S_WS 和 I2S_SD 在 I2S_CK 的下降沿变化。SPI_DATA 寄存器的处理方式与 I2S 飞利浦标准完全相同。各个配置情况的时序图如下所示。


图 19-23. MSB 对齐标准时序图(DTLEN=00, CHLEN=0, CKPL=0)


图 19-24. MSB 对齐标准时序图(DTLEN=00, CHLEN=0, CKPL=1)

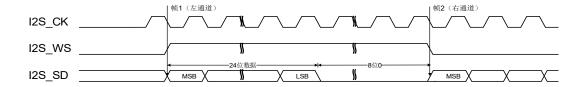

图 19-25. MSB 对齐标准时序图(DTLEN=10, CHLEN=1, CKPL=0)

图 19-26. MSB 对齐标准时序图(DTLEN=10, CHLEN=1, CKPL=1)

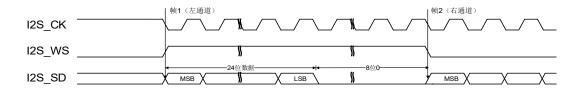
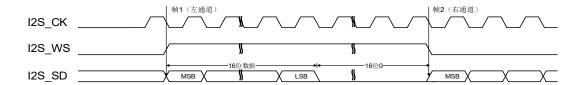


图 19-27. MSB 对齐标准时序图(DTLEN=01, CHLEN=1, CKPL=0)



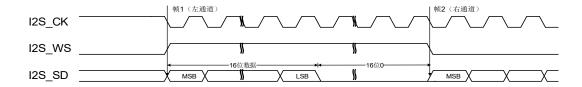
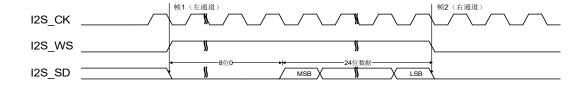
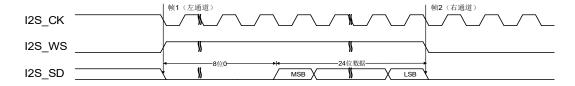

图 19-28. MSB 对齐标准时序图(DTLEN=01, CHLEN=1, CKPL=1)

图 19-29. MSB 对齐标准时序图(DTLEN=00, CHLEN=1, CKPL=0)

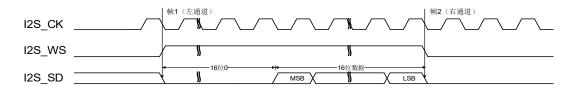

图 19-30. MSB 对齐标准时序图(DTLEN=00, CHLEN=1, CKPL=1)


LSB 对齐标准

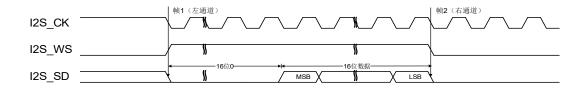
对于 LSB 对齐标准,I2S_WS 和 I2S_SD 在 I2S_CK 的下降沿变化。在通道长度与数据长度相同的情况下,LSB 对齐标准和 MSB 对齐标准是完全相同的。对于通道长度大于数据长度的情况,LSB 对齐标准的有效数据与最低位对齐,而 MSB 对齐标准的有效数据与最高位对齐。通道长度大于数据长度的各种配置情况时序图如下所示。

图 19-31. LSB 对齐标准时序图(DTLEN=01, CHLEN=1, CKPL=0)

图 19-32. LSB 对齐标准时序图(DTLEN=01, CHLEN=1, CKPL=1)



当 24 位数据打包成 32 位数据帧的帧格式时,每完成 1 帧数据的传输需要访问 SPI_DATA 寄存器 2 次。在发送模式下,如果要发送一个 24 位数据 D[23:0],第一个写入 SPI DATA 寄存



器的数据应该是一个 16 位数据,该 16 位数据的高 8 位可以是任意值,低 8 位是 D[23:16],第二个数据应该是低 16 位数据 D[15:0]。在接收模式下,如果要接收一个 24 位数据 D[23:0],第一个从 SPI_DATA 寄存器读到的数据应该是一个 16 位数据,该 16 位数据的高 8 位是 0,低 8 位是 D[23:16],第二个数据应该是低 16 位数据 D[15:0]。

图 19-33. LSB 对齐标准时序图(DTLEN=00, CHLEN=1, CKPL=0)

图 19-34. LSB 对齐标准时序图(DTLEN=00, CHLEN=1, CKPL=1)

当 16 位数据打包成 32 位数据帧时,每完成一帧数据的传输只需要访问 SPI_DATA 寄存器一次。为了将该 16 位数据扩展成 32 位数据,剩下的 16 位被硬件强制填充为 0x0000。

PCM 标准

对于 PCM 标准,I2S_WS 和 I2S_SD 在 I2S_CK 的上升沿变化,I2S_WS 信号表示帧同步信息。可以通过 SPI_I2SCTL 寄存器的 PCMSMOD 位来选择短帧同步模式和长帧同步模式。 SPI_DATA 寄存器的处理方式与 I2S 飞利浦标准完全相同。短帧同步模式的各种配置情况时序图如下所示。

图 19-35. PCM 标准短帧同步模式时序图(DTLEN=00, CHLEN=0, CKPL=0)

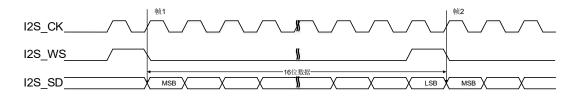
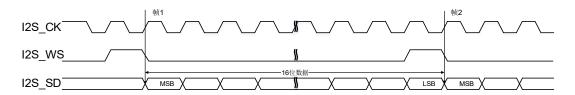
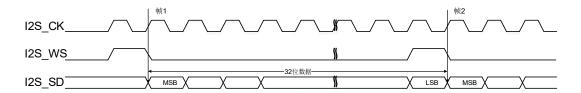
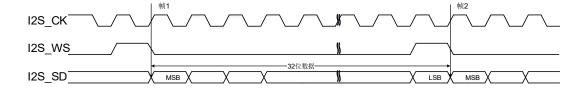
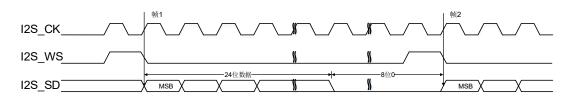
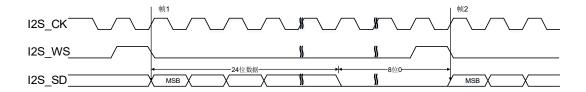
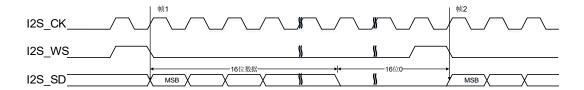




图 19-36. PCM 标准短帧同步模式时序图(DTLEN=00, CHLEN=0, CKPL=1)




图 19-37. PCM 标准短帧同步模式时序图(DTLEN=10, CHLEN=1, CKPL=0)


图 19-38. PCM 标准短帧同步模式时序图(DTLEN=10, CHLEN=1, CKPL=1)


图 19-39. PCM 标准短帧同步模式时序图(DTLEN=01, CHLEN=1, CKPL=0)

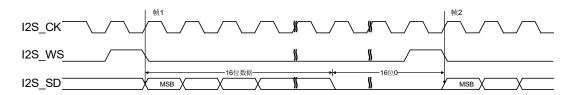
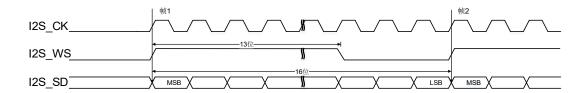
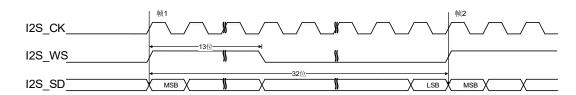
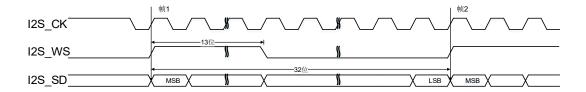

图 19-40. PCM 标准短帧同步模式时序图(DTLEN=01, CHLEN=1, CKPL=1)

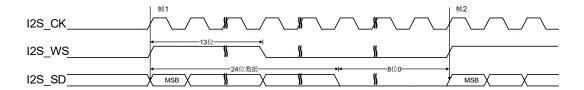
图 19-41. PCM 标准短帧同步模式时序图(DTLEN=00, CHLEN=1, CKPL=0)


图 19-42. PCM 标准短帧同步模式时序图(DTLEN=00, CHLEN=1, CKPL=1)

长帧同步模式的各种配置情况时序图如下所示。


图 19-43. PCM 标准长帧同步模式时序图(DTLEN=00, CHLEN=0, CKPL=0)


图 19-44. PCM 标准长帧同步模式时序图(DTLEN=00, CHLEN=0, CKPL=1)


图 19-45. PCM 标准长帧同步模式时序图(DTLEN=10, CHLEN=1, CKPL=0)

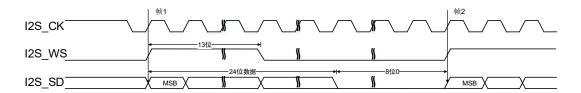

图 19-46. PCM 标准长帧同步模式时序图(DTLEN=10, CHLEN=1, CKPL=1)

图 19-47. PCM 标准长帧同步模式时序图(DTLEN=01, CHLEN=1, CKPL=0)

图 19-48. PCM 标准长帧同步模式时序图(DTLEN=01, CHLEN=1, CKPL=1)

图 19-49. PCM 标准长帧同步模式时序图(DTLEN=00, CHLEN=1, CKPL=0)

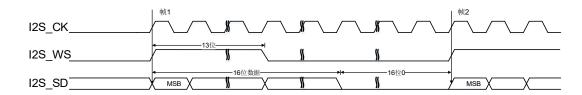
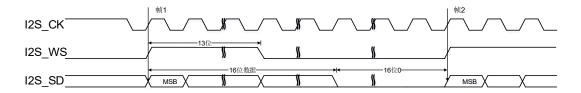
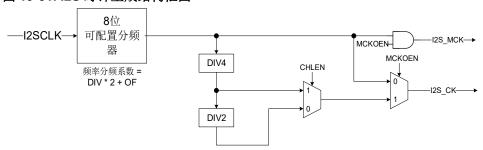




图 19-50. PCM 标准长帧同步模式时序图(DTLEN=00, CHLEN=1, CKPL=1)

19.5.5. I2S 时钟

图 19-51. I2S 时钟生成结构框图

I2S 时钟生成器框图如**图19-51. I2S** 时钟生成结构框图所示。I2S 接口时钟是通过 SPI_I2SPSC 寄存器的 DIV 位,OF 位和 MCKOEN 位以及 SPI_I2SCTL 寄存器的 CHLEN 位来配置的。I2S 比特率可以通过表19-7. I2S 比特率计算公式所示的公式计算。

表 19-7. I2S 比特率计算公式

MCKOEN	CHLEN	公式
0	0	I2SCLK / (DIV * 2 + OF)
0	1	I2SCLK / (DIV * 2 + OF)
1	0	I2SCLK / (8 * (DIV * 2 + OF))
1	1	I2SCLK / (4 * (DIV * 2 + OF))

音频采样率(Fs)和 I2S 比特率的关系由如下公式定义:

Fs = I2S 比特率 / (通道长度 * 通道数)

所以,为了得到期望的音频采样率,时钟生成器需要按表 19-8. 音频采样频率计算公式 所列的

公式进行配置。

表 19-8. 音频采样频率计算公式

MCKOEN	CHLEN	公式
0	0	I2SCLK / (32 * (DIV * 2 + OF))
0	1	I2SCLK / (64 * (DIV * 2 + OF))
1	0	I2SCLK / (256 * (DIV * 2 + OF))
1	1	I2SCLK / (256 * (DIV * 2 + OF))

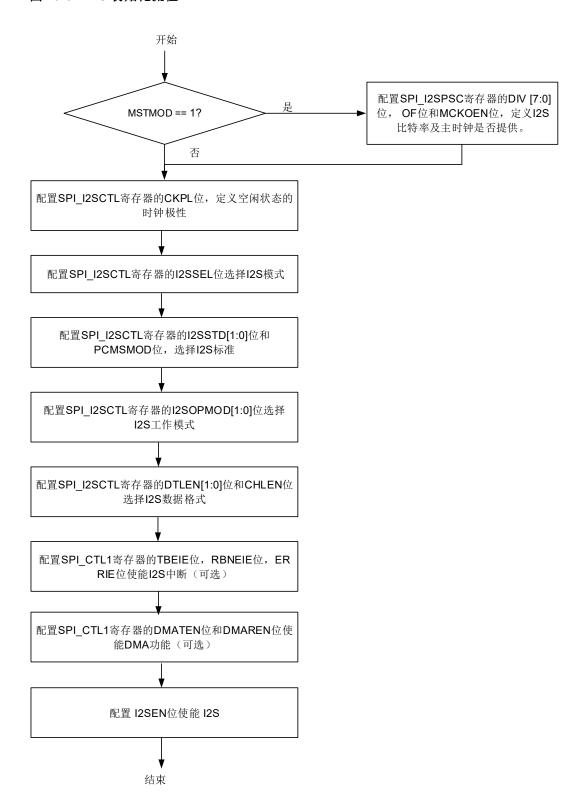
19.5.6. 运行

运行模式

运行模式是通过 SPI_I2SCTL 寄存器的 I2SOPMOD 位来选择的。共有四种运行模式可供选择: 主机发送模式,主机接收模式,从机发送模式和从机接收模式。各种运行模式下 I2S 接口信号的方向如*表 19-9. 各种运行模式下 I2S 接口信号的方向*所示。

表 19-9. 各种运行模式下 I2S 接口信号的方向

运行模式	I2S_MCK	12S_CK	12S_WS	I2S_SD
主机发送	输出或 NU(1)	输出	输出	输出
主机接收	输出或 NU(1)	输出	输出	输入
从机发送	输入或 NU(1)	输入	输入	输出
从机接收	输入或 NU(1)	输入	输入	输入


1. NU表示该引脚没有被I2S使用,可以用于其他功能。

I2S 初始化流程

I2S初始化过程如图19-52. I2S初始化流程所示。

图 19-52. I2S 初始化流程

I2S 主机发送流程

TBE 标志位被用来控制发送流程。如前文所述,TBE 标志位表示发送缓冲区空,此时,如果 SPI_CTL1 寄存器的 TBEIE 位为 1,将产生中断。首先,发送缓冲区为空(TBE 为 1),且移位

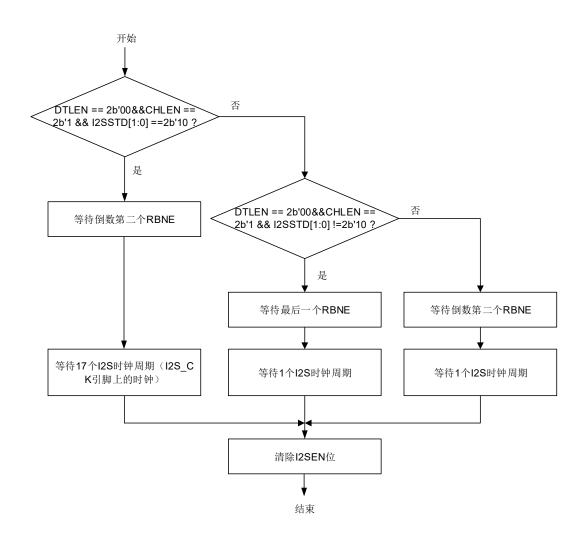
寄存器中没有发送序列。当 16 位数据被写入 SPI_DATA 寄存器时(TBE 变为 0),数据立即从发送缓冲区装载到移位寄存器中(TBE 变为 1)。此时,发送序列开始。

数据是并行地装载到 16 位移位寄存器中的,然后串行地从 I2S_SD 引脚发出(高位先发)。下一个数据应该在 TBE 为 1 时写入 SPI_DATA 寄存器。数据写入 SPI_DATA 寄存器之后,TBE 变为 0。当前发送序列结束时,发送缓冲区的数据会自动装载到移位寄存器中,然后 TBE 标志变回 1。为了保证连续的音频数据发送,下一个将要发送的数据必须在当前发送序列结束之前写入 SPI_DATA 寄存器。

对于除 PCM 标准外的所有标准,I2SCH 标志用来区别当前传输数据所属的通道。I2SCH 标志 在每次 TBE 标志由 0 变 1 的时候更新。刚开始 I2SCH 标志为 0,表示左通道的数据应该被写入 SPI DATA 寄存器。

为了关闭 I2S, I2SEN 位必须在 TBE 标志为 1 且 TRANS 标志为 0 之后清零。

I2S 主机接收流程


RBNE 标志被用来控制接收序列。如前文所述,RBNE 标志表示接收缓冲区非空,如果 SPI_CTL1 寄存器的 RBNEIE 位为 1,将产生中断。当 SPI_I2SCTL 寄存器的 I2SEN 位被置 1 时,接收流程立即开始。首先,接收缓冲区为空(RBNE 为 0)。当一个接收流程结束时,接收 到的数据将从移位寄存器装载到接收缓冲区(RBNE 变为 1)。当 RBNE 为 1 时,用户应该将数 据从 SPI_DATA 寄存器中读走。读操作完成后,RBNE 变为 0。必须在下一次接收结束之前读走 SPI_DATA 寄存器中的数据,否则将发生接收过载错误。此时 RXORERR 标志位会被置 1,如果 SPI_CTL1 寄存器的 ERRIE 位为 1,将会产生中断。这种情况下,必须先关闭 I2S 再打开 I2S,然后再恢复通讯。

对于除 PCM 之外的所有标准来说,I2SCH 标志用来区分当前传输数据所属的通道。I2SCH 标志在每次 RBNE 标志由 0 变 1 时更新。

为了关闭I2S,不同的音频标准,数据长度和通道长度采用不同的操作步骤。每种情况的操作步骤如*图19-53. I2S主机接收禁能流程*所示。

图 19-53. I2S 主机接收禁能流程

I2S 从机发送流程

从机发送流程和主机发送流程相似,不同之处如下:

在从机模式下,从机需要在外部主机开始通讯之前使能。当外部主机开始发送时钟信号且 I2S_WS 信号请求传输数据时,发送流程开始。数据需要在外部主机发起通讯之前写入 SPI_DATA 寄存器。为了确保音频数据的连续传输,必须在当前发送序列结束之前将下一个待发送的数据写入 SPI_DATA 寄存器,否则会产生发送欠载错误。此时 TXURERR 标志会置 1,如果 SPI_CTL1 寄存器的 ERRIE 位为 1,将会产生中断。这种情况下,必须先关闭 I2S 再打开 I2S 来恢复通讯。从机模式下,I2SCH 标志是根据外部主机发送的 I2S_WS 信号而变化的。

为了关闭 I2S,必须在 TBE 标志变为 1 且 TRANS 标志变为 0 之后,才能清除 I2SEN 位。

12S 从机接收流程

从机接收流程与主机接收流程类似。不同之处如下。

在从机模式下,从机需要在外部主机开始通讯之前使能。当外部主机开始发送时钟信号且 I2S WS 信号指示数据开始时,接收流程开始。从机模式下,I2SCH 标志是根据外部主机发送

的 I2S WS 信号而变化的。

为了关闭 I2S, 必须在收到最后一个 RBNE 之后立即清除 I2SEN 位。

19.5.7. DMA 功能

DMA 功能与 SPI 模式完全一样,唯一不同的地方就是 I2S 模式不支持 CRC 功能。

19.5.8. I2S 中断

状态标志位

SPI_STAT 寄存器中有 4 个可用的标志位,分别是 TBE、RBNE、TRANS 和 I2SCH,用户通过这些标志位可以全面监视 I2S 总线的状态。

■ 发生缓冲区空标志(TBE):

当发送缓冲区为空时,TBE置位。软件可以通过写SPI_DATA寄存器将下一个数据写入发送缓冲区。

■ 接收缓冲区非空标志(RBNE):

接收缓冲区非空时,RBNE置位,表示此时接收到一个数据,并已存入接收缓冲区中,软件可以通过读SPI DATA寄存器来读取此数据。

■ I2S通信进行中标志(TRANS):

TRANS是用来指示当前传输是否正在进行或结束的状态标志,它由内部硬件置位和清除, 无法通过软件进行操作。该标志位不会产生如何中断。

■ I2S通道标志(I2SCH):

I2SCH用来表明当前传输数据的通道信息,对PCM音频标准来说没有意义。在发送模式下,I2SCH标志在每次TBE由0变1时更新,在接收模式下,I2SCH标志在每次RBNE由0变1时更新。该标志位不会产生任何中断。

错误标志

有三个错误标志:

■ 发送欠载错误标志(TXURERR):

在从发送模式下,当有效的SCK信号开始发送时,如果发送缓冲区为空时,发送欠载错误标志TXURERR将会置位。

■ 接收过载错误标志(RXORERR):

当接收缓冲区已满且又接收到一个新的数据时,接收过载错误标志RXORERR置位。当接收过载发生时,接收缓冲区中的数据没有更新,新接收的数据丢失。

■ 帧错误(FERR):

在从I2S模式下,I2S模块监视I2S_WS信号,如果I2S_WS信号在一个错误的位置发生翻转,将会置位FERR帧错误标志位。

表 19-10. I2S 中断 总结了 I2S 中断事件和相应的使能位。

表 19-10. I2S 中断

中断事件	描述	清除方式	中断使能位
TBE	发送缓冲区空	写 SPI_DATA 寄存器	TBEIE
RBNE	接收缓冲区非空	读 SPI_DATA 寄存器	RBNEIE
TXURERR	发送欠载错误	读 SPI_STAT 寄存器	
RXORERR	接收过载错误	读 SPI_DATA 寄存器,然后再读	ERRIE
KAOREKK	按拟过铁钳医	SPI_STAT 寄存器	ERRIE
FERR	I2S 帧错误	读 SPI_STAT 寄存器	

19.6. SPI/I2S 寄存器

SPI0 基地址: 0x4001 3000

SPI1/I2S1 基地址: 0x4000 3800

SPI2/I2S2 基地址: 0x4000 3C00

19.6.1. 控制寄存器 0 (SPI_CTL0)

地址偏移: 0x00

复位值: 0x0000

该寄存器只能按字(32位)访问。

该寄存器在 I2S 模式下没有意义。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
						_		_		_					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BDEN	BDOEN	CRCEN	CRCNT	FF16	RO	SWNSS EN	SWNSS	LF	SPIEN		PSC [2:0]		MSTMOD	CKPL	СКРН
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw		rw	rw	rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
15	BDEN	双向数据模式 0:2线单向传输模式 1:1线双向传输模式。数据在主机的 MOSI 引脚和从机的 MISO 引脚之间传输。
14	BDOEN	双向传输输出使能 当 BDEN 置位时,该位决定了数据的传输方向。 0:工作在只接收模式 1:工作在只发送模式
13	CRCEN	CRC 计算使能 0: CRC 计算禁止 1: CRC 计算使能
12	CRCNT	下一次传输 CRC 0: 下一次传输值为数据 1: 下一次传输值为 CRC 值(TCR) 当数据传输由 DMA 管理时,CRC 值由硬件传输,该位应该被清零。

在全双工和只发送模式下,当最后一个数据写入 SPI_DATA 寄存器后应将该位置

1。在只接收模式下,在接收完倒数第二个数据后应将该位置 1。

		/ 14/ 4 / 14
11	FF16	数据帧格式 0:8位数据帧格式 1:16位数据帧格式
10	RO	只接收模式 当 BDEN 清零时,该位决定了数据的传输方向。 0:全双工模式 1:只接收模式
9	SWNSSEN	NSS 软件模式选择 0: NSS 硬件模式, NSS 电平取决于 NSS 引脚 1: NSS 软件模式, NSS 电平取决于 SWNSS 位 该位在 SPI TI 模式下没有意义。
8	SWNSS	NSS 软件模式下 NSS 引脚选择 0: NSS 引脚拉低 1: NSS 引脚拉高 只有在 SWNSSEN 置位时,该位有效。 该位在 SPI TI 模式下没有意义。
7	LF	最低有效位先发模式 0: 先发送最高有效位 1: 先发送最低有效位 该位在 SPI TI 模式下没有意义。
6	SPIEN	SPI 使能 0: SPI 设备禁止 1: SPI 设备使能
5:3	PSC[2:0]	主时钟预分频选择 000: PCLK/2 100: PCLK/32 001: PCLK/4 101: PCLK/64 010: PCLK/8 110: PCLK/128 011: PCLK/16 111: PCLK/256 当使用 SPI0 时,PCLK=PCLK2,当使用 SPI1 和 SPI2 时,PCLK=PCLK1。
2	MSTMOD	主从模式使能 0: 从机模式 1: 主机模式
1	CKPL	时钟极性选择 0: SPI 为空闲状态时,CLK 引脚拉低 1: SPI 为空闲状态时,CLK 引脚拉高
0	СКРН	时钟相位选择 0:在第一个时钟跳变沿采集第一个数据 1:在第二个时钟跳变沿时钟跳变沿采集第一个数据

19.6.2. 控制寄存器 1 (SPI_CTL1)

地址偏移: 0x04

复位值: 0x0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保	:留				TBEIE	RBNEIE	ERRIE	TMOD	NSSP	NSSDRV	DMATEN	DMAREN
								rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:8	保留	必须保持复位值。
7	TBEIE	发送缓冲区空中断使能 0: TBE 中断禁止 1: TBE 中断使能。当 TBE 置位时,产生中断。
6	RBNEIE	接收缓冲区非空中断使能 0: RBNE 中断禁止. 1: RBNE 中断使能。当 RBNE 置位时,产生中断。
5	ERRIE	错误中断使能 0:错误中断禁止 1:错误中断使能。当 CRCERR 位,CONFERR 位,RXORERR 位或者 TXURERR 位置 1 时,产生中断。
4	TMOD	SPI TI 模式使能 0: SPI TI 模式禁止 1: SPI TI 模式使能
3	NSSP	SPI NSS 脉冲模式使能 0: SPI NSS 脉冲模式禁止 1: SPI NSS 脉冲模式使能
2	NSSDRV	NSS 输出使能 0: NSS 输出禁止 1: NSS 输出使能。 当 SPI 使能时,如果 NSS 引脚配置为输出模式,NSS 引脚在主模式时被拉低。如果 NSS 引脚配置为输入模式,NSS 引脚在主模式时被拉高,此时该位无效。
1	DMATEN	发送缓冲区 DMA 使能 0. 发送缓冲区 DMA 禁止 1. 发送缓冲区 DMA 使能。当 SPI_STAT 中的 TBE 置位时,将会在相应的 DMA

通道上产生一个 DMA 请求。

0 DMAREN 接收缓冲区 DMA 使能

0:接收缓冲区 DMA 禁止

1:接收缓冲区 DMA 使能。当 SPI_STAT 中的 RBNE 置位时,将会在相应的 DMA

通道上产生一个 DMA 请求。

19.6.3. 状态寄存器 (SPI_STAT)

地址偏移: 0x08

复位值: 0x0002

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留				FERR	TRANS	RXORERR	CONFERR	CRCERR	TXURERR	I2SCH	TBE	RBNE
									•						

位/位域	名称	描述
31:9	保留	必须保持复位值。
8	FERR	帧错误 SPI TI 模式: 0: 没有 TI 模式帧错误发生 1: TI 模式帧错误发生 12S 模式: 0: 没有 12S 帧错误发生 1: I2S 帧错误发生 1: I2S 帧错误发生
7	TRANS	通信进行中标志 0: SPI 或 I2S 空闲 1: SPI 或 I2S 当前正在发送或接收数据 该位由硬件置位和清除。
6	RXORERR	接收过载错误标志 0: 没有接收过载错误发生 1: 接收过载错误发生 该位由硬件置位,软件序列清零。软件序列为: 先读 SPI_DATA 寄存器,然后读 SPI_STAT 寄存器。
5	CONFERR	SPI 配置错误 0: 无配置错误发生

GD32F403xx 用户手册 1: 配置错误发生(主机模式下,在硬件 NSS 模式时 NSS 引脚被拉低,或者软件 NSS 模式时 SWNSS 位为 0,都会产生 CONFERR 错误) 该位由硬件置位,软件序列清零。软件序列为:先读或写 SPI_STAT 寄存器,然后 写 SPI_CTL0 寄存器。 I2S 模式下不使用该位。 **CRCERR** SPI CRC 错误标志 0: SPI_RCRC 值等于最后接收到的 CRC 值 1: SPI_RCRC 值不等于最后接收到的 CRC 值 该位由硬件置位,可以通过写0清除。 I2S 模式下不使用该位。 3 **TXURERR** 发送欠载错误标志 0: 无发送欠载错误发生 1: 发送欠载错误发生 该位由硬件置位,通过读 SPI_STAT 寄存器清除。 SPI 模式下不使用该位。 2 I2S 通道标志 12SCH 0: 下一个将要发送或接收的数据属于左通道 1: 下一个要发送或接收的数据属于右通道 该位由硬件置位和清除。 SPI 模式下该位无用, I2S PCM 模式下该位没有意义。 TBE 发送缓冲区空 1 0: 发送缓冲区非空 1: 发送缓冲区空 0 **RBNE** 接收缓冲区非空 0:接收缓冲区空

19.6.4. 数据寄存器 (SPI_DATA)

地址偏移: 0x0C

复位值: 0x0000

该寄存器只能按字(32位)访问。

1: 接收缓冲区非空

31 30 29 28 27 26 25 24 23 22 21 20 19 17 16 保留 15 14 13 12 11 10 9 SPI_DATA[15:0]

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	SPI_DATA[15:0]	数据传输寄存器值 硬件有两个缓冲区:发送缓冲区和接收缓冲区。向 SPI_DATA 写数据将会把数据存入发送缓冲区,从 SPI_DATA 读数据,将从接收缓冲区获得数据。 当数据帧格式为 8 位时, SPI_DATA[15:8]强制为 0, SPI_DATA[7:0]用来发送和接收数据,发送和接收缓冲区都是 8 位。如果数据帧格式为 16 位, SPI_DATA[15:0] 用于发送和接收数据,发送和接收缓冲区也是 16 位。

19.6.5. CRC 多项式寄存器 (SPI_CRCPOLY)

地址偏移: 0x10

复位值: 0x0007

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CPRPOLY [15:0]														

rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	CRCPOLY[[15:0]	CRC 多项式寄存器值
		该值包含了 CRC 多项式,用于 CRC 计算,默认值为 0007h。

19.6.6. 接收 CRC 寄存器 (SPI_RCRC)

地址偏移: 0x14

复位值: 0x0000

该寄存器只能按字(32位)访问。

Ī								RCRC	C[15:0]							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								保	:留							
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

r

(A. (A. LB	to the	LHANK
位/位域	名称	描述

31:16	保留	必须保持复位值。
15:0	RCRC[15:0]	接收 CRC 寄存器值 当 SPI_CTL0 中的 CRCEN 置位时,硬件计算接收数据的 CRC 值,并保存到 RCR 寄存器中。如果是 8 位数据帧格式,CRC 计算基于 CRC8 标准进行,保存数据到 RCRC [7:0]。如果是 16 位数据帧格式,CRC 计算基于 CRC16 标准进行,保存数 据到 RCRC [15:0]。 硬件在接收到每个数据位后都会计算 CRC 值,当 TRANS 置位时,读该寄存器将 返回一个中间值。 当 SPI_CTL0 寄存器中的 CRCEN 位和 SPIEN 位清零时,该寄存器复位。

19.6.7. 发送 CRC 寄存器 (SPI_TCRC)

地址偏移: 0x18

复位值: 0x0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
															_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TCRC[15:0]														

r

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	TCRC[15:0]	发送 CRC 寄存器值 当 SPI_CTL0 中的 CRCEN 置位时,硬件计算发送数据的 CRC 值,并保存到 TCR 寄存器中。如果是 8 位数据帧格式,CRC 计算基于 CRC8 标准进行,保存数据到 TCRC[7:0]。如果是 16 位数据帧格式,CRC 计算基于 CRC16 标准进行,保存数据 到 TCRC[15:0]。 硬件在发送出每个数据位后都会计算 CRC 值,当 TRANS 置位时,读该寄存器将 返回一个中间值。不同的数据帧格式(SPI_CTL0 中的 LF 位决定)将会得到不同的 CRC 值。 当 SPI_CTL0 寄存器中的 CRCEN 位和 SPIEN 位清零时,该寄存器复位。

19.6.8. I2S 控制寄存器 (SPI_I2SCTL)

地址偏移: 0x1C

复位值: 0x0000

该寄存器只能按字(32位)访问。

GD32F403xx 用户手册

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							伢	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留			I2SSEL	I2SEN	I2SOPM	1OD[1:0]	PCMS	保留	12881	D[1:0]	CKPL	DTLE	:N[1:0]	CHLEN
冰田			IZOCEL	120214	12001 10	100[1.0]	MOD	ИШ	12001	D[1.0]	OIG E	DILL		OFFICER	
			rw	rw	n	w	rw		r	W	rw	r	w	rw	

位/位域	名称	描述
31:12	名称 保留	细处 必须保持复位值。
11	I2SSEL	I2S 模式选择0: SPI 模式1: I2S 模式当 SPI 模式或 I2S 模式关闭时配置该位。
10	I2SEN	I2S 使能 0: I2S 禁止 1: I2S 使能 SPI 模式不使用该位。
9:8	I2SOPMOD[1:0]	 I2S 运行模式 00: 从机发送模式 01: 从机接收模式 10: 主机发送模式 11: 主机接收模式 当 I2S 模式关闭时配置该位。SPI 模式不使用该位。
7	PCMSMOD	PCM 帧同步模式 0: 短帧同步 1: 长帧同步 只有在 PCM 标准下,该位才有意义。 当 I2S 模式关闭时配置该位。SPI 模式不使用该位。
6	保留	必须保持复位值。
5:4	I2SSTD[1:0]	I2S 标准选择 00: I2S 飞利浦标准 01: MSB 对齐标准 10: LSB 对齐标准 11: PCM 标准 当 I2S 模式关闭时配置该位。SPI 模式不使用该位。
3	CKPL	空闲状态时钟极性 0: I2S_CK 空闲状态为低电平 1: I2S_CK 空闲状态为高电平

当 I2S 模式关闭时配置该位。SPI 模式不使用该位。 DTLEN[1:0] 数据长度 2:1 00: 16位 01: 24位 10:32位 11: 保留 当 I2S 模式关闭时配置该位。SPI 模式不使用该位。 0 CHLEN 通道长度 0: 16位 1: 32位 通道长度必须大于或等于数据长度。 当 I2S 模式关闭时配置该位。SPI 模式不使用该位。

19.6.9. I2S 时钟预分频寄存器 (SPI_I2SPSC)

地址偏移: 0x20

复位值: 0x0002

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留						MCKOEN	OF	DIV[7:0]							
						rw	rw				rv	v			

位/位域	名称	描述
31:10	保留	必须保持复位值。
9	MCKOEN	I2S_MCK 输出使能 0: I2S_MCK 输出禁止 1: I2S_MCK 输出使能 当 I2S 模式关闭时配置该位。 SPI 模式不使用该位。
8	OF	预分频器的奇系数 0:实际分频系数为 DIV * 2 1:实际分频系数为 DIV * 2 + 1 当 I2S 模式关闭时配置该位。SPI 模式下不使用该位。
7:0	DIV[7:0]	预分频器的分频系数 实际分频系数是 DIV * 2 + OF。 DIV 不能为 0.

当 I2S 模式关闭时配置该位。SPI 模式下不使用该位。

19.6.10. SPI0 四路 SPI 控制寄存器 (SPI_QCTL)

地址偏移: 0x80

复位值: 0x0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	:留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						保留							IO23_DRV	QRD	QMOD

位/位域	名称	描述
31:3	保留	必须保持复位值。
2	IO23_DRV	IO2 和 IO3 输出使能 0: 单路模式下 IO2 和 IO3 输出关闭 1: 单路模式下 IO2 和 IO3 输出高电平 该位仅适用于 SPI0。
1	QRD	四路 SPI 模式读选择 0: SPI 四路模式写操作 1: SPI 四路模式读操作 该位仅能在 SPI 未通信时配置(TRANS 位清零)。 该位仅适用于 SPI0。
0	QMOD	四路 SPI 模式使能 0: SPI 工作在单路模式 1: SPI 工作在四路模式 该位仅能在 SPI 未通信时配置(TRANS 位清零)。 该位仅适用于 SPI0。

20. SDIO 接口(SDIO)

20.1. 简介

安全的数字输入/输出接口(SDIO)定义了 SD 卡、SD I/O 卡、多媒体卡(MMC)和 CE-ATA 卡主机接口,提供 AHB 系统总线与 SD 存储卡、SD I/O 卡、MMC 和 CE-ATA 设备之间的数据传输。

所支持的 SD 存储卡和 SD I/O 卡系统规格书可以通过 SD 卡协会网站(<u>www.sdcard.org</u>)获取。

所支持的多媒体卡(MMC)系统规格书可以通过多媒体卡协会网站(<u>www.jedec.org</u>)获取,由 JEDEC 固态技术协会出版。

所支持的 CE-ATA 系统规格书可以通过 CE-ATA 工作组网站(www.ce-ata.org) 获取。

20.2. 主要特性

SDIO 的主要特征如下:

- MMC: 与多媒体卡系统规格书 V4.2 及之前的版本全兼容。有三种不同的数据总线模式: 1 位(默认)、4 位和 8 位;
- **SD** 卡: 与 **SD** 存储卡规格版本 2.0 全兼容;
- **SD I/O**: 与 SD I/O 卡规格版本 2.0 全兼容,有两种不同的数据总线模式: 1 位(默认)和 4 位:
- **CE-ATA**: 与 **CE-ATA** 数字协议版本 1.1 全兼容;
- 48MHz 数据传输频率和 8 位数据传输模式;
- 中断和 DMA 请求;
- 完成信号使能和失能(CE-ATA)。

注意: SDIO 在同一时间仅支持一个 SD、SD I/O、MMC4.2 或 CE-ATA 设备,但可支持多个 MMC4.1 或以前版本的卡。

20.3. SDIO 总线拓扑

上电复位之后,主机必须通过特殊的基于消息的总线协议来初始化卡。

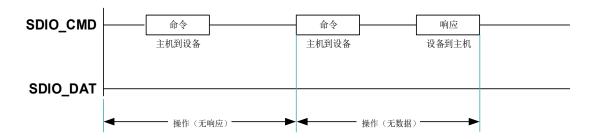
每个消息是由以下部分中的一个来表示:

命令: 命令是启动一个操作的令牌,从主机发送到卡。命令串行传输在 CMD 线上。

响应:响应是从卡发送到主机,作为先前接收到的命令的回应。响应串行传输在 CMD 线上。

数据:数据可以从卡传输到主机或者从主机传输到卡。数据通过数据线传送。用于数据传输的数据线的数目可以是 1(DAT0)、4(DAT0-DAT3)或 8(DAT0-DAT7)。

命令,响应和数据块的结构在*卡功能描述*章节中介绍。一次数据传输就是一个总线操作。


有几种不同类型的操作。一般操作总是包含一个命令和响应。此外,一些操作还有一个数据令牌。还有一些其他操作直接将他们的信息包含在命令或响应结构中。在这种情况下,操作没有数据令牌。在 DATO-DAT7 和 CMD 信号线上的比特位根据主机时钟同步传输。

两种类型的数据传输命令定义如下:

- 流命令:这些命令发起连续的数据流,只有当 CMD 信号线上出现停止命令时,数据传输终止。该模式将命令的开销减少到最低(仅支持 MMC)。
- 面向块的命令:这些命令成功发送一个数据块后紧跟一个 CRC 校验。读和写操作允许单个或多个块传输。与连续读相同,当 CMD 信号线上出现停止命令时,多块传输终止。

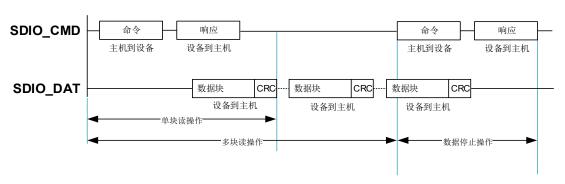

总线上的基本操作是命令/响应操作(参考<u>图 20-1. SDIO "无响应"和 "无数据"操作</u>。这种类型的总线事务直接在命令或响应结构中传递它们的信息。此外,有些操作还有数据令牌。卡与设备之间的数据传输通过块完成。

图 20-1. SDIO "无响应"和 "无数据"操作

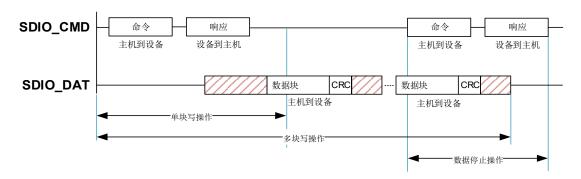

多块操作模式比单块操作速度更快。当 CMD 信号线上出现停止命令时,多块传输终止。主机数据传输可以使用单个或多个数据线。多个块的读操作如 <u>图 20-2. SDIO 多块读操作</u>所示,多个块的写操作如 <u>图 20-3. SDIO 多块写操作</u>所示。块的写操作在数据(DATO)信号线上使用忙信号。CE-ATA 设备在准备接收数据之前有一个可选的忙信号。

图 20-2. SDIO 多块读操作

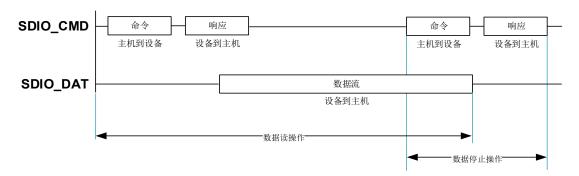
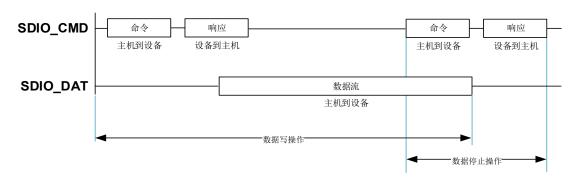


图 20-3. SDIO 多块写操作



SD 存储卡、SD I/O 卡(包括仅 IO 卡和组合卡)和 CE-ATA 设备直接的数据传输是以数据块的方式完成的。MMC 卡以数据块或数据流方式进行数据传输。**图 20-4. SDIO 数据流读操作**和**图 20-5. SDIO 数据流写操作**分别是数据流的读和写操作。

图 20-4. SDIO 数据流读操作

图 20-5. SDIO 数据流写操作

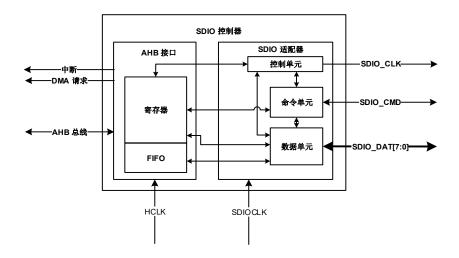

20.4. SDIO 功能描述

图 20-6. SDIO 框图显示了 SDIO 的结构框图,主要有两大部分:

- SDIO 适配器:由控制单元、命令单元和数据单元组成。控制单元管理时钟信号,命令单元管理命令的传输,数据单元管理数据的传输。
- AHB 接口:包括通过 AHB 总线访问的寄存器、用于数据传输的 FIFO 单元以及产生中断和 DMA 请求信号。

图 20-6. SDIO 框图

20.4.1. SDIO 适配器

SDIO 适配器包括控制单元、命令单元和数据单元,并且可以向卡生成信号。这些信号的具体描述如下:

SDIO_CLK: SDIO 控制器提供给卡的时钟。每个时钟周期在命令线(SDIO_CMD)和所有的数据线(SDIO_DAT)上直接发送一位命令或数据。对于 MMC 卡 V3.31 版本,SDIO_CLK 频率可以在 0 MHz 到 20 MHz 之间,对于 MMC 卡 V4.2 版本可以在 0 MHz 到 48MHz 之间,对于 SD 或 SD I/O 卡可以在 0 MHz 到 25 MHz。

SDIO 使用两个时钟信号: SDIO 适配器时钟(SDIOCLK = HCLK)和 AHB 总线时钟(HCLK)。

SDIO_CMD:该信号是双向命令通道,用于卡的初始化和命令的传输。命令从 SDIO 控制器发送到卡,响应从卡发送到主机。CMD 信号有两种操作模式:用于初始化的开漏模式(仅用于MMC 卡 V3.31 及之前版本)和用于命令传送的推挽模式(SD 卡/SD I/O 卡和 MMC 卡 4.2 版本初始化时也是用推挽模式)。

SDIO_DAT[7:0]: 这些信号线都是双向数据通道。数据信号线操作在推挽模式。每次只有卡或者主机会驱动这些信号。默认情况下,上电或者复位后仅 DAT0 用于数据传输。SDIO 适配器可以配置更宽的数据总线用于数据传输,使用 DAT0-DAT3 或者 DAT0-DAT7(仅适用于 MMC V4.2)。SDIO 对数据信号线 DAT1-DAT7 有内部上拉。在进入 4 位模式后,卡断开 DAT1 和 DAT2 的内部上拉(DAT3 内部上拉保持不变是由于 SPI 模式下 CS 片选的使用)。相应地,在进入 8 位模式后,断开 DAT1,DAT2 和 DAT4-DAT7 的内部上拉。

表 20-1. SDIO I/O 定义

		描述		
		SD/SD I/O /MMC 时钟		
SDIO_CMD I/O		命令的输入/输出		
SDIO_DAT[7:0]	I/O	数据线 DAT[7:0]的数据输入/输出		

SDIO 适配器是 SD/SD I/O /MMC/CE-ATA 的接口,它由 3 个子单元组成:

控制单元

控制单元包含电源管理功能和时钟管理功能用于存储卡时钟。电源管理是由 SDIO_PWRCTL 寄存器控制的,实现电源的掉电和上电。通过设置 SDIO_CLKCTL 的 CLKPWRSAV 位来配置 省电模式,实现当总线空闲时,关闭 SDIO_CLK。时钟管理向卡生成 SDIO_CLK 时钟信号。当 SDIO_CLKCTL 寄存器的 CLKBYP 位为 0 时,SDIO_CLK 由 SDIOCLK 分频得到;当 SDIO_CLKCTL 寄存器的 CLKBYP 位为 1 时,SDIO_CLK 直接为 SDIOCLK。

通过设置 SDIO_CLKCTL 寄存器的 HWCLKEN 位使能硬件时钟控制。该功能用于避免 FIFO 下溢和上溢错误,硬件根据系统总线是否繁忙,控制 SDIO_CLK 的开关。当 FIFO 不能接收或 发送数据,主机将会关闭 SDIO_CLK 并冻结 SDIO 状态机来避免相关错误。只有状态机能被 冻结,但 AHB 接口仍在工作。所以,FIFO 可以通过 AHB 总线访问。

命令单元

命令单元实现向卡发送和接收命令。数据传输流由命令状态机(CSM)控制。在对SDIO_CMDCTL 寄存器进行一次写操作并设置该寄存器的 CSMEN 位为 1 后,命令传输开始。首先向卡发送一个命令,这个命令包含 48 位,通过 SDIO_CMD 线发出,每个 SDIO_CLK 发送一个比特数据。这 48 位命令包含 1 位起始位、1 位传输位、6 位命令索引(由 SDIO_CMDCTL 寄存器的 CMDIDX 位定义)、32 位参数(由 SDIO_CMDAGMT 定义)、7 位 CRC 和 1 位停止位。然后接收来自卡的响应(在 SDIO_CMDCTL 寄存器的 CMDIDX 位不为 0b00 或 0b10 的情况下),响应分为 48 位的短响应和 136 位的长响应,响应都存在 SDIO_RESP0 - SDIO_RESP3 寄存器中。命令单元同样可以产生命令状态标志(在 SDIO_STAT 寄存器中定义)。

命令状态机

CS	_ldle	复位后准备发送命	\$	
	1.CSM 被使能并且 WAITDEND 使	能	\rightarrow	CS_Pend
	2.CSM 被使能并且 WAITDEND 失	:能	\rightarrow	CS_Send
	3.CSM 被关闭		\rightarrow	CS_Idle
	注意: 命令状态机在空闲状态至少保持8个SDIO_C			以满足 Ncc 和 NRc 时序限制。
	Ncc 是两个主机命今之间的最小时	间间隔, Nec 是主机	命今与卡	·响应之间的最小时间间隔。

CS_Pend		等待数据传输结束		
	1.数据传送完成		\rightarrow	CS_Send
	2.CSM 被关闭		\rightarrow	CS_Idle

CS_	Send	发送命令		
	1.命令发送后有响应		\rightarrow	CS_Wait
	2.命令发送后无响应		\rightarrow	CS_Idle
	3.CSM 被关闭		\rightarrow	CS_Idle

С	S_Wait	等待响应起始位		
	1.接收到响应(检测到起始位)		\rightarrow	CS_Receive
	2.接收响应超时		\rightarrow	CS_ldle
	3.CSM 被关闭		\rightarrow	CS_ldle
	注意: 命令超时时间固定为 64 个 SDIO_CLK 时钟周期。			

CS_Receive 接收响应		接收响应并检测C	RC	
	1.在 CE-ATA 模式下收到响应,领	夫能 CE-ATA 中断	\rightarrow	CS_Waitcompl
	并且等待 CE-ATA 设备命令完成信	言号使能		
	2.在 CE-ATA 模式下收到响应,约	夫能 CE-ATA 中断	\rightarrow	CS_Pend
	并且等待 CE-ATA 设备命令完成信	言号失能		
	3.CSM 被关闭		\rightarrow	CS_ldle
	4.收到响应		\rightarrow	CS_ldle
	5.命令 CRC 检测失败		\rightarrow	CS_ldle

CS_	Waitcompl	等待 CE-ATA 设备命令完成信号		信号
	1.收到 CE-ATA 命令完成信号		\rightarrow	CS_ldle
	2.CSM 被关闭		\rightarrow	CS_ldle
	3.命令 CRC 检测失败		\rightarrow	CS_ldle

数据单元

数据单元实现主机与卡之间的数据传输。当数据宽度为 8 位(SDIO_CLKCTL 寄存器的 BUSMODE 位为 0b10)时,数据传输使用 SDIO_DAT[7:0]信号线;当数据宽度为 4 位(SDIO_CLKCTL 寄存器的 BUSMODE 位为 0b01)时,数据传输使用 SDIO_DAT[3:0]信号线;当数据宽度为 1 位(SDIO_CLKCTL 寄存器的 BUSMODE 位为 0b00)时,数据传输使用 SDIO_DAT[0]信号线。数据传输流由数据状态机(DSM)控制。在对 SDIO_DATACTL 寄存器进行一次写操作并将 SDIO_DATACTL 寄存器的 DATAEN 位为 1,数据传输开始。当 SDIO_DATACTL 寄存器的 DATADIR 位为 0 时,数据是从控制器到卡;当 DATADIR 位为 1 时,数据是从卡到控制器。数据单元同样可以产生数据状态标志(在 SDIO_STAT 寄存器中定义)。

数据状态机

DS_Idle		数据单元不工作,	等待发送	和接收数据
·	1.DSM 使能并且数据传输方向为主机到卡			DS_WaitS
	2.DSM 使能并且数据传输方向为-	卡到主机	\rightarrow	DS_WaitR
	3.DSM 使能并且读等待已经开始;	并且使能 SD I/O 模	\rightarrow	DS_Readwait
	式			

DS_WaitS	等待数据 FIFO 为空标志无效或者数据传输结束			
1.数据传输结束		\rightarrow	DS_ldle	

2.DSM 被关闭	\rightarrow	DS_ldle
3.数据 FIFO 为空标志无效	\rightarrow	DS_Send

DS_	Send	发送数据到卡		
	1.数据块已发送		\rightarrow	DS_Busy
	2.DSM 被关闭		\rightarrow	DS_ldle
	3.数据 FIFO 下溢错误发生		\rightarrow	DS_ldle
	4.内部 CRC 错误		\rightarrow	DS_ldle

DS_	Busy	等待 CRC 状态标志					
	1.接收到正确 CRC 状态并且卡不	繁忙	\rightarrow	DS_WaitS			
	2.没有接收到正确 CRC 状态		\rightarrow	DS_ldle			
	3.DSM 被关闭		\rightarrow	DS_Idle			
	4.数据超时发生		\rightarrow	DS_ldle			
	注意: 命令超时时间设置在数据超时寄存器(SDIO_DATATO)中。						

DS_	WaitR	等待接收数据的起始位					
	1.数据接收结束	\rightarrow	DS_ldle				
	2.DSM 被关闭		\rightarrow	DS_ldle			
	3.数据超时		\rightarrow	DS_Idle			
	4.在超时前收到起始位		\rightarrow	DS_Receive			
	注意: 命令超时时间设置在数据超时寄存器(SDIO_DATATO)中。						

DS_	Receive	接收卡的数据并将其写入数据 FIFO		
	1.数据块已接收		\rightarrow	DS_WaitR
	2.数据传输结束	\rightarrow	DS_WaitR	
	3.数据 FIFO 下溢发送		\rightarrow	DS_ldle
	4.数据已经接收并且读等待开始并	\rightarrow	DS_Readwait	
	式			
	5.DSM 被关闭或 CRC 错误		\rightarrow	DS_ldle

DS_	Readwait	等待"读等待停止	"指令	
	1. "读等待停止" 使能		\rightarrow	DS_WaitR
	2.DSM 被关闭		\rightarrow	DS_Idle

20.4.2. AHB 接口

AHB 接口实现了访问 SDIO 寄存器、数据 FIFO 和生成中断和 DMA 请求。它包括数据 FIFO 单元、寄存器单元和中断/DMA 逻辑。

至少一个已经被选中的状态标志为高时,中断逻辑产生中断。中断使能寄存器允许中断逻辑产

生相应的中断。

DMA 接口提供一种方法,可以快速地在 SDIO 数据 FIFO 和存储器直接进行数据传输。下面的例子描述了如何实现这种方法:

- 1. 完成卡识别的过程。
- 2. 提高 SDIO CLK 时钟频率。
- 3. 发送 CMD7 用于选择卡并配置总线宽度。
- 4. DMA1 的配置过程如下:

打开 DMA1 控制器并清除任何中断标志。用存储器基地址来配置 DMA1 通道 3 的源地址寄存器,用 SDIO_FIFO 寄存器的地址来配置 DMA1 通道 3 的目的地址寄存器。配置 DMA1 通道 3 的控制寄存器(存储器地址指针递增,外设地址指针固定,存储器和外设的数据宽度为字)。

5. 写数据块(CMD24)到卡的过程如下:

以字节的形式将数据大小写入到 SDIO_DATALEN 寄存器中。以字节的形式将块大小(BLKSZ) 写入到 SDIO_DATACTL 寄存器中,然后主机以每个块 BLKSZ 大小发送数据。向 SDIO_CMDAGMT 中写入数据的地址,该地址是卡中需要传输的数据地址。配置 SDIO 命令 控制寄存器(SDIO_CMDCTL): CMDIDX 置为 24, CMDRESP 置为 1(SDIO 卡主机等待短响应),CSMEN 置为 1(发送命令使能)。其他字段为其复位值。

当 CMDRECV 标志被置位,配置 SDIO 数据控制寄存器(SDIO_DATACTL): DATAEN 置为 1 (发送数据使能),DATADIR 置为 0 (传输方向从控制器到卡),TRANSMOD 置为 0 (块传输),DMAEN 置为 1 (DMA 使能),BLKSZ 置为 0x9 (512 字节)。其他字段不用设置。

等待 DTBLKEND 标志位置位。通过轮询 DMA 中断标志寄存器,检查没有通道处于使能状态。它还包括下面两个子单元:

寄存器单元

寄存器单元包含所有的系统寄存器,生成信号用于控制卡与控制器之间的通信。

数据 FIFO

数据 FIFO 单元有一个数据缓冲区,用于发送和接收 FIFO。FIFO 包含一个每个字的宽度为 32 位,深度为 32 字的数据缓冲区。发送 FIFO 被用在当需要写数据到卡上并且 SDIO_STAT 寄存器的 TXRUN 位为 1 时。待传输的数据通过 AHB 总线写入到发送 FIFO 中,SDIO 适配器中的数据单元从发送 FIFO 中读取数据,然后发送到卡上。接收 FIFO 被用在当需要从卡中读取数据并且 SDIO_STAT 寄存器的 RXRUN 为 1 时。从卡读取数据,然后将待传输的数据写入到接收 FIFO。在需要的时候,通过 AHB 总线读取接收 FIFO 中的数据。这个单元同样可以生成不同的 FIFO 标志(在 SDIO_STAT 寄存器中定义)。

20.5. 卡功能描述

20.5.1. 卡寄存器

卡内部定义了接口寄存器: OCR, CID, CSD, EXT_CSD, RCA, DSR 和 SCR。这些寄存器只能通过相应的命令来访问。OCR, CID, CSD 和 SCR 寄存器包含卡的一些特定信息,而 RCA和 DSR 寄存器是配置寄存器,存储实际的配置参数。EXT_CSD 寄存器同时包含卡的特定信息和实际的结构参数。有关具体信息,请参考相关的规范。

OCR 寄存器: 32 位操作条件寄存器 (OCR) 储存卡的 VDD 电压描述和存取模式指示 (MMC)。 另外,该寄存器包括一个状态信息位。如果卡上电过程已经完成该状态位被置位。该寄存器在 MMC 和 SD 卡之间有一点不同。主机可以使用 CMD1 (MMC),ACMD41 (SD 存储卡),CMD5 (SD I/O) 来获取该寄存器的内容。

CID 寄存器: 卡识别寄存器(CID)是 128 位宽。它包含在卡识别阶段使用的卡识别信息。每个读/写(RW)卡应具有唯一的标识号。主机可以使用 CMD2 和 CMD10 得到这个寄存器的内容。

CSD 寄存器: 卡特定数据寄存器提供访问卡中的内容信息。CSD 定义了数据格式、错误校正类型、最大数据访问时间、数据传输速度、DSR 寄存器是否可以使用等。寄存器的可编程部分可通过 CMD27 来修改。主机可以使用 CMD9 得到这个寄存器的内容。

扩展 CSD 寄存器: 只有 MMC4.2 有该寄存器。扩展 CSD 寄存器定义卡属性和选择模式。它的长度为 512 字节。最高 320 字节为属性段,定义了卡的功能,并且不能由主机修改。最低 192 字节是模式段,定义了卡工作在哪种配置下。这些模式可以由主机通过 SWITCH 命令来 修改。主机可以使用 CMD8(仅 MMC 支持这个命令),以获取该寄存器的内容。

RCA 寄存器: 可写的 16 位相对卡地址寄存器存放卡地址,该地址在卡的初始化期间由卡向外发布。这个地址用于卡识别过程之后,所寻址的主机和卡通信。主机可以使用 CMD3 要求卡发布一个新的相对地址(RCA)。

注意: RCA 的寄存器的缺省值是 0x0001 (MMC) 或 0x0000 (SD/SD I/O)。这个数值是保留值,用于通过 CMD7 设置所有卡到待机(Stand-by)状态。

DSR 寄存器 (可选): 16 位驱动阶段寄存器是可选的,可用于在扩展操作条件中提高总线性能 (取决于类似于总线长度,传输速率和卡数目这些参数)。 CSD 寄存器中有 DSR 寄存器使用情况的信息。 DSR 寄存器的默认值是 0x404。主机可以使用 CMD4 得到这个寄存器的内容。

SCR 寄存器: 仅 SD/ SD I/O (如果有存储模块) 有这个寄存器。除了 CSD 寄存器,除了 CSD 寄存器,还有另一种配置寄存器名为 SD 卡配置寄存器 (SCR),它仅用于 SD 卡。SCR 提供了被配置到特定 SD 存储卡的特殊功能的信息。SCR 寄存器的大小是 64 位。该寄存器应在出厂前通过 SD 存储卡制造商进行设置。主机可以使用 ACMD51 得到这个寄存器的内容。

20.5.2. 命令

命令类型

有四种控制卡的命令:

- 广播命令 (bc),发送到所有卡,没有响应;
- 带响应的广播命令(bcr),发送到所有卡,同时从所有卡收到响应;
- 寻址(点对点)命令(ac),发送到寻址的卡上,DAT信号线没有数据传输;
- 寻址(点对点)的数据传输的命令(adtc),发送到寻址的卡上,DAT 信号线进行数据传输。

命令格式

所有命令都是 48 位的固定码长,如*图 20-7. 命令标记格式*所示,需要 1.92 us (25 MHz) 0.96 us (50 MHz) 和 0.92us (52 MHz) 的发送时间。

图 20-7. 命令标记格式

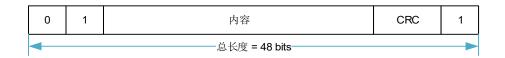


表 20-2. 命令格式

位	47	46	[45:40]	[39:8]	[7:1]	0
宽度	1	1	6	32	7	1
数值	'0'	'1'	х	х	х	'1'
描述	起始位	传输位	命令索引	参数	CRC7	结東位

一个命令总是从一个起始位(始终为0)开始,随后的位表示传输的方向(主机=1)。接下来的6位表示命令的索引,该值被解释为一个二进制编码的数字(0到63之间)。一些命令需要一个参数(例如,一个地址),由32位编码。上面表中的表示为"x"的值表示这个变量依赖于该命令。所有的命令有一个CRC7位校验,由结束位(总是1)终止。

命令分类

卡的命令集分为几类(见 $\underline{\textit{\textit{x}}}$ 20-3. $+ \hat{\textit{\textit{cccs}}}$)。每类支持一组卡的功能。 $\underline{\textit{\textit{x}}}$ 20-3. $+ \hat{\textit{\textit{cccs}}}$ 根据卡支持的命令来决定 CCC 的设置。

对于 SD 卡,类别为 0, 2, 4, 5 和 8 的命令是强制的,应被 SD 卡支持。类别 7 中除了 CMD40 以外都是强制性用于 SDHC。其他类是可选的。所支持的卡命令类(CCC)被编码为参数,设置在每个卡的卡特定数据(CSD)寄存器,提供给主机如何访问该卡信息。

对于 MMC 卡,类别为 0 的命令是强制性的,应被 MMC 卡支持。其他类只对特定类型的卡是强制或是可选的。通过使用不同的类,可以选择几种配置(例如,一个块可写的卡或流可读的卡)。所支持的卡命令类(CCC)被编码为参数,设置在每个卡的卡的特定数据(CSD)寄存器,提供给主机如何访问该卡信息。

对于 CE-ATA 设备,设备必须支持 MMC 命令,这些命令需要在设备初始化阶段完成传输状态。 其它接口配置的设置,如总线宽度,可能需要额外的 MMC 命令来支持,具体请参考 MMC 引用。 CE-ATA 利用以下的 MMC 命令: CMD0 - GO_IDLE_STATE, CMD12 - STOP_TRANSMISSION,CMD39 - FAST_IO,CMD60 - RW_MULTIPLE_REGISTER,CMD61 - RW_MULTIPLE_BLOCK。 GO_IDLE_STATE(CMD0),STOP_TRANSMISSION(CMD12)和 FAST_IO(CMD39)由 MMC 引用定义。 RW_MULTIPLE_REGISTER(CMD60)和 RW_MULTIPLE_BLOCK(CMD61)是 CE-ATA 协议定义的 MMC 命令。

表 20-3. 卡命令类 (CCCs)

	市令英 (CC 卡命令类 (CCC)	0	1	2	3	4	5	6	7	8	9	10	11
支持的命令	类描述	basic	Stream read	Block read	Stream write	Block write	erase	write protection	Lock card	application specific	I/O mode	switch	reserved
CMD0	М	+											
CMD1	М	+											
CMD2	М	+											
CMD3	М	+											
CMD4	М	+											
CMD5	0										+		
CMD6	М											+	
CMD7	М	+											
CMD8	М	+											
CMD9	М	+											
CMD10	М	+											
CMD11	М		+										
CMD12	М	+											
CMD13	М	+											
CMD14	М	+											
CMD15	М	+											
CMD16	М			+		+			+				
CMD17	М			+									
CMD18	М			+									
CMD19	М	+											
CMD20	М				+								
CMD23	М			+		+							
CMD24	М					+							
CMD25	М					+							
CMD26	М					+							

								, ,		7 9 4	
CMD27	М			+							
CMD28	М					+					
CMD29	М					+					
CMD30	М					+					
CMD32	М				+						
CMD33	М				+						
CMD34	0									+	
CMD35	0									+	
CMD36	0									+	
CMD37	0									+	
CMD38	М				+						
CMD39									+		
CMD40									+		
CMD42							+				
CMD50	0									+	
CMD52	0								+		
CMD53	0								+		
CMD55	М							+			
CMD56	М							+			
CMD57	0									+	
CMD60	М							+			
CMD61	М							+			
ACMD6	М							+			
ACMD13	М							+			
ACMD22	М							+			
ACMD23	М							+			
ACMD41	М							+			
ACMD42	М							+			
ACMD51	М							+			

注意: 1. CMD1, CMD11, CMD14, CMD19, CMD20, CMD23, CMD26, CMD39 和 CMD40 仅用于 MMC 卡。CMD5, CMD32-34, CMD50, CMD52, CMD53, CMD57 和 ACMDx 仅用于 SD 存储卡。CMD60,CMD61 仅用于 CE-ATA 设备。

- 2. 在使用 ACMD 命令之前发送 APP_CMD 命令(CMD55)。
- 3. CMD8 对于 MMC 卡和 SD 卡有不同的含义。

详细的命令描述

下列表详细描述了所有的总线命令。响应 R1-R7 将在*响应*章节说明。寄存器 CID, CSD 和 DSR 在 *<u>卡功能描述</u>*介绍。卡应忽略参数中填充位和保留位。

表 20-4. 基本命令(class 0)

	 	(Class U)	محر وغيير		
命令 索引	类型	参数	响应 格式	简称	描述
CMD0	bc	[31:0] 填充位	-	GO_IDLE_STATE	复位所有的卡到空闲状态。
CMD1	bc	[31:0] OCR	R3	SEND_OP_COND	在空闲状态,请求卡通过 CMD 线 发送响应(包含操作条件寄存器的 内容)。
CMD2	bcr	[31:0] 填充位	R2	ALL_SEND_CID	请求任何卡通过CMD线发送发送 CID数据(任何连接到主机的卡都 会响应)。
CMD3	bcr	[31:0] 填充位	R6	SEND_RELATIVE_AD DR	请求卡发布新的相对卡地址 (RCA)。
CMD4	bc	[31:16] DSR [15:0] 填充位	-	SET_DSR	设置所有卡的 DSR 寄存器。
CMD5	bcr	[31:25]保留位 [24]S18R [23:0] I/O OCR	R4	IO_SEND_OP_COND	仅适用于 I/O 卡。它类似于用于 SD 存储卡的 ACMD41 命令,用 于查询所需要的 I/O 卡的电压范 围。
CMD6	ac	[31:26] 设为 0 [25:24] 访问 [23:16] 索引 [15:8] 值 [7:3] 设为 0 [2:0] 命令集	R1b	SWITCH	仅适用于 MMC 卡。切换所选卡的操作模式,或修改 EXT_CSD 寄存器。
CMD7	ac	[31:16] RCA [15:0] 填充位	R1b	SELECT/DESELECT_ CARD	这个命令用于卡在待机(standby)状态和发送(transfer)状态之间切换,或编程(programming)状态和断开(disconnects)状态之间切换。在两种情况下,要选中该卡用它自己的相对地址,若不选中该卡用任何其他地址。地址0用于取消选择该卡。
CMD8	bcr	[31:12]保留位 [11:8]工作电压 (VHS) [7:0]检查模式	R7	SEND_IF_COND	向 SD 存储卡发送接口条件,包括 主机供电电压信息和询问卡是否 支持电压。保留位应设为 0。
CMD8	adtc	[31:0] 填充位	R1	SEND_EXT_CSD	仅用于 MMC 卡。卡发送自己的 EXT_CSD 寄存器作为数据块。
CMD9	ac	[31:16] RCA [15:0] 填充位	R2	SEND_CSD	被选定的卡通过 CMD 线发送它的 卡特定数据(CSD)。
CMD10	ac	[31:16] RCA [15:0] 填充位	R2	SEND_CID	被选定的卡通过 CMD 线发送它的 卡标识(CID)。
CMD12	ac	[31:0] 填充位	R1b	STOP TRANSMISSION	强制卡停止传输。

命令索引	类型	参数	响应 格式	简称	描述
CMD13	ac	[31:16] RCA [15:0] 填充位	R1	SEND_STATUS	被选定的卡发送它的状态寄存器。
CMD14	adtc	[31:0] 填充位	R1	BUSTEST_R	主机从卡中读取反向的总线测试 数据模式。
CMD15	ac	[31:16] RCA [15:0] 保留位	-	GO_INACTIVE_STATE	将被选定的卡转换到非激活 (Inactive)状态。这个命令被用 于当主机明确地想停用一张卡的 时候。
CMD19	adtc	[31:0] 填充位	R1	BUSTEST_W	主机向卡发送总线测试模式。

表 20-5. 面向块的读命令(class 2)

命令索引	类型	参数	响应 格式	简称	描述
CMD16	ac	[31:0]块长度	R1	SET_BLOCKLEN	在标准容量 SD 卡和 MMC 卡的情况下,该命令为所有后续块命令(读,写,锁)设置块长度(以字节为单位)。默认值是 512 字节。只有在 CSD 中局部块读操作被允许时,设置长度对于存储器访问命令有效。在高容量 SD 存储卡的情况下,块长度是由 CMD16 命令设置,不会影响内存读和写命令。总是使用512 字节的固定块长度。在这两种情况下,如果块长度设置大于512字节,BLOCK_LEN_ERROR 位会被卡置位。
CMD17	adtc	[31:0]数据地址	R1	READ_SINGLE_BLOC	在标准容量 SD 卡和 MMC 卡的情况下,通过 SET_BLOCKLEN 命令读取所选择大小的块。 在高容量存储卡的情况下,块长度 是固定的 512 字节, 忽略 SET_BLOCKLEN命令。
CMD18	adtc	[31:0]数据地址	R1	READ_MULTIPLE_BL OCK READ BLK MISALIGN 2	不断从卡传输数据块到主机,直到收到 STOP_TRANSMISSION 命令才中断。块长度规定和READ_SINGLE_BLOCK 命令是一样的。

注意: 传输的数据不能跨越物理块边界,除非 READ_BLK_MISALIGN 在 CSD 寄存器中被设置

表 20-6. 流读取命令(class 1)和流写入命令(class 3)

命令索引	类型	参数	响应 格式	简称	描述
CMD11	adtc	[31:0]数据地址	R1	READ_DAT_UNTIL_S TOP	从卡中读取数据流,起始于给定的 地 址 , 直 至 收 到 STOP_TRANSMISSION 命令。
CMD20	adtc	[31:0]数据地址	R1	WRITE_DAT_UNTIL_S TOP	从主机写数据流,起始于给定的地址 , 直 至 收 到 STOP_TRANSMISSION 命令。

| 注意: 传输的数据不能跨越物理块边界,除非 READ_BLK_MISALIGN 在 CSD 寄存器中被设置。

表 20-7. 面向块的写命令(class 4)

命令索引	类型	参数	响应 格式	简称	描述
CMD16	ac	[31:0] 块长度	R1	SET_BLOCKLEN	见 <u>表 20-5. 面向换的读命令</u> (<u>class 2)</u> 描述。
CMD23	ac	[31:16] 设为 0 [15:0] 块数目	R1	SET_BLOCK_COUNT	定义了将要在后续多个块的读或 写命令被传输块的数目。如果参数 为全 0,随后的读/写操作将被被认 为无终止的。
CMD24	adtc	[31:0] 数据地址	R1	WRITE_BLOCK	在标准容量 SD 卡的情况下,该命令写入由 SET_BLOCKLEN 命令所选择的块长度。在高容量 SD 卡的情况下,块长度是固定的 512 字节忽略 SET_BLOCKLEN 命令。
CMD25	adtc	[31:0] 数据地址	R1	WRITE_MULTIPLE _BLOCK	连续写入数据块,直至收到 STOP_TRANSMISSION命令。 块长度是和WRITE_BLOCK命令 规定一样的。
CMD26	adtc	[31:0] 填充位	R1	PROGRAM_CID	对卡识别寄存器进行编程。此命令 必须一次发出。该编程涉及硬件, 以防止首次编程以后的操作。通常 情况下这个命令是针对厂家保留。
CMD27	adtc	[31:0] 填充位	R1	PROGRAM_CSD	对 CSD 的可编程位编程。

注意: 1. 传输的数据不得跨越物理块边界。除非是在 CSD 设置 WRITE_BLK_MISALIGN。在写入部分块不支持的情况下,块长度=默认块长度(CSD 中给出)。

2. 标准容量 SD 存储卡数据地址以字节为单位,高容量 SD 存储卡数据地址以块(512 字节)为单位。

表 20-8. 擦除命令(class 5)

命令索引	类型	参数	响应 格式	简称	描述
CMD32 ac		[31:0]数据地址	R1	ERASE_WR_BLK_STA	设置要被擦除数据的第一个块的
	ac	[31.0]数循地址	ΚI	RT	地址。(SD)
CMD33	ac	[31:0]数据地址	R1	ERASE_WR_BLK_EN	设置要被擦除数据的最后一个块

命令索引	类型	参数	响应 格式	简称	描述
				D	地址。(SD)
CMD35	OMDOS	[31:0]数据地址	R1	ERASE_GROUP_	在选择的擦除范围内,设置第一个
CIVIDSS	ac			START	擦除组的地址。(MMC)
CMD36		[24.0]*** tE th t.L	D4	ERASE GROUP END	在选择的连续擦除范围内,设置最
CMD36	ac	ac [31:0]数据地址	R1	RI ERASE_GROUP_END	后一个擦除组的地址。(MMC)
CMD38	ac	[31:0]填充位	R1b	ERASE	擦除所有之前选择的数据块.

注意: 1. CMD34 和 CMD37 被保留,以便保持与旧版本 MMC 的兼容性

2. 标准容量 SD 存储卡数据地址以字节为单位,高容量 SD 存储卡数据地址以块(512 字节)为单位。

表 20-9. 面向块的写保护命令(class 6)

1 (2 - 0 - 1)	2 20 0. 岡内久田 3 水が 神 3 (51835 5)								
命令索引	类型	参数	响应 格式	简称	描述				
CMD28	ac	[31:0] 数据地址	R1b	SET_WRITE_PROT	如果卡有写保护功能,该命令将设置地址组的写保护位。写保护的特性被编码在卡的特定数据(WP_GRP_SIZE)中。高容量SD存储卡不支持此命令。				
CMD29	ac	[31:0] 数据地址	R1b	CLR_WRITE_PROT	如果卡有写保护功能,该命令将清 除寻址组的写保护位。				
CMD30	adtc	[31:0] 写 保 护数据地址	R1	SEND_WRITE_PROT	如果卡有写保护功能,该命令请求 卡发送写保护位状态。				
注意: 1	. 高容量	SD 存储卡不支持	寺这三个印						

表 20-10. 锁卡命令(class 7)

命令索引	类型	参数	响应 格式	简称	描述
CMD16	ac	[31:0] 块长度	R1	SET_BLOCK_LEN	见 <i>表 20-5. 面向换的读命令(class</i> <u>2)</u> 描述。
CMD42	adtc	[31:0] 保留位 (所有位设为 0)	R1	LOCK_UNLOCK	用于设置/重置密码或者对卡上锁/解锁。数据块长度由命令 SET_BLOCK_LEN设置。 参数及锁卡数据结构里的保留位应 设为0。

表 20-11. 特定应用命令(class 8)

1 LO 11. 1	(20 Tr. 14)C/EX/11 HP (Class C)						
命令	类型	参数	响应	简称	描述		
索引	大生	多奴	格式		加松		
		[31]保留位			发送给主机容量支持信息		
		[30]HCS	R3	SD SEND OP	(HCS),并请求访问的卡在		
ACMD41	bcr	[29:24]保留位		COND	响应中发送操作条件寄存器		
		[23:0]V _{DD} 电压窗口		COND	(OCR)的内容。当卡接收到		
		(OCR[23:0])			SEND_IF_COND 命令,HCS		

命令 索引	类型	参数	响应 格式	简称	描述
					是有效的。CCS 位被分配到 OCR[30]。
ACMD42	ac	[31:1] 填充位 [0] set_cd	R1	SET_CLR_CAR D_DETECT	在卡的 CD/DAT3 (引脚 1)上 连接[1]/断开[0] 50K 上拉电 阻。
ACMD51	adtc	[31:0] 填充位	R1	SEND_SCR	读 SD 卡配置寄存器(SCR)。
CMD55	ac	[31:16] RCA [15:0] 填充位	R1	APP_CMD	表明卡的下一个命令是特定 应用命令而不是标准命令。
CMD56	adtc	[31:1] 填充位 [0] RD/WR	R1	GEN_CMD	对于通用/特定应用命令,该命令用于向卡传输一个数据块,或从卡读取一个数据块。主机设 RD/WR=1 时是从卡中读数据,RD/WR=0 时啊写数据到卡中。
CMD60	adtc	[31] WR [23:18] 地址 [7:2] 字节数 其他位为保留位	R1(read)/ R1b(write)	RW_MULTIPLE _REGISTER	在地址范围内,读或写寄存 器。
CMD61	adtc	[31] WR [15:0] 数据单元数 其他位为保留位	R1(read)/ R1b(write)	RW_MULTIPLE _BLOCK	在地址范围内,读或写寄存器。

注意: 1. ACMDx 是针对 SD 存储卡的特定应用命令

2. CMD60, CMD61 针对 CE-ATA 设备的特定应用命令

表 20-12. I/O 模式命令(class 9)

命令	类型	参数	响应	简称	描述
索引	关生	多奴	格式		油处
					用于写入和读取8位(寄存器)
					的数据字段。如果写标志被设
		[31:16] RCA			置,该命令寻址寄存器,并提供
CMD39	ac	[15] 寄存器写标志	R4	FAST IO	数据写入。如果写标志被清为0,
CMD39	ac	[14:8] 寄存器地址	174	PASI_IO	R4 的响应中包含从寻址寄存器
		[7:0] 寄存器数据			中读取的数据。该命令用于访问
					未在 MMC 标准定义的应用程序
					相关的寄存器。
CMD40	bcr	[31:0] 填充位	R5	GO_IRQ_STATE	设置系统进入中断模式。
		[31] R/W 标志			IO_RW_DIRECT 命令提供简单
		[30:28] 功能数目			的方式访问任意 I/O 功能的
CMD52	adtc	[27] RAW 标志	R5	IO DW DIDECT	128K 存储空间的寄存器。此命
CIVID52	auto	[26] 填充位	KS	IO_RW_DIRECT	令可以实现使用单个命令对寄
		[25:9] 寄存器地址			存器的读写。一个常见的用途是
		[8] 填充位			初始化寄存器或查询 I/O 功能状

	r令 :引	类型	参数	响应 格式	简称	描述
			[7:0] 写数据/填充 位			态。这个命令是读或写单 I/O 寄存器最快的方法,因为它仅需要一对单一的命令/响应。
CI	MD53	adtc	[31] R/W 标志 [30:28] 功能数目 [27] 块模式 [26] OP 码 [25:9] 寄存器地址 [8:0] 字节/块数		IO_RW_EXTENDED	该命令允许用一个简单命令读取或写入大量的 I/ O 寄存器。

注意: 1.CMD39, CMD40 仅用于 MMC 卡

2. CMD52, CMD53 仅用于 SD I/O 卡

表 20-13. 切换功能命令(class 10)

命令索引	类型	参数	响应 格式	简称	描述
CMD6	adtc	[31] 模式 0: 检测功能 1: 切换功能 [30:24] 保留 [23:20] 为功能组 6 保留(0h或 Fh) [19:16] 为功能组 5 保留(0h或 Fh) [15:12] 为功能组 4 保留(0h或 Fh) [11:8] 为功能组 3 保留(0h或 Fh) [7:4] 功能组 2 命令 系统 [3:0] 功能组 1 访问 模式	R1	SWITCH_FUNC	仅用于 SD 存储卡和 SD I/O 卡。 检测可切换功能 (模式 0) 和切换卡 功能 (模式 1)。

20.5.3. 响应

所有的响应都是通过 CMD 信号线发送。响应传输总是从对应响应字串的最左位开始。响应字串的长度依赖于响应类型。

响应类型

响应的类型有七种,分别如下:

■ R1 / R1b: 普通命令响应

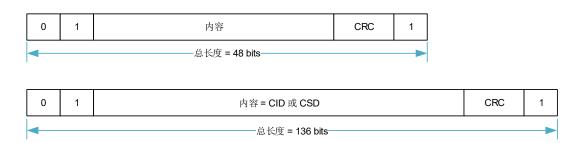
■ R2: CID, CSD 寄存器

■ R3:OCR 寄存器

■ R4 : Fast I/O

■ **R5**:中断请求

■ **R6**:发布的 RCA 响应


■ R7:卡接口条件

SD 存储卡支持其中的五种响应,R1 / R1b, R2, R3, R6, R7。SD I/O 卡和 MMC 卡支持支持额外的响应类型,名为 R4 和 R5,但对于 SD I/O 卡和 MMC 卡,这两种响应并不完全相同。

响应格式

响应有两种格式,如<u>**图 20-8.** 响应令牌格式</u>所示,所有响应经由 CMD 线发出。代码的长度取决于响应类型。除了 R2 的长度是 136 位,其他的长度均为 48 位。

图 20-8. 响应令牌格式

响应总是从一个起始位(始终为0)开始,随后第二位表示传输的方向(卡=0)。下面表中的"x"的值表示为可变的部分。除了R3类型的所有响应由CRC校验。每个响应字段由结束位(总是1)终止。

R1 (普通命令响应)

代码长度为 48 位。位 45:40 指示要响应的命令索引,该值被解释为一个二进制编码的数字(0 到 63 之间)。卡的状态被 32 位编码。注意,如果写数据到卡上,在每个数据块传输之后会出现 BUSY 信号,在每个数据块传输完成后主机需要检查 BUSY 信号。卡状态在章节<u>数据包格式</u>中描述。

表 20-14. R1 响应

位	47	46	[45:40]	[39:8]	[7:1]	0
位宽	1	1	6	32	7	1
数值	'0'	'0'	х	Х	Х	'1'
描述	起始位	传输位	命令索引	卡状态	CRC7	结東位

R₁b

R1b 格式与 R1 相同,但可以在数据线 DAT0 上发送忙信号。收到命令后,依据收到命令之前的状态,卡可能变为忙状态。主机应在响应中检查忙状态。

R2 (CID, CSD 寄存器)

代码长度为 136 位。CID 寄存器的内容作为对命令 CMD2 和 CMD10 的响应被发送。CSD 寄存器的内容将作为以 CMD9 响应被发送。卡只响应发送 CID 和 CSD 的位[127.. 1],这两个寄存器保留位[0]被替换为响应的结束位。

表 20-15. R2 响应

位	135	134	[133:128]	[127:1]	0
位宽	1	1	6	127	1
数值	'0'	'0'	'111111'	Х	'1'
描述	起始位	传输位	保留	CID 或 CSD 寄存器,内部 CRC7	结東位

R3 (OCR 寄存器)

代码长度为 48 位。该 OCR 寄存器的内容作为 ACMD41 (SD 存储卡), CMD1 (MMC)的响应被发送。不同卡的响应可能有一点不同。

表 20-16. R3 响应

位	47	46	[45:40]	[39:8]	[7:1]	0
位宽	1	1	6	32	7	1
数值	'0'	'0'	'111111'	х	'1111111'	'1'
描述	起始位	传输位	保留	OCR 寄存器	保留	结束位

R4 (Fast I/O)

仅适用于 MMC 卡。代码长度为 48 位。参数域包括选定卡的 RCA,被读取或写入寄存器的地址,和它的内容。如果操作成功,参数域状态位置位。

表 20-17. R4 响应(MMC)

位	47	46	[45:40]	[39:8] 参	数域		[7:1]	0	
位宽	1	1	6	16	1	7	8	7	1
数值	'0'	'0'	'100111'	х	Х	х	х	Х	'1'
描述	起始位	传输位	CMD39	RCA [31:16]	状态 [15]	寄存器 地址 [14:8]	读寄存器 的内容 [7:0]	CRC7	结束位

R4b

仅适用于 SD I/O 卡。代码长度为 48 位。SD I/O 卡接收到 CMD5 命令后会返回一个唯一的 SD I/O 卡响应 R4。

表 20-18. R4 响应(SD I/O)

位	47	46	[45:40]	39	[38:36]	35	[34:32]	31	[30:8]	[7:1]	0
位宽	1	1	6	1	3	1	3	1	23	7	1
数值	'0'	'0'	'111111'	Х	х	х	'000'	Х	Х	'1111111'	1
描述	起始位	传输位	保留	С	I/O 功能 数目	当前存储	填充位	S18A	I/O OCR	保留	结束位

R5 (中断请求)

仅适用于 MMC 卡。代码长度为 48 位。若这个响应由主机产生,参数中 RCA 域为 0x0。

表 20-19. R5 响应(MMC)

位	47	46	[45:40]	[39:8] 参数域		[7:1]	0
位宽	1	1	6	16	16	7	1
数值	'0'	'0'	'101000'	х	x	Х	'1'
描述	起始位	传输位	CMD40	成功的卡或主机的 RCA [31:16]	[15:0]未定义,可 能作为中断数据	CRC7	结東位

R₅b

仅适用于 SD I/O 卡。SD I/O 卡对于 CMD52 和 CMD53 命令的响应是 R5。如果卡和主机之间的通信是在 1 位或 4 位 SD 模式下,响应应是 48 位响应(R5)。

表 20-20. R5 响应(SD I/O)

	•	•						
位	47	46	[45:40]	[39:24]	[23:16]	[15:8]	[7:1]	0
位宽	1	1	6	16	8	8	7	1
数值	'0'	'0'	'11020X'	'0'	х	х	Х	'1'
描述	起始位	传输位	CMD52/53	填充位	响应标志	读或写的数据	CRC7	结束位

R6 (发布的 RCA 响应)

代码长度为 48 位。位[45:40]表示对 CMD3 响应的命令索引。参数字段的 16 个最高位比特用于已发布的 RCA 号。

表 20-21. R6 响应

位	47	46	[45:40]	[39:8] 参数域		[7:1]	0
位宽	1	1	6	16	16	7	1
数值	'0'	'0'	'000011'	х	х	х	'1'
描述	起始位	传输位	CMD3	新发布卡的 RCA	卡的状态位: 23,22,19,12:0	CRC7	结東位

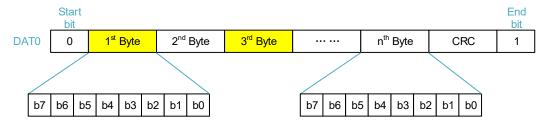
R7 (卡接口条件)

仅适用于 SD 存储卡。代码长度为 48 位。卡支持电压信息由 CMD8 的响应发送。位[19:16]表明该卡支持的电压范围。接受了供电电压的卡返回 R7 响应。在响应中,卡回送的参数设置电

压范围和检查模式。

表 20-22. R7 响应

位	47	46	[45:40]	[39:20]	[19:16]	[15:8]	[7:1]	0
位宽	1	1	6	20	4	8	7	1
数值	'0'	'0'	'001000'	'00000h'	х	Х	Х	'1'
描述	起始位	传输位	CMD8	保留位	可接受电压	回送检查模式	CRC7	结束位


20.5.4. 数据包格式

数据总线模式有三种,1位、4位和8位宽度。1位模式是强制的,4位和8位模式是可选的。 虽然使用1位模式,当卡复位和初始化时,DAT3还需要通知卡当前的工作模式是SDIO或 SPI。

1位数据包格式

卡复位和初始化之后,只有 DATO 被用于传输数据。其他引脚可以用于其他用处。<u>图 20-9.1</u> 位数据总线宽度,图 20-10.4 位数据总线宽度和图 20-11.8 位数据总线宽度显示了数据宽度是 1 位,4 位和 8 位时的数据包格式。

图 20-9. 1 位数据总线宽度

4 位数据包格式

图 20-10. 4 位数据总线宽度

	Start bit	1 st E	Byte	2 nd	^d Byte	3 rd	Byte	n th E	Byte		End bit
DAT3	0	b7	b3	b7	b3	b7	b3	 b7	b3	CRC	1
DAT2	0	b6	b2	b6	b2	b6	b2	 b6	b2	CRC	1
DAT1	0	b5	b1	b5	b1	b5	b1	 b5	b1	CRC	1
DAT0	0	b4	b0	b4	b0	b4	b0	 b4	b0	CRC	1

8 位数据包格式

图 20-11. 8 位数据总线宽度

	Start bit	1 st Byte	2 nd Byte	3 rd Byte			n th Byte		End bit
DAT7	0	b7	b7	b7			b7	CRC	1
DAT6	0	b6	b6	b6			b6	CRC	1
DAT5	0	b5	b5	b5			b5	CRC	1
DAT4	0	b4	b4	b4			b4	CRC	1
DAT3	0	b7	b3	b7			b3	CRC	1
DAT2	0	b6	b2	b6			b2	CRC	1
DAT1	0	b5	b1	b5			b1	CRC	1
DAT0	0	b4	b0	b4			b0	CRC	1

20.5.5. 卡的两种状态

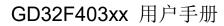
SD 存储卡支持两种状态字段,而其他的卡只支持第一种:

卡状态: 执行命令的错误和状态信息, 在响应中指示。

SD 状态: 512 位的扩展状态信息,支持特定功能的 SD 存储卡和未来应用特定功能。

卡状态

响应格式 R1 包含一个名为卡状态的 32 位字段。该字段用来传送该卡的状态的信息(可以存储在本地状态寄存器)到主机。除非特别说明,卡的状态信息总是与之前发出的命令相关。


表中的类型和清除条件的缩写如下:

类型

- •E: 错误位。向主机发送错误条件。这些位一旦响应(报告错误)被发出去就会清除。
- •S: 状态位。这些位仅作为信息字段,并不因为对命令的响应而改变。这些位是持久性的,它们根据卡状态被设置或被清除。
- •R: 卡在命令解释和验证阶段(响应模式)检测到异常。
- •X: 卡在命令执行阶段(执行模式)检测到异常。

清除条件

- •A: 根据卡当前状态。
- •B: 始终与之前命令相关。接收到有效命令可清除该状态(有命令延迟)。
- •C: 读可清除。

表 20-23. 卡状态

位	标识符	类型	数值	说明	清除条件
31	OUT_OF_RANGE	ERX	'0'= 无错误	命令的参数超出卡的允许范围。	С
			'1'= 错误		
30	ADDRESS_ERROR	ERX	'0'= 无错误	在命令中使用与块长度不匹配	С
			'1'= 错误	的未对齐地址。	
29	BLOCK_LEN_ERROR	ERX	'0'= 无错误	所传输的块长度是卡不允许的,	С
			'1'= 错误	或者传输的字节数不匹配块的	
				长度。	
28	ERASE_SEQ_ERROR	ER	'0'= 无错误	擦除命令顺序发生错误。	С
			'1'= 错误		
27	ERASE_PARAM	ERX	'0'= 无错误	擦除时选择了无效的擦除块。	С
			'1'= 错误		
26	WP_VIOLATION	ERX	'0'= 未保护	当主机试图写一个受保护的块	С
			'1'= 已保护	或暂时或永久写保护卡时置位。	
25	CARD_IS_LOCKED	SX	'0' = 卡未锁	当设置该位,表示卡已经被主机	Α
			'1' = 卡已锁	锁住。	
24	LOCK_UNLOCK_FAIL	ERX	'0'= 无错误	在上锁/解锁中有命令的顺序错	С
	ED		'1'= 错误	误或检测到密码错误时置位。	
23	COM_CRC_ERROR	ER	'0'= 无错误	之前命令的 CRC 校验错误。	В
			'1'= 错误		
22	ILLEGAL_COMMAND	ER	'0'= 无错误	对于当前状态,命令非法。	В
			'1'= 错误		
21	CARD_ECC_FAILED	ERX	'0'= 成功	卡的内部实施了 ECC 校验,但	С
			'1'= 失败	在更正数据时失败。	
20	CC_ERROR	ERX	'0'= 无错误	卡内部控制器错误。	С
			'1'= 错误		
19	ERROR	ERX	'0'= 无错误	在操作过程中发生一般的或者	С
			'1'= 错误	未知的错误。	
18	UNDERRUN	ERX	'0'= 无错误	仅针对 MMC。该卡不支持在流	С
			'1'= 错误	读取模式下的数据传输。	
17	OVERRUN	ERX	'0'= 无错误	仅针对 MMC. 该卡不支持在流	С
			'1'= 错误	写入模式下的数据编程。	
16	CID/	ERX	'0'= 无错误	可能是下面两种错误之一:	С
	CSD_OVERWRITE		'1'= 错误	- CSD 的只读部分与卡内容不	
				匹配	
				- 试图进行拷贝或永久写保护	
				的反向操作,即恢复原状或解除	
				写保护	
15	WP_ERASE_SKIP	ERX	'0'= 未保护	若置位,因为存在写保护数据块	С
			'1'= 已保护	仅有部分地址空间被擦除;被暂	
				时或者永久写保护的卡被擦除。	
14	CARD_ECC_DISABLE	SX	'0'= 使能	执行命令时未使用内部 ECC。	Α

位	标识符	类型	数值	说明	清除条件
	D		'1'= 失能		
13	ERASE_RESET	SR	'0'= 清除	因为收到一个擦除顺序之外的	С
			'1'= 设置	命令,擦除序列在执行前被清	
				除。	
[12:	CURRENT_STATE	SX	0 = 空闲	当收到命令时卡的状态。如果命	В
9]			1 = 就绪	令的执行导致状态的变化,这个	
			2 = 识别	变化将会在下个命令的响应中	
			3 = 待机	反映出来。这四个位按十进制数	
			4 = 传输	0至15解释。	
			5 = 发送数据		
			6 = 接收数据		
			7 = 编程		
			8 = 断开		
			9-14 = 保留		
			15 = 保留(I/O 模		
			式)		
8	READY_FOR_DATA	SX	'0'= 未就绪	与总线上的缓冲器空的信号一	Α
			'1'= 就绪	致。	
7	SWITCH_ERROR	EX	'0'= 无错误	如果置位,卡没有通过 SWITCH	В
			'1'= 切换错误	命令切换到期望的模式。	
6	保留				
5	APP_CMD	SR	'0'= 使能	卡期望 ACMD,或指示命令已经	С
			'1'= 失能	被解释为 ACMD 命令。	
4	保留				
3	AKE_SEQ_ERROR	ER	'0'= 无错误	仅针对 SD 存储卡。验证过程的	С
			'1'= 错误	顺序有错误。	
2	保留给与应用特定命令。				
[1:0]	保留给厂商测试模式。				

注意: 18, 17, 7 位仅适用于 MMC。14, 3 位仅适用于 SD 存储卡。

SD 状态寄存器

在 SD 状态寄存器中含有与 SD 存储卡的专有特征相关的状态位,并且可以被用于未来的特定应用使用。SD 状态寄存器是大小是一个数据块 512 比特。该寄存器的内容连同一个 16 位 CRC 通过 DAT 总线被发送到主机上。SD 状态通过 DAT 总线被发送到主机上,作为 ACMD13 的响应(CMD55 接着用 CMD13)。ACMD13 只能在"传送状态"被发送到存储卡(卡被选中)。SD 状态结构将在下面描述。

"类型"和"清除条件"的缩写与上述卡状态描述相同。

表 20-24. SD 状态

位	标识符	类型	数值	描述	清除条件
[511:	DAT_BUS_WIDTH	SR	'00'= 1 (默认)	由 SET_BUS_WIDTH 命令显示	Α
510]			'01'= 保留	当前定义的数据总线宽度	
			'10'= 4 位宽		
			'11'= 保留		
509	SECURED_MODE	SR	'0'= 未处于安全模	卡处于操作的安全模式(参考	Α
			式	"SD 安全规范")。	
			'1'= 处于安全模式		
[508:	保留				
496]					
[495:	SD_CARD_TYPE	SR	下列卡目前被定义	低8位在未来被用来定义SD存	Α
480]			为:	储卡的不同变种(每个位将定义	
			'0000'= 通用 SD	不同的 SD 卡类型)。高 8 位将	
			读/写卡	被用来定义不符合当前SD物理	
			'0001'= SD ROM	层规范的 SD 卡。	
			卡		
			'0002'= OTP		
[479:	SIZE_OF_PROTECT	SR	受保护区域的大	(见下面描述)	Α
448]	ED_AREA		小。		
[447:	SPEED_CLASS	SR	卡的速度类型。	(见下面描述)	Α
440]					
[439:	PERFORMANCE_M	SR	以 1MB/s 为单位的	(见下面描述)	Α
432]	OVE		传输性能。		
[431:	AU_SIZE	SR	AU 大小	(见下面描述)	Α
428]					
[427:	保留				
424]					
[423:	ERASE_SIZE	SR	一次要被擦除的	(见下面描述)	Α
408]			AU 数目。		
[407:	ERASE_TIMEOUT	SR	UNIT_OF_ERASE	(见下面描述)	Α
402]			_AU 指定的擦除区		
			域的超时时间。		
[401:	ERASE_OFFSET	SR	擦除时间增加固定	(见下面描述)	Α
400]			偏移值。		
[399:	保留				
312]					
[311:	保留给生产厂商				
0]					

SIZE_OF_PROTECTED_AREA

对于标准容量卡(SDSC)和高容量卡(SDHC/SDXC)设置该位域不同。

对于标准容量卡(SDSC),受保护区域容量计算方式如下:

受保护区域 = SIZE_OF_PROTECTED_AREA_* MULT * BLOCK_LEN。
SIZE_OF_PROTECTED_AREA 以 MULT*BLOCK_LEN 为单位。

对于高容量卡(SDHC/SDXC),受保护区域容量计算方式如下: 受保护区域 = SIZE_OF_PROTECTED_AREA 。 SIZE_OF_PROTECTED_AREA 以字节为单位。

SPEED_CLASS

这8位字段表示速度等级。

00h: Class 0 01h: Class 2 02h: Class 4 03h: Class 6 04h: Class 10 05h–FFh: 保留

PERFORMANCE_MOVE

这 8 位域指示 Pm,该值可被设为以 1MB/秒为单位。如果卡不用 RU 移动数据,应该认为 Pm 是无穷大。设置这个域为 FFh 表示无穷大。Pm 的最小值由表 20-25. 移动性能字段中定义。

表 20-25. 移动性能字段

PERFORMANCE_MOVE	数值定义
00h	顺序写入
01h	1 [MB/sec]
02h	2 [MB/sec]
FEh	254 [MB/sec]
FFh	无穷大

AU_SIZE

这 4 位字段指示 AU 大小,数值是 16K 字节为单位 2 的幂次的倍数。

表 20-26. AU_SIZE 字段

AU_SIZE	数值定义
0h	未定义
1h	16 KB
2h	32 KB
3h	64 KB
4h	128 KB
5h	256 KB
6h	512 KB
7h	1 MB
8h	2 MB
9h	4 MB

AU_SIZE	数值定义
Ah	8 MB
Bh	12 MB
Ch	16 MB
Dh	24 MB
Eh	32 MB
Fh	64 MB

最大 AU 大小,取决于卡的容量,由*表 20-26. AU SIZE 字段*中定义。卡可以任意的设置 AU 大小(由*表 20-27. 最大 AU 大小*定义),只要小于或等于该卡容量所允许的最大 AU 大小。卡应该尽可能小地设置 AU 尺寸。

表 20-27. 最大 AU 大小

卡容量	最大 64MB	最大 256MB	最大 512MB	最大 32GB	最大 2TB
最大 AU 大小	512 KB	1 MB	2 MB	4 MB	64MB

ERASE_SIZE

这 16 位字段表示 Nerase。当 Nerase 个数的 AU 被擦除,超时时间由 ERASE_TIMEOUT 规定(参考 ERASE_TIMEOUT)。主机应确定在一次操作中要被擦除的 AU 的适当数目,以便主机可以预示擦除操作的进度。如果该字段设置为 0,则不支持擦除的超时计算。

表 20-28. 擦除大小字段

ERASE_SIZE	数值定义
0000h	不支持擦除的超时计算。
0001h	1 AU
0002h	2 AU
0003h	3 AU
FFFFh	65535 AU

ERASE_TIMEOUT

这 6 位字段表示 T_{ERASE},当 ERASE_SIZE 指示的多个 AU 被擦除时,这个数值给出了从偏移量算起的擦除超时时间。ERASE_TIMEOUT 的范围可以被定义为最多 63 秒,卡的制造商可以 根 据 具 体 实 现 选 择 ERASE_SIZE 和 ERASE_TIMEOUT 的 任 意 组 合 。 一 旦 ERASE_TIMEOUT 被确定下来,那么 ERASE_SIZE 也确定了。主机可以通过以下公式计算任意数目的 AU 的擦除超时时间:

Erase timeout of X AU =
$$\frac{T_{ERASE}}{N_{ERASE}} * X + T_{OFFSET}$$
 ($\stackrel{\rightarrow}{\mathbb{Z}}$ 20-1)

表 20-29. 擦除超时字段

ERASE_TIMEOUT	数值定义	
00	不支持擦除的超时计算	
01	1秒	
02	2秒	

ERASE_TIMEOUT	数值定义		
03	3秒		
63	63 秒		

如果 ERASE SIZE 字段被设置为 0,则该字段应该设置为 0。

ERASE_OFFSET

这 2 位字段表示 Toffset,可以选择如<u>表 20-30. 擦除偏移字段</u>所示的四个数值之一。若 ERASE SIZE 和 ERASE TIMEOUT 字段都设为 0,该字段无意义。

表 20-30. 擦除偏移字段

ERASE_OFFSET	数值定义
0h	0秒
1h	1秒
2h	2秒
3h	3秒

20.6. 编程序列

20.6.1. 卡识别

主机复位后进入卡识别模式,寻找总线上的新卡。在卡识别模式下,主机复位所有的卡,验证工作电压范围,识别卡并询问每个卡的相对卡地址(RCA)。这个操作是在每个卡自己的命令信号线 CMD 上分别完成的。在卡识别模式中的所有数据通信只使用命令信号线(CMD)。

在卡识别过程中,卡应该工作在时钟频率为时钟速率 Fop (400 kHz)的情况下。

卡复位

命令 GO_IDLE_STATE(CMD0)是软件复位命令,并设置 MMC 和 SD 存储卡进入空闲状态(Idle State),不管当前卡的状态是什么。复位命令(CMD0)仅用于存储器或组合卡的存储器部分。为了重置只有 I/O 卡或组合卡的 I/O 部分,使用 CMD52 写 1 到 CCCR 的 RES 位。在非激活状态(Inactive State)的卡不受此命令的影响。

主机上电后,所有的卡都处于空闲状态(Idle State),包括之前已在非激活状态(Inactive State)的卡。上电或 CMD0 后,所有卡的 CMD 线处于输入模式,等待下一个命令的起始位。这些卡都是用缺省的相对卡地址(RCA)初始化,并用默认 400 kHz 的时钟频率驱动器。

工作电压范围验证

在主机和卡之间开始通信时,主机可能不知道卡支持的电压,并且卡可能不知道主机能否提供 其支持的电压。为了验证电压,下面的命令都在相关规范中定义。

在协议规范中定义的命令包括: SEND_OP_COND (CMD1 用于 MMC), SD_SEND_OP_COND (ACMD41 用于SD存储卡), IO_SEND_OP_COND (CMD5用于SD

I/O 卡),这些命令提供给主机一种机制去识别和拒绝那些不匹配主机所需的 V_{DD} 范围的卡。这是由主机发送所需的 V_{DD} 电压窗口作为此命令的操作数来实现的。如果卡不能在指定的范围内进行数据传输,必须从总线断开并进入非激活状态(Inactive State)。否则,该卡将响应返回它的 V_{DD} 范围。

如果该卡可以工作在所提供的电压下,响应将返回供电电压和在命令参数中设置的检查模式。

如果该卡不能在提供的电压下工作,它不返回响应,并保持在空闲状态。初始化 SDHC 卡时强制性的在 ACMD41 命令之前发送 CMD8。收到 CMD8 是让该卡知道主机支持物理层 2.00 协议及卡支持高版本的功能。

卡识别过程

对于不同的卡,卡的识别过程不同。这些卡包括 MMC、CE-ATA、SD,或 SD I/O 卡。支持所有类型的 SD I/O 卡,即 SDIO_IO_ONLY 卡、SDIO_MEM_ONLY 卡和 SDIO COMBO 卡。卡识别过程步骤如下:

- 1. 检测卡是否连接。
- 2. 识别卡的类型: SD 卡、MMC(CE-ATA)或 SD I/O 卡。
 - 发送 CMD5 命令。如果主机接收到响应,则是 SD I/O 卡;
 - 如果没有响应,发送 ACMD41。如果主机接收到响应,则是 SD 卡:
 - 否则,是 MMC 或者 CE-ATA 设备。
- 3. 根据卡的类型初始化卡。

使用 FoD (400 KHz)为时钟源,并按照下列命令顺序发送命令:

- SD 卡 发送 CMD0, ACMD41, CMD2, CMD3;
- SDHC 卡 发送 CMD0, CMD8, ACMD41, CMD2, CMD3;
- SD I/O 卡 如果卡没有存储器端口,发送 CMD52, CMD0, CMD5, CMD3; 否则,发送 CMD52, CMD0, CMD5, ACMD41, CMD11 (可选), CMD2, CMD3;
- MMC/CE-ATA 发送 CMD0, CMD1, CMD2, CMD3。
- 4. 识别 MMC/CE-ATA 设备。
 - CPU 应该通过发送 CMD8 查询 EXT_CSD 寄存器的 504 字节(S_CMD_SET)。如果第 4 位被设置为 1,则该设备支持 ATA 模式;
 - 如果支持 ATA 模式, CPU 应通过设置 EXT_CSD 寄存器的 191 字节(CMD_SET)的(第 4 位)ATA 位选择 ATA 模式,以激活使用 ATA 命令集。CPU 使用 SWITCH(CMD6)命令选择命令集;
 - 如果CE-ATA设备存在,FAST_IO(CMD39)和RW_MULTIPLE_REGISTER(CMD60) 命令将会成功,并且返回的数据将会是CE-ATA复位签名。

20.6.2. 无数据命令

发送任何无数据命令时,软件需要用适当的参数设置 SDIO_CMDCTL 寄存器和 SDIO_CMDAGMT 寄存器。通过这两个寄存器,主机形成命令,并将其发送到命令总线上。主 机通过 SDIO STAT 寄存器的错误标志来反映命令响应的错误。

当接收到响应时, 主机设置 SDIO STAT 寄存器 CMDRECV(CRC 校验通过)位或 CCRCERR

(CRC 校验失败)位为 1。短响应被复制到 SDIO_RESP0,而长响应被复制到所有四个响应 寄存器。SDIO_RESP3 寄存器的第 31 位代表的长响应的最高位,而 SDIO_RESP0 寄存器的第 0 位表示长响应最低位。

20.6.3. 单个数据块或多个数据块写

在发送块写入命令(CMD24 - CMD27)时,一个或多个数据块从主机传到卡。数据块由起始位(1位或4位低电平),数据块,CRC和结束位(1位或4位高电平)组成。如果CRC失败,则卡通过SDIO_DAT线指示传输失败,传送数据被丢弃而不写入,并且后续发送的数据块将被忽略。

如果主机传输的部分数据累积长度不是数据块对齐,并且块错位是不允许的(未设置 CSD 参数 WRITE_BLK_MISALIGN),卡将在第一个未对齐块的开始之前检测块错位错误(设置状态寄存器的 ADDRESS_ERROR 错误位),并同时忽略后续的数据传输。如果主机试图写一个写保护区的数据,写操作也将被终止。在这种情况下,卡将设置状态寄存器中 WP_VIOLATION 位。

设置 CID 和 CSD 寄存器不需要先设置块长度,传送的数据也通过 CRC 保护。如果 CSD 或 CID 寄存器的一部分被存储在 ROM 中,那么不可改变部分必须与接收缓冲区的对应部分相匹配。如果匹配失败,卡将报告一个错误同时不改变任何寄存器的内容。

一些卡可能需要很长的或者不可预测的时间写入一个数据块。接收一个数据块并完成 CRC 校验后,卡将开始写操作,如果写缓冲区已满则保持 DAT0 线拉低,并且无法通过新的命令 WRITE_BLOCK 接收新的数据。主机可以在任何时间用 SEND_STATUS 命令(CMD13)查 询卡的状态,并且卡将返回当前状态。状态位 READY_FOR_DATA 表示卡是否可以接受新的数据或写入操作是否仍在进行中。主机可以通过发出 CMD7 命令不选中该卡(选择另外的卡),将该卡置于断开状态(Disconnect State),并释放 DAT 信号线而不中断写操作。当重新选择卡,如果写操作仍在进行中并且写缓冲区不可用,它会拉低 DAT 信号线重新激活忙指示。

对于 SD 卡。设置一些块被预擦除(ACMD23)操作将使多块写操作比没有 ACMD23 操作更快。主机将使用此命令来定义下一次操作将会有多少个数据块被发送。

单块或多块写操作步骤为:

- 1. 在 SDIO_DATALEN 寄存器中设置数据大小(以字节为单位)。
- 2. 在 SDIO_DATACTL 寄存器中设置数据块大小(BLKSZ,以字节为单位); 主机每次发送 BLKSZ 大小的数据块。
- 3. 在 SDIO CMDAGMT 寄存器中设置数据应该被写入的地址。
- 4. 设置 SDIO_CMDCTL 寄存器。对于 SD 存储卡和 MMC 卡,使用 CMD24 命令为单块写和 CMD25 命令为多块写。对于 SD I/O 卡,使用 CMD53 命令来进行单块和多块传输。对于 CE-ATA,先用 CMD60 写 ATA 任务文件,然后使用 CMD61 命令写入数据。在写 CMD 寄存器之后,主机开始执行一个命令,当该命令被发送到总线时,CMDRECV 标志被设置。
- 5. 将数据写入 SDIO FIFO。
- 6. 软件应查询数据错误中断。如果需要,软件可以通过发送停止命令(CMD12)终止数据传输。
- 7. 当收到 DTEND 中断时,数据传送结束。对于开放式的块传输,如果字节计数为 0,则软件必须发送 STOP 命令。如果字节计数不为 0,则在给定的字节数传送结束时,主机应该发送停

止命令。

20.6.4. 单个数据块或多个数据块读

读数据块是基于块的数据传输。数据传输的基本单位是块,最大块大小在 CSD (READ_BL_LEN)中被定义,块的大小始终是 512 字节。如果 READ_BL_PARTIAL (在 CSD 中)被设置时,更小的块也可以被传输,其开始和结束地址被完全包含在 512 个字节的边界中。

CMD17(READ_SINGLE_BLOCK)表示开始读一个数据块,完成传输后卡返回发送状态。CMD18(READ_MULTIPLE_BLOCK)开始读连续的数据块。为了确保数据传输的完整性,每个数据块后都有一个 CRC 校验。

块长度由 CMD16 设置,可以设置为 512 字节而忽略 READ BL LEN 的设置。

数据块将不断传输,直到主机发出 STOP_TRANSMISSION 命令(CMD12)。由于串行命令传输原因,停止命令有一个执行的延迟。在停止命令的结束位之后停止数据传输。

当使用 CMD18 读到用户区的最后一个块时,主机应该忽略可能会出现的 OUT_OF_RANGE 错误,即使序列是正确的。

如果主机传输的部分块的累积长度不是块对齐并且不允许块错位,卡将在第一个未对齐块的开始检测出块错位,并设置状态寄存器的 ADDRESS_ERROR 错误位,中断传输和等待在数据状态的停止命令。

单块或多块读操作步骤为:

- 1. 在 SDIO DATALEN 寄存器中设置数据大小的字节数。
- 2. 在 SDIO_DATACTL 寄存器中设置块大小(BLKSZ)。主机每次从卡中读取 BLKSZ 大小的数据。
- 3. 在 SDIO CMDAGMT 寄存器中设置需要读取数据的开始地址。
- 4. 设置 SDIO_CMDCTL 寄存器。对于 SD 和 MMC 卡,使用 CMD17 用于单块读取和 CMD18 为多块读取。对于 SD I/O 卡,使用 CMD53 用于单块和多块传输。对于 CE-ATA,先用 CMD60 写 ATA 任务文件,然后使用 CMD61 来读取数据。设置 CMD 寄存器之后,主机开始执行该命令,当该命令被发送到总线时,CMDRECV 标志被设置。
- 5. 软件应查询数据错误中断。如果需要,软件可以通过发送停止命令(CMD12)终止数据传输。
- 6. 软件应从 FIFO 中读数据,并腾出 FIFO 的空间用于接收更多的数据。
- 7. 当收到 DTEND 中断时,软件应读出 FIFO 中剩余的数据。

20.6.5. 数据流写和数据流读 (仅适用于 MMC)

数据流写

数据流写(CMD20)开始从主机将数据传送到卡,从起始地址开始,直到主机发出停止命令。如果允许部分块传输(如果 CSD 参数 WRITE_BL_PARTIAL 被设置),数据流可以在卡地址空间内的任何地址启动和停止,否则应仅在块边界启动和停止。由于不预先确定要传输的数据量,CRC 不能使用。

如果主机提供了一个超出范围的地址作为参数传递给 CMD20,卡将拒绝该命令,留在传输状态,并将 ADDRESS OUT OF RANGE 置位。

需要注意的是数据流写命令只适用于 1 位总线配置 (DATO 信号线上)。如果 CMD20 在其它总 线配置中发出的,它被认为是非法的命令。

为了使卡保持在流模式的数据传输,接收数据所花费的时间(由总线时钟速率定义)必须比它需要写入到主存储器字段(由卡定义在 CSD 寄存器)的时间少。因此,流写入操作最大的时钟频率由下面给出的公式计算:

max write frequence = min
$$\left(\text{TRAN_SPEED}, \frac{8*2^{\text{WRITE_BL_LEN}} - 100*\text{NSAC}}{\text{TAAC*R2W_FACTOR}}\right)$$
 (式 20-2)

其中, TRAN SPEED: 最大的总线时钟频

WRITE BL LEN: 最大写数据块长度

NSAC: 以 CLK 周期计算的数据读访问时间 2

TAAC:数据读访问时间 1 R2W_FACTOR:写速度因子

所有的参数在 CSD 寄存器中定义。如果主机试图使用更高频率,卡可能不能够对数据进行处理,并将停止编程,同时忽略所有后续的数据传输并等待(在接收数据状态)一个停止指令。由于主机发送 CMD12,该卡将 TXURE 位置位并返回传输状态。

数据流读

由 READ_DAT_UNTIL_STOP(CMD11)控制数据流的数据传输。此命令指示卡从指定地址 发送数据,直到主机发送一个 STOP_TRANSMISSION(CMD12)命令。由于串行命令传输 停止的原因,命令有一个执行的延迟。停止命令的结束位之后数据传输停止。

如果主机提供了一个超出范围的地址作为参数传递给 CMD11,该卡将拒绝该命令,留在传输状态,并将 ADDRESS_OUT_OF_RANGE 位置位。

需要注意的是数据流读取命令只工作在 1 位总线配置 (DATO 信号线)。如果 CMD11 在其它总 线配置中发出的,它被认为是非法的命令。

如果数据传输的地址到达存储范围的结束处时,主机还没有发送停止命令,则后续传输的有效 载荷的内容是不确定的。由于主机发送 CMD12 命令,卡将 ADDRESS_OUT_OF_RANGE 位 置位并返回传输状态。

为了使卡保持在流模式的数据传输,传输数据所花费的时间(由总线时钟速率定义)必须比它需要从主存储器字段(在 CSD 寄存器中由卡定义)读出的时间少。因此,流读取操作最大的时钟频率由下面给出的公式计算:

max read frequence = min
$$\left(TRAN_SPEED, \frac{8*2^{READ_BL_LEN} - 100*NSAC}{TAAC*R2W_FACTOR} \right)$$
 ($\ddagger 20-3$)

其中,TRAN_SPEED:最大总线时钟频率

READ BL LEN: 最大读数据块长度

NSAC: 以 CLK 周期计算的数据读访问时间 2

TAAC:数据读访问时间 1 R2W FACTOR:写速度因子

所有的参数在 CSD 寄存器中定义。如果主机试图使用更高频率,卡可能不能够对数据进行处理,并将停止编程,同时忽略所有后续的数据传输并等待(在接收数据状态)一个停止指令。由于主机发送 CMD12,该卡将 RXORE 位置位并返回传输状态。

20.6.6. 擦除

MMC/SD 存储卡的可擦除单位是"擦除组",擦除组是以写数据块计算的,写数据块是卡的基本写入单元。擦除组的大小是一个卡特定的参数,在 CSD 中定义。

主机可以擦除连续范围的擦除组。开始擦除操作有三个步骤。首先,主机使用ERASE_GROUP_START (CMD35)/ERASE_WR_BLK_START (CMD32)命令定义了连续范围内的开始地址,然后使用 ERASE_GROUP_END (CMD36)/ERASE_WR_BLK_END (CMD33)命令定义了连续范围内的结束地址,最后发送 ERASE (CMD38)命令启动擦除操作。在擦除命令中的地址字段是以字节为单位的擦除组地址。卡会舍弃未与擦除组大小对齐的部分,把地址边界对齐到擦除组的边界。

如果未按照定义的步骤接收到擦除命令(CMD35, CMD36 和 CMD38),卡应设置状态寄存器的 ERASE_SEQ_ERROR 位,并重置整个序列。

如果主机提供了一个超出范围的地址作为参数传递给 CMD35 或 CMD36,卡将拒绝该命令,同时设置 ADDRESS OUT OF RANGE 位,并重置整个擦除序列。

如果收到"非擦除"命令(既不是 CMD35, CMD36, CMD38 也不是 CMD13), 卡应该设置 ERASE_RESET 位, 重置擦除序列并执行最后一个命令。

如果擦除范围包括写保护块,它们应不被擦除,只有非保护块被擦除。应设置状态寄存器的 WP ERASE SKIP 状态位。

如上所述,对于块写入,卡将通过保持 DATO 为低来指示擦除过程正在进行。实际擦除时间可能很长,主机可以发送 CMD7 命令以取消选择该卡。

20.6.7. 总线宽度选择

在主机已经验证了总线上的功能引脚后,卡初始化后可以改变总线宽度的配置。

对于 MMC 卡,使用 SWITCH 命令(CMD6)。总线宽度的配置是通过在 EXT_CSD 寄存器模式字段的 BUS_WIDTH 字节设置而改变的。上电或软件复位后,BUS_WIDTH 字节的内容为0x00。 如果主机试图写一个无效的值时, BUS_WIDTH 字节不会改变,同时设置 SWITCH_ERROR 位,另外该寄存器是只写的。

对于 SD 存储卡,使用 SET_BUS_WIDTH 命令(ACMD6)改变总线宽度。上电或 GO_IDLE_STATE 命令(CMD0)后默认总线宽度为 1 位。 SET_BUS_WIDTH(ACMD6)仅 在传送状态有效,这表明仅在由 SELECT/DESELECT_CARD (CMD7)命令选择卡之后总线宽度才可以改变。

20.6.8. 保护管理

为了允许主机保护数据,使得其不被擦除或改写,有三种卡保护方式:

CSD 寄存器用于卡保护 (可选的)

通过在 CSD 寄存器中设置永久或临时的写保护位,整个卡可以被写保护。一些卡通过设置 CSD 的 WP_GRP_ENABLE 位支持一组扇区的写保护。它的大小在 CSD 寄存器中的 WP_GRP_SIZE 单元定义。SET_WRITE_PROT 命令设置指定写保护组的写保护,CLR WRITE PROT 命令清除指定写保护组的写保护。

高容量 SD 存储卡不支持写保护,不响应写保护命令(CMD28, CMD29 和 CMD30)。

写保护开关 (SD 存储卡和 SD I/O 卡)

在卡的侧面有一个机械的滑动开关,提供给用户设置是否对卡进行写保护。如果滑动片处在窗口打开的位置表明该卡被写保护。如果在窗口关闭的位置则卡没有写保护。

Password Card Lock/Unlock Operation

卡密码上锁/解锁的保护方式在章节卡上锁/解锁操作中描述。

20.6.9. 卡上锁/解锁操作

密码保护的功能允许主机使用密码锁住卡,当解锁卡的时候也使用该密码。其中密码存储在 128 位的 PWD 寄存器当中,密码的长度存储在 PWD_LEN 的 8 位寄存器中。这些寄存器是非 易失性的,以至于电源开关不会清除他们。

已经上锁的卡支持所有的基本命令(class 0),ACMD41,CMD16 和锁卡命令(class 7)。因此主机可以对卡进行复位,初始化,选择,状态查询,但是无法获取卡上的数据。如果卡之前被设置过密码(PWD LEN的值为 0),卡在每次上电后会自动上锁。

与存在的 CSD 寄存器写命令相同,上锁/解锁命令也只在卡的传输态有效。这意味着,上锁/解锁命令不包含地址参数,且必须在使用该命令前卡必须被选中。

卡上锁/解锁命令与卡单块写命令有着相同的结构和总线事务类型。传输的数据块包含命令所有需要的信息(密码设置模式,密码本身,卡上锁/解锁等)。 <u>表 20-31. 上锁/解锁数据结构</u>为上锁/解锁命令的结构。

表 20-31. 上锁/解锁数据结构

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	保留(全设置为0)				ERASE	LOCK_UNLOCK	CLR_PWD	SET_PWD
1	PWDS	PWDS_LEN						
2								
	密码数	据(PW	D)					
PWDS_LEN+1								

ERASE: 该位为 1 时定义了强制擦除操作。字节 0 的位 3 将被设为 1 (其他位应为 0)。所有该命令的其他字节将被卡忽略。

LOCK/UNLOCK: 1 = 上锁,0 = 解锁。注意,此位可以和 SET_PWD 一起设置,不可以和 CLR PWD 一起设置。

CLR PWD: 1 = 清除 PWD.

SET_PWD: 1 = 设置新的密码到 PWD

PWDS_LEN: 定义密码长度(字节)。在改变密码的情况下,这个长度应该是新旧密码长度之和。密码长度可达 16 个字节。在密码替换的情况下,新旧密码长度总和可达 32 个字节。

密码数据(PWD):在设置一个新密码的情况下,它包含这个新的密码。如果修改密码,它包含旧的密码,后面是设置的新密码。

设置密码

- 如果卡之前未被选中,使用 CMD7 选中卡。
- 使用 CMD16 定义数据块长度,8 位卡上锁/解锁模式,8 位密码长度(字节为单位),新密码的字节数。在密码替换完成的情况下,块的大小应考虑新旧密码都会与命令一起被发送出去。
- 在数据线上,以合适的数据块大小发送卡上锁/解锁命令,包含 16 位的 CRC。数据块应指示模式(SET_PWD),密码长度(PWDS_LEN)和密码本身。在密码替换完成的情况下,密码长度值(PWDS_LEN)应为新旧密码长度之和,密码数据字段应包括旧的密码(当前使用),后面是新的密码。需要注意的是卡需要内部处理新密码长度的计算,通过从 PWDS LEN 字段减去旧密码长度。
- 当发送的旧密码不正确(大小和内容不相同),状态寄存器中的 LOCK_UNLOCK_FAILED 会被置位,并且旧的密码不会改变。如果发送的旧密码正确(大小和内容相同),新的密码数据及其长度会分别保存在 PWD 和 PWD LEN 中。

复位密码

- 如果卡之前未被选中,使用 CMD7 选中卡。
- 使用 CMD16 定义数据块长度,8 位卡上锁/解锁模式,8 位密码长度(字节为单位),当前使用的密码的字节数。
- 在数据线上,以合适的数据块大小发送卡上锁/解锁命令,包含 16 位的 CRC。数据块指示模式(SET_PWD),密码长度(PWDS_LEN)和密码本身。如果 PWD 和 PWD_LEN 的内容与发送的密码和其大小匹配,PWD 寄存器的内容会被清除,同时 PWD_LEN 被设为 0。如果密码不正确,状态寄存器中的 LOCK_UNLOCK_FAILED 会被置位。

卡上锁

- 如果卡之前未被选中,使用 CMD7 选中卡。
- 使用 CMD16 定义数据块长度,8 位卡上锁/解锁模式,8 位密码长度(字节为单位),当前 使用的密码的字节数。
- 在数据线上,以合适的数据块大小发送卡上锁/解锁命令,包含 16 位的 CRC。数据块指示 LOCK 模式,密码长度(PWDS_LEN)和密码本身。

如果 PWD 内容等于发送的密码,卡将会被上锁,并且状态寄存器中卡上锁状态位 (CARD_IS_LOCKED)会被置位。如果密码不正确,状态寄存器中 LOCK_UNLOCK_FAILED 会被置位。

卡解锁

- 如果卡之前未被选中,使用 CMD7 选中卡。
- 使用 CMD16 定义数据块长度,8 位卡上锁/解锁模式,8 位密码长度(字节为单位),当前

使用的密码的字节数。

● 在数据线上,以合适的数据块大小发送卡上锁/解锁命令,包含 16 位的 CRC。数据块指示 UNLOCK 模式,密码长度(PWDS LEN)和密码本身。

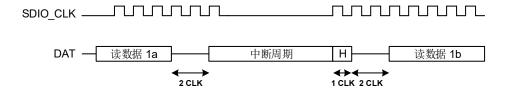
如果 PWD 内容等于发送的密码,卡将会被解锁,并且状态寄存器中卡上锁状态位 (CARD_IS_LOCKED)会被清除。如果密码不正确,状态寄存器中 LOCK_UNLOCK_FAILED 会被置位。

20.7. 特定操作

20.7.1. SD I/O 特定操作

SD I/O 卡(包括仅 IO 卡和组合卡) 支持这些特定操作:

读等待操作 暂停/恢复操作


中断

只有在 SDIO_DATACTL[11]位被设置时, SD I/O 才支持这些操作,但暂停读操作除外,因为它不需要特定的硬件实现。

SD I/O 读等待操作

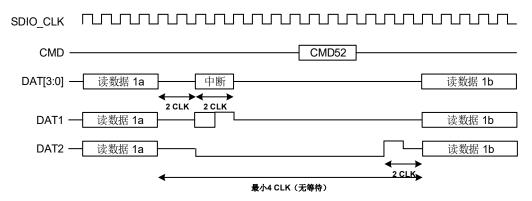
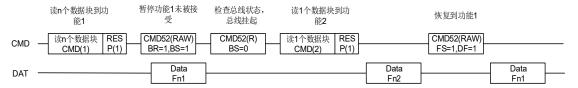

读等待(RW)操作是可选择的,仅用于 SD I/O 的 1 位和 4 位模式。读等待操作允许一个主机给卡在执行一个读多个块(CMD53)操作时发信号,以暂时停止数据传输,同时允许主机发送命令到 SD I/O 卡内任何功能函数。如果要判断一个卡是否支持读等待协议,主机应测试 CCCR的卡功能字节的 SRW 功能位。读等待时序是基于中断周期的。如果卡不支持读等待协议,只能表明主机在读取多个命令控制 SDIO_CLK 时已经暂停(不中止)数据。这种方法的局限是,随着时钟停止,主机不能发出任何命令,所以在延迟期间不能执行其他操作。支持读等待的卡是强制性支持暂停和恢复的。图 20-12. 通过停止 SDIO_CLK 的读等待操作和图 20-13. 使用SDIO_DAT[2]信号线的读等待操作</u>所示为通过停止 SDIO_CLK 和使用 SDIO_DAT[2]读等待模式。

图 20-12. 通过停止 SDIO_CLK 的读等待操作

图 20-13. 使用 SDIO_DAT[2]信号线的读等待操作


在接收到数据块之前就可以开始读等待: 当数据单元使能(设置 SDIO_DATACTL[0]位), SD I/O 特定操作使能(设置 SDIO_DATACTL[11]位), 开始读等待(SDIO_DATACTL[10] = 0 并且 SDIO_DATACTL[8] = 1), 数据方向为从卡到 SD I/O 主机 (SDIO_DATACTL[1] = 1), DSM 直接从空闲状态到读等待状态。在读等待时,2个 SDIO_CLK 时钟周期后,DSM 驱动 SDIO_DAT[2]为 0。在这种状态下,当设置了 RWSTOP 位(SDIO_DATACTL[9])时,DSM 会在等待状态多停留 2个 SDIO_CLK 时钟周期,并在一个时钟周期中驱动 SDIO_DAT[2]为 1。然后 DSM 再次开始等待直到从卡里接收到数据。在接收数据块时,即使设置了开始读等待,DSM 也不会开始一个读等待间隔,读等待将在收到 CRC 后开始。必须清除 RWSTOP 才能开始新的读等待操作。在读等待期间,SDIO 主机可以在 SDIO_DAT[1]上监测 SD I/O 中断。

SD I/O 暂停/恢复操作

对于多功能 SD I/O 或组合卡,它们有多个设备(I/O 和存储)共享 SD 总线。为了允许主机同时访问多个设备,SD I/O 和组合卡可以实现可选的暂停/恢复操作。如果卡支持暂停/恢复,为了给其他的功能或者存储器提供更高优先级的传输而释放总线,主机可以暂停某个功能或者存储器的数据传输。一旦高优先级的传输完成后,原来的传输在暂停处重新开始。

图 20-14. 在功能 1 的多块读周期期间插入功能 2 读周期显示第一次暂停请求没有立即接受的条件。然后主机检查一个读请求的状态,并确定该总线已被释放(BS=0)。此时,功能 2 的读操作被启动。一旦读取单个块完成,恢复发送功能,从而恢复数据传输(DF=1)。

图 20-14. 在功能 1 的多块读周期期间插入功能 2 读周期

当主机向卡发送数据时,主机可以暂停写操作。设置 SDIO_CMDCTL[11]位并指示 CSM 当前的命令是一个暂停命令。CSM 分析响应,当从卡收到响应时(暂停被接受),它确认 DSM 在收到当前数据块的 CRC 后进入空闲状态。

为了暂停读操作,DSM 在 WaitR 状态等待,在停止数据传输之前,当功能被挂起时一个完整的数据包。随后应用程序继续读出接收 FIFO 直到 FIFO 为空,最后 DSM 自动地进入空闲状态。

中断

为了允许 SD I/O 卡中断主机,SD 接口增加了一个中断功能的引脚。在 4 位模式下,引脚 8 被用作 SDIO_DAT[1],它被用于卡到主机的中断信号。对于每张卡中断的功能是可选的。SD I/O 中断"电平敏感",即中断线应保持有效(低)直到卡要么被主机认可并采取行动,要么或者由于中断周期结束而解除有效状态。一旦主机服务中断,通过函数的唯一 I/O 操作清除中断。

当设置 SDIO DATACTL[11]位, SD I/O 中断可以在 SDIO DAT[1]信号线上检测到。

图 20-15. 读中断周期时序显示单个数据读周期的中断周期时序。

图 20-15. 读中断周期时序

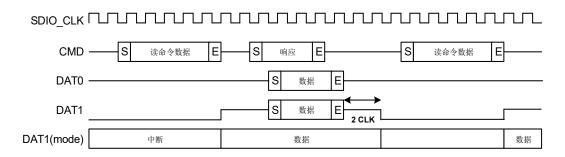
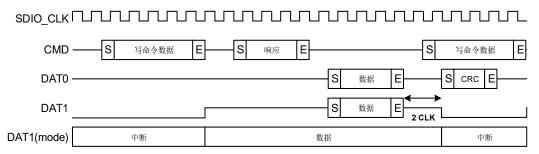
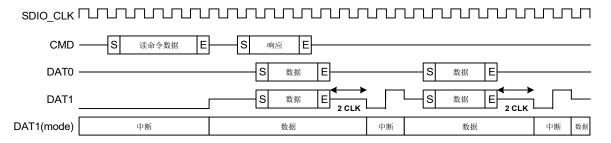




图 20-16. 写中断周期时序

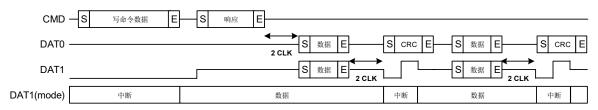

当在 4 位 SD 模式传送数据的多个块时,需要中断周期的特定的定义。为了运行通信的最高速度,中断周期限制在 2 个时钟周期。卡如果想向主机发送一个中断信号,应该在第一个时钟周期设置 DAT1 为低,第二个时钟周期设置 DAT1 为高。然后卡应释放 DAT1 进入 Hi-Z 状态。图 20-17. 4 位模式下多块读中断周期时序显示了 4 位的多块读取时中断操作,图 20-18. 4 位模式下多块写中断周期时序显示了 4 位的多块写入时的中断操作。

图 20-17. 4 位模式下多块读中断周期时序

图 20-18. 4 位模式下多块写中断周期时序

20.7.2. CE-ATA 特定操作

CE-ATA 设备支持下述特定操作:

接收命令完成信号 发送命令完成关闭信号

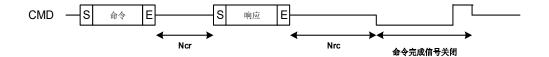
只有当设置了 SDIO CMDCTL[14]位时, SDIO 才支持这些操作。

命令完成信号

CE-ATA 定义了命令完成信号,设备使用该信号通知主机正常 ATA 命令完成或者由于设备遇到一个错误条件,ATA 命令终止。

如果"启用 CMD 完成"位 SDIO_CMDCTL[12]被设置并且"不中断使能'位 SDIO_CMDCTL[13]被设置, CSM 等待在 Waitcompl 状态的命令完成信号。

当在 CMD 线上接收到起始位,CSM 进入空闲状态。在 7 位周期之内不能发送新的命令。然后,在 5 个时钟周期内,把 CMD 信号变为 1 (推挽模式)。


在主机从设备检测到一个命令完成信号之后,应该发送 FAST_IO (CMD39) 命令来读取 ATA 状态寄存器以确定 ATA 命令的结束状态。

命令完成关闭信号

主机可以通过发送命令完成关闭信号来取消设备返回命令完成信号的功能。只有当主机在发送RW_MULTIPLE_BLOCK (CMD61)之后接收到 R1b 响应后才能发送命令完成关闭信号。

如果未设置 SDIO_CMDCTL[12]中的"使能命令完成信号"并且重置了 SDIO_CMDCTL[13]中的"非中断使能位",则在收到一个短响应后的 8 位周期之后,发出命令完成关闭信号。

图 20-19. 命令完成信号关闭操作

20.8. SDIO 寄存器

SDIO 基地址: 0x4001 8000

20.8.1. 电源控制寄存器 (SDIO_PWRCTL)

地址偏移: 0x00

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留													PWRC	TL[1:0]

rw

位/位域	名称	描述
31:2	保留	必须保持复位值。
1:0	PWRCTL[1:0]	SDIO 电源控制位 这些位控制 SDIO 状态,卡输入或输出。 00: SDIO 电源关闭: SDIO CSM/DSM 复位到 IDLE,卡的时钟停止,没有命令/数据输出到卡
		01: 保留 10: 保留 11: SDIO 上电

注意: 两次对该寄存器写访问之间,需要至少 3 个 SDIOCLK 和 2 个 PCLK2 时钟周期,用于同步寄存器 到 SDIOCLK 时钟域。

20.8.2. 时钟控制寄存器 (SDIO_CLKCTL)

地址偏移: 0x04

复位值: 0x0000 0000

该寄存器控制输出时钟 SDIO_CLK。 该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DIV[8]								保留							
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	HWCLKE	CLKEDG	DUGMO	DE(1:01		CLKPWR	CLKEN				DIVI	7.01			
休田	图 N E		BUSMODE[1:0] CLKBYF		CLKBTP	SAV	CLKEN				DIV	.7:0]			
	rw	rw	r	N	rw	rw	rw	rw							

位/位域	名称	描述
31	DIV[8]	时钟分频系数的最高位 这个域定义了输入时钟(SDIOCLK)与输出时钟间的分频系数的最高位,参考 SDIO_CLKCTL 寄存器的 0 到 7 位。
30:15	保留	必须保持复位值。
14	HWCLKEN	硬件时钟控制使能位 如果该位置位,根据系统总线是否非常忙,硬件控制 SDIO_CLK 开/关。由于硬件可以在快要下溢/上溢时关闭 SDIO_CLK,所以当该位被置位时不会有下溢/上溢错误。 0: 关闭硬件时钟控制 1: 开启硬件时钟控制
13	CLKEDGE	SDIO_CLK 时钟边沿选择位 0: 选择 SDIOCLK 的上升沿产生 SDIO_CLK 1: 选择 SDIOCLK 的下降沿产生 SDIO_CLK
12:11	BUSMODE[1:0]	SDIO 卡总线模式控制位 00: 1 位 SDIO 卡总线模式 01: 4 位 SDIO 卡总线模式 10: 8 位 SDIO 卡总线模式
10	CLKBYP	旁路时钟使能位 该位定义了 SDIO_CLK 直接来自于 SDIOCLK 或是 SDIOCLK 分频。 0: 无旁路, SDIO_CLK 时钟参考 SDIO_CLKCTL 寄存器的 DIV 位域 1: 旁路时钟, SDIO_CLK 时钟直接为 SDIOCLK (SDIOCLK/1)
9	CLKPWRSAV	SDIO_CLK 时钟动态开启/关闭以节省功耗 该位在总线空闲的时候,控制 SDIO_CLK 时钟动态开启/关闭以节省功耗。 0: SDIO_CLK 时钟总是开启 1: SDIO_CLK 时钟在总线空闲时关闭
8	CLKEN	SDIO_CLK 时钟输出使能位 0: 关闭 SDIO_CLK 1: 开启 SDIO_CLK
7:0	DIV[7:0]	时钟分频 该个域和 DIV[8]位定义了分频因子来向卡产生 SDIO_CLK 时钟。如果 CLKBYP 位 为 0,SDIO_CLK 是由 SDIOCLK 分频得到,并且 SDIO_CLK 频率= SDIOCLK / (DIV[8:0] + 2)。

注意: 两次对该寄存器写访问之间,需要至少 3 个 SDIOCLK 和 2 个 PCLK2 时钟周期,用于同步寄存器 到 SDIOCLK 时钟域。

20.8.3. 命令参数寄存器(SDIO_CMDAGMT)

地址偏移: 0x08

复位值: 0x0000 0000

该寄存器定义了32位命令参数,这些参数将被用作于命令的一部分(位39到位8) 该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	CMDAGMT[31:16]														
·	rw														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												0		
	CMDAGMT[15:0]														

位/位域 名称 描述

31:0 CMDAGMT[31:0] SDIO 卡命令参数

> 这个域定义了将被发送到卡的 SDIO 卡命令参数。这个域是命令消息的位[39:8]。如 果命令消息包含一个参数,在发送命令时,这个域应该在写 SDIO_CMDCTL 寄存 器前更新。

命令控制寄存器 (SDIO_CMDCTL) 20.8.4.

地址偏移: 0x0C

复位值: 0x0000 0000

SDIO_CMDCTL 寄存器包含命令索引和其他命令控制位来控制命令状态机(CSM)。

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	韶							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	ATAEN	NINTEN	ENCMDC	SUSPEN D	CSMEN	WAITDE	INTWAIT	CMDRE	SP[1:0]			CMDI	DX[5:0]		

位/位域	名称	描述
31:15	保留	必须保持复位值。
14	ATAEN	CE-ATA 命令使能(仅用于 CE-ATA) 如果该位置位,主机进入 CE-ATA 模式,并且 CSM 传输 CMD61。 0: CE-ATA 失能 1: CE-ATA 使能
13	NINTEN	无 CE-ATA 中断(仅用于 CE-ATA) 该位定义了有无 CE-ATA 中断。该位仅用于 CE-ATA 卡的情况。 0: CE-ATA 中断使能 1: CE_ATA 中断失能
12	ENCMDC	使能命令完成信号(仅用于 CE-ATA)

GigaDevice		GD32F403xx 用尸手册
		该位定义了在 CE-ATA 上有无命令完成信号。 0: 无命令完成信号 1: 有命令完成信号
11	SUSPEND	SD I/O 暂停命令(仅用于 SD I/O) 该位定义了 CSM 是否发送了暂停命令。该位仅用于 SDIO 卡。 0: 无影响 1: 暂停命令
10	CSMEN	命令状态机(CSM)使能位 0: 命令状态机失能(停留在 CS_Idle) 1: 命令状态机使能
9	WAITDEND	等待数据传输结束 如果该位置位,命令状态机开始发送命令前需要等待数据传输结束。 0: 无影响 1: 等待数据传输结束
8	INTWAIT	中断等待超时 该位定义了命令状态机在 CS_Wait 状态等待卡中断。如果该位被置位,无命令等待 超时生成。 0: 无等待中断 1: 等待中断
7:6	CMDRESP[1:0]	命令响应类型位 这些位定义了发送一个命令消息后的响应类型。 00: 无响应 01: 短响应 10: 无响应 11: 长响应
5:0	CMDIDX[5:0]	命令索引 这个域定义了将被发送到 SDIO 卡的命令索引。
	注意: 两次对该寄 到 SDIOCLK 时钟:	存器写访问之间,需要至少3个 SDIOCLK 和2个 PCLK2 时钟周期,用于同步寄存器域。
20.8.5.	命令索引响应	寄存器 (SDIO_RSPCMDIDX)
	地址偏移: 0x10 复位值: 0x0000	

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16

 保留

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 保留

RSPCMDIDX[5:0]

该寄存器只能按字(32位)访问

5:0

 位/位域
 名称
 描述

 31:6
 保留
 必须保持复位值。

RSPCMDIDX[5:0]

只读位域。这个域包含收到的最后命令响应的命令索引。如果响应没有命令索引 (R3 的长响应和短响应),这个寄存器的内容是不未定义的。

20.8.6. 响应寄存器 (SDIO_RESPx x=0..3)

地址偏移: 0x14+(4*x), x=0..3

复位值: 0x0000 0000

这些寄存器包含最后收到的卡响应的内容。

最后响应的命令索引

该寄存器只能按字(32位)访问

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESPx[31:16]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESPx[15:0]

r

位/位域 名称 描述

31:0 RESPx[31:0] 卡状态。响应内容由表 20-32. 不同响应类型对应的 SDIO RESPx 寄存器所示。

短响应为 32 位,长响应为 127 位 (位 128 是结束位 0)。

表 20-32. 不同响应类型对应的 SDIO_RESPx 寄存器

寄存器	短响应	长响应
SDIO_RESP0	卡响应 [31:0]	卡响应 [127:96]
SDIO_RESP1	保留	卡响应 [95:64]
SDIO_RESP2	保留	卡响应 [63:32]
SDIO_RESP3	保留	卡响应 [31:1], 加上位 0

20.8.7. 数据超时寄存器 (SDIO_DATATO)

地址偏移: 0x24

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DATATO[31:16]														
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DATATO[15:0]														

おおき

力粉

rw

位/位域	名称	描述
31:0	DATATO[31:0]	数据超时时间
		这些位定义了数据超时时间,由 SDIO_CLK 计数。当 DSM 进入 WaitR 或 BUSY
		状态,该寄存器的值加载到内部计数器开始递减。DSM 超时并进入空闲状态,当计
		数器的值减至 0 时设置 DTTMOUT 标志。

注意: 当需要数据传输时,数据定时器寄存器和数据长度寄存器应在写数据控制寄存器前更新。

20.8.8. 数据长度寄存器 (SDIO_DATALEN)

地址偏移: 0x28

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

44.出

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保留				DATALEN[24:16]								
	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATALE	EN[15:0]							

rw

12/12/12/12	名称	烟 坯
31:25	保留	必须保持复位值。
24:0	DATALEN[24:0]	数据传输长度 该寄存器定义了需要传输的字节数。当数据传输开始时,数据计数器加载到这个寄 存器并开始递减。

注意: 如果选择了数据块传输,该寄存器的内容应该为块大小的倍数(参考 SDIO_DATACTL 寄存器)。 当需要数据传输时,数据定时器寄存器和数据长度寄存器应在写数据控制寄存器前更新。

20.8.9. 数据控制寄存器 (SDIO_DATACTL)

地址偏移: 0x2C

复位值: 0x0000 0000

该寄存器控制 DSM。该寄存器只能按字(32 位)访问

31	30	29	20	21	20	25	24	23	22	21	20	19	10	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留		IOEN	RWTYPE	RWSTOP	RWEN		BLKS	SZ[3:0]		DMAEN	TRANSM OD	DATADIR	DATAEN
				rw	rw	rw	rw		r	w		rw	rw	rw	rw

位/位域	名称	描述
31:12	保留	必须保持复位值。
11	IOEN	SD I/O 特定功能使能(仅用于 SD I/O) 0:未使能 SD I/O 特定功能 1:使能 SD I/O 特定功能
10	RWTYPE	读等待类型(仅用于 SD I/O) 0:使用 SDIO_DAT[2] 控制读等待 1:通过停止 SDIO_CLK 控制读等待
9	RWSTOP	读等待停止(仅用于 SD I/O) 0: 无影响 1: 如果 RWEN 位被置位,停止读等待过程
8	RWEN	读等待模式使能(仅用于 SD I/O) 0: 读等待模式失能 1: 读等待模式使能
7:4	BLKSZ[3:0]	数据块大小 这些位定义了当数据传输是块传输时数据块的大小。 0000: 块大小 = 2 ⁰ = 1 字节 0001: 块大小 = 2 ¹ = 2 字节 0010: 块大小 = 2 ² = 4 字节 0011: 块大小 = 2 ³ = 8 字节 0100: 块大小 = 2 ⁴ = 16 字节 0101: 块大小 = 2 ⁵ = 32 字节 0110: 块大小 = 2 ⁶ = 64 字节 0111: 块大小 = 2 ⁷ = 128 字节 1000: 块大小 = 2 ⁸ = 256 字节 1001: 块大小 = 2 ⁹ = 512 字节 1011: 块大小 = 2 ¹⁰ = 1024 字节 1011: 块大小 = 2 ¹¹ = 2048 字节 1100: 块大小 = 2 ¹² = 4096 字节 1101: 块大小 = 2 ¹³ = 8192 字节 1111: 保留
3	DMAEN	DMA 使能位 0: DMA 失能 1: DMA 使能
2	TRANSMOD	数据传输模式 0: 块传输模式 1: 流传输或 SDIO 多字节传输模式
1	DATADIR	数据传输方向 0: 写数据到卡上

1: 从卡中读取数据

0 DATAEN

数据传输使能位

写 1 到该位开启数据传输不管该位为 0 或 1。如果 RWEN 置位,DSM 进入到读等待状态,或者根据 DATADIR 位 DSM 进入 WaitS 或 WaitR 状态。

开始一个新的数据传输,不需要清该位为0。

注意: 两次对该寄存器写访问之间,需要至少 3 个 SDIOCLK 和 2 个 PCLK2 时钟周期,用于同步寄存器到 SDIOCLK 时钟域。

20.8.10. 数据计数寄存器 (SDIO_DATACNT)

地址偏移: 0x30

复位值: 0x0000 0000

该寄存器为只读类型。当 DSM 从空闲状态进入 WaitR 或者 WaitS 时,该寄存器从数据长度寄存器(SDIO_DATALEN)加载数值。随着数据传输,数值不断递减直至为 0,随后 DSM 进入空闲状态并设置数据结束标志 DTEND。

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			保留				DATACNT[24:16]										
											r						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							DATACI	NT[15:0]									

r

位/位域	名称	描述
31:25	保留	必须保持复位值。
24:0	DATACNT[24:0]	数据计数值
		只读位域。当读取这些位时,返回待传输剩余数据的字节数。

20.8.11. 状态寄存器 (SDIO_STAT)

地址偏移: 0x34

复位值: 0x0000 0000

该寄存器为只读类型。下面描述标志的类型:

位[23:22, 10:0]的标志只能通过向中断清除寄存器(SDIO_INTC)中相应的位写'1'清除。

位[21:11]的标志是根据硬件逻辑而发送变化的。

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保	留				ATAEND	SDIOINT	RXDTVA L	TXDTVAL	RFE	TFE	RFF	TFF
								r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

GD32F403xx 用户手册

RFH	TFH	RXRUN	TXRUN	CMDRUN	DTBLKE	STBITE	DTEND	CMDSEN	CMDREC	RXORE	TXURE	DTTMOU	CMDTMO	DTCRCE	CCRCER
KFП	IFF	KARUN	IARUN	CWIDRUN	ND	SIBILE	DIEND	D	V	RAURE	IXURE	Т	UT	RR	R

位/位域	名称	描述
31:24	保留	必须保持复位值。
23	ATAEND	CE-ATA 命令完成信号已接收(仅用于 CMD61)
22	SDIOINT	SD I/O 中断已接收
21	RXDTVAL	接收 FIFO 中的数据有效
20	TXDTVAL	发送 FIFO 中的数据有效
19	RFE	接收 FIFO 为空
18	TFE	发送 FIFO 为空,当硬件流控制使能,并且 FIFO 中包含 2 个字时,TFE 信号变得有效。
17	RFF	接收 FIFO 为满,当硬件流控制使能,RFF 信号在 FIFO 差 2 个字就满时变得有效。
16	TFF	发送 FIFO 为满
15	RFH	接收 FIFO 半满: FIFO 中至少还有 8 个字可被读取
14	TFH	发送 FIFO 半空: 至少还有 8 个字可被写入到 FIFO 中
13	RXRUN	正在接收数据
12	TXRUN	正在传输数据
11	CMDRUN	正在传输命令
10	DTBLKEND	数据块已发送/已接收(CRC 检测通过)
9	STBITE	总线上起始位错误
8	DTEND	数据结束(数据计数器,SDIO_DATACNT 为零)
7	CMDSEND	命令已发送(不需响应)
6	CMDRECV	命令响应已接收(CRC 检测通过)
5	RXORE	接收 FIFO 上溢错误发生
4	TXURE	发送 FIFO 下溢错误发生
3	DTTMOUT	数据超时,数据超时时间取决于 SDIO_DATATO 寄存器。
2	CMDTMOUT	命令响应超时,命令超时时间为64个SDIO_CLK时钟周期的固定值。
1	DTCRCERR	数据块已发送/已接收(CRC 检测失败)
0	CCRCERR	命令响应已接收(CRC 检测失败)

20.8.12. 中断清除寄存器 (SDIO_INTC)

地址偏移: 0x38

复位值: 0x0000 0000

该寄存器为只读。对该寄存器的位写 1 可以清除 SDIO_STAT 寄存器中相应的状态位。该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			/m	r\$r1				ATAEND	SDIOINT			/m	ı ıSm		
			保	田				С	С			1末	留		
								w	w						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		In ian			DTBLKE	OTDITEO	DTENDO		CMDREC	DVODEO	TYLIDEO	DTTMOU	СМДТМО	DTCRCE	CCRCER
		保留			NDC	STBITEC	DIENDC	DC	VC	RXOREC	TXUREC	TC	UTC	RRC	RC
					\A/	14/	W/	\M/	\A/	W	\M/	14/	w	\M/	w

位/位域	名称	描述
31:24	保留	必须保持复位值。
23	ATAENDC	ATAEND 标志清除位 写 1 清除标志。
22	SDIOINTC	SDIOINT 标志清除位 写 1 清除标志。
21:11	保留	必须保持复位值。
10	DTBLKENDC	DTBLKEND 标志清除位 写 1 清除标志。
9	STBITEC	STBITE 标志清除位 写 1 清除标志。
8	DTENDC	DTEND 标志清除位 写 1 清除标志。
7	CMDSENDC	CMDSEND 标志清除位 写 1 清除标志。
6	CMDRECVC	CMDRECV 标志清除位 写 1 清除标志。
5	RXOREC	RXORE 标志清除位 写 1 清除标志。
4	TXUREC	TXURE 标志清除位 写 1 清除标志。
3	DTTMOUTC	DTTMOUT 标志清除位 写 1 清除标志。

2	CMDTMOUTC	CMDTMOUT 标志清除位 写 1 清除标志。
1	DTCRCERRC	DTCRCERR 标志清除位 写 1 清除标志。
0	CCRCERRC	CCRCERR 标志清除位 写 1 清除标志。

20.8.13. 中断使能寄存器 (SDIO_INTEN)

地址偏移: 0x3C

复位值: 0x0000 0000

该寄存器使能 SDIO_STAT 寄存器中相应状态位的中断。该寄存器只能按字(32 位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			/==	1303				ATAENDI	SDIOINTI	RXDTVA	TXDTVAL	RFEIE	TFEIE	RFFIE	TFFIE
			保	田				Е	E	LIE	IE	KFEIE	IFEIE	KFFIE	IFFIE
								rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DELUE	TELLE	DVDUNIE		CMDRUN	DTBLKE		DTENDIE	CMDSEN	CMDREC			DTTMOU	СМДТМО	DTCRCE	CCRCER
RFHIE	TFHIE	RXRUNIE	TXRUNIE	IE	NDIE	SIBILEIE	DTENDIE	DIE	VIE	RXOREIE	TXUREIE	TIE	UTIE	RRIE	RIE
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:24	保留	必须保持复位值。
23	ATAENDIE	CE-ATA 命令完成信号已接收中断使能写 1 使能中断。
22	SDIOINTIE	SD I/O 中断已接收中断使能 写 1 使能中断。
21	RXDTVALIE	接收 FIFO 中的数据有效中断使能 写 1 使能中断。
20	TXDTVALIE	发送 FIFO 中的数据有效中断使能 写 1 使能中断。
19	RFEIE	接收 FIFO 空中断使能 写 1 使能中断。
18	TFEIE	发送 FIFO 空中断使能 写 1 使能中断。
17	RFFIE	接收 FIFO 满中断使能 写 1 使能中断。
16	TFFIE	发送 FIFO 满中断使能写 1 使能中断。

15	RFHIE	接收 FIFO 半满中断使能 写 1 使能中断。	
14	TFHIE	发送 FIFO 半满中断使能 写 1 使能中断。	
13	RXRUNIE	正在接收数据中断使能 写 1 使能中断。	
12	TXRUNIE	正在传输数据中断使能 写 1 使能中断。	
11	CMDRUNIE	正在传输命令中断使能 写 1 使能中断。	
10	DTBLKENDIE	数据块已发送/已接收中断使能 写 1 使能中断。	
9	STBITEIE	起始位错误中断使能 写 1 使能中断。	
8	DTENDIE	数据结束中断使能 写 1 使能中断。	
7	CMDSENDIE	命令已发送中断使能 写 1 使能中断。	
6	CMDRECVIE	命令响应已接收中断使能 写 1 使能中断。	
5	RXOREIE	接收 FIFO 上溢错误中断使能 写 1 使能中断。	
4	TXUREIE	发送 FIFO 下溢错误中断使能 写 1 使能中断。	
3	DTTMOUTIE	数据超时中断使能 写 1 使能中断。	
2	CMDTMOUTIE	命令响应超时中断使能 写 1 使能中断。	
1	DTCRCERRIE	数据 CRC 错误中断使能 写 1 使能中断。	
0	CCRCERRIE	命令响应 CRC 错误中断使能 写 1 使能中断。	

20.8.14. FIFO 计数寄存器 (SDIO_FIFOCNT)

地址偏移: 0x48

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			保	留	FIFOCNT[23:16]										
												r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FIFOCN	NT[15:0]							

r

位/位域	名称	描述
31:24	保留	必须保持复位值。
23:0	FIFOCNT[23:0]	FIFO 计数器
		这些位定义了从 FIFO 中读取或写入到 FIFO 剩余的字数。当 DATAEN 置位时,它
		加载数据长度寄存器的值(如果 SDIO_DATALEN 是字对齐时,该值为
		SDIO_DATALEN[24:2];如果 SDIO_DATALEN 不是字对齐,该值为
		SDIO_DATALEN[24:2]+1),然后当写一个字到 FIFO 或从 FIFO 中读取一个字
		时,开始递减计数。

20.8.15. FIFO 数据寄存器 (SDIO_FIFO)

地址偏移: 0x80

复位值: 0x0000 0000

该寄存器占用了 32 个 32 位的字, 地址偏移从 0x80 到 0xFC。

该寄存器只能按字(32位)访问

据。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	FIFODT[31:16]														
	rw														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
	FIFODT[15:0]														

rw

 位/位域
 名称
 描述

 31:0
 FIFODT[31:0]
 接收 FIFO 数据或发送 FIFO 数据

 这些位为接收 FIFO 或发送 FIFO 的数据。读或写该寄存器相当于对 FIFO 读或写数

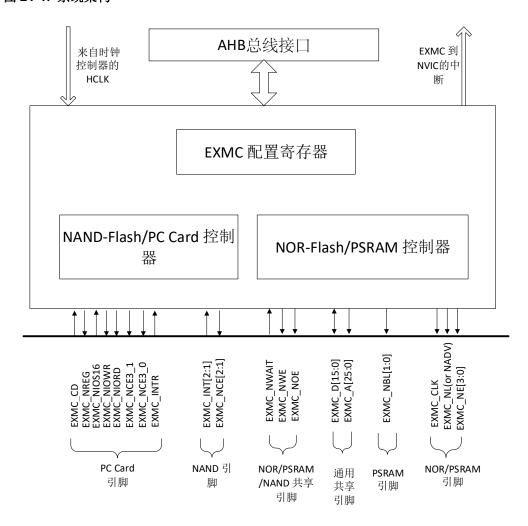
21. 外部存储器控制器(EXMC)

21.1. 简介

外部存储器控制器EXMC,用来访问各种片外存储器,通过配置寄存器,EXMC可以把AMBA协议转换为专用的片外存储器通信协议,包括SRAM,ROM,NOR Flash,NAND Flash,PC卡。用户还可以调整配置寄存器中的时间参数来提高通信效率。EXMC的访问空间被划分为许多个块(Bank),每个块支持特定的存储器类型,用户可以通过对Bank的控制寄存器配置来控制外部存储器。

21.2. 主要特性

- 支持片外存储器类型:
 - SRAM:
 - PSRAM;
 - ROM:
 - NOR Flash;
 - 8 位或 16 位 NAND Flash;
 - 16 位 PC Card;
- AMBA 协议与各种片外存储器协议转换;
- 时序参数可编程可以满足用户特定需求;
- 每个 Bank 有独立的片选信号;
- 对于部分存储器类型支持独立的读写时序;
- 对于 NAND Flash 内置硬件 ECC;
- 支持8位,或16位总线带宽;
- NOR Flash 和 PSRAM 支持地址总线和数据总线的复用;
- 提供写使能和字节选择信号:
- 当 AMBA 总线宽度与外部存储器数据宽度不同时,会自动分割操作。

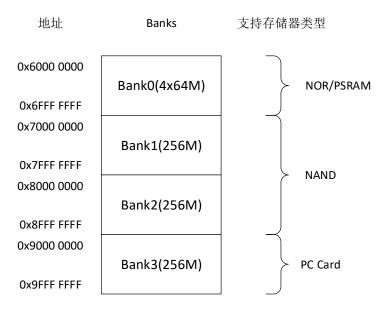

21.3. 功能描述

21.3.1. 结构框图

EXMC由5个模块组成:AHB总线接口,EXMC配置寄存器,NOR/PSRAM控制器,NAND/PC Card控制器和外部设备接口。AHB时钟(HCLK)是参考时钟。

图 21-1. 系统架构

21.3.2. EXMC 访问基本规范


EXMC是AHB总线至外部设备协议的转换接口。32位的AHB读写操作可以转化为几个连续的8位或16位读写操作。在数据传输的过程中,AHB数据宽度和存储器数据宽度可能不相同。为了保证数据传输的一致性,EXMC读写访问需要遵从以下规范:

- AHB 访问宽度等于存储器宽度,则没有问题;
- AHB 访问宽度大于存储器宽度,则自动将 AHB 访问分割成几个连续的存储器数据宽度的传输;
- AHB 访问宽度小于存储器宽度。如果外部存储设备具有字节选择功能,如 SRAM、ROM、PSRAM,则可通过它的字节通道 EXMC_NBL[1:0]来访问对应的字节。否则禁止写操作,只允许读操作。

21.3.3. 外部设备地址映射

图 21-2. EXMC Bank 划分

EXMC将外部存储器分成多个Bank,每个Bank占256M字节,其中Bank0又分为4个Region,每个Region占64M字节。Bank1和Bank2又都被分成2个Section,分别是属性存储空间和通用存储空间。Bank3分成3个Section,分别是属性存储空间,通用存储空间和I/O存储空间。

每个Bank或Region都有独立的片选控制信号,也都能进行独立的配置。

Bank0用于访问NOR、PSRAM设备。

Bank1和Bank2用于连接NAND Flash,且每个Bank连接一个NAND。

Bank3用于连接PC卡。

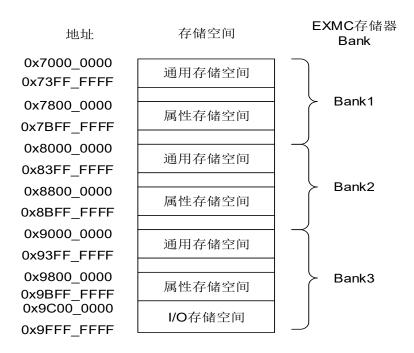
NOR 和 PSRAM 的地址映射

图21-3. Bank0地址映射是Bank0四个Region的地址映射。AHB地址线HADDR[27:26]作为四个Region的片选信号。

图 21-3. Bank0 地址映射

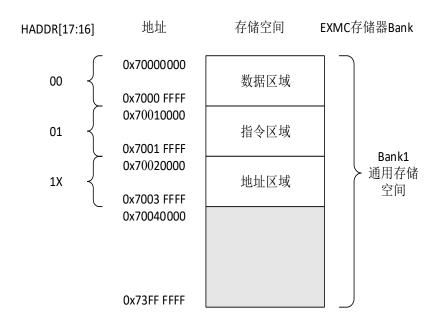
HADDR[27:26]	地址	Regions	支持存储器类型
00 {	0x60000000	Region0	NOR/PSRAM
01	0x64000000 0x67FF FFFF	Region1	NOR/PSRAM
10 {	0x68000000 0x6BFF FFFF	Region2	NOR/PSRAM
11 {	0x6C000000 0x6FFF FFFF	Region3	NOR/PSRAM

由于HADDR[25:0]是字节地址,而外部存储器访问有可能不是按字节访问的,所以会出现地址不一致的情况,但EXMC能实现对HADDR的调整以适应外部存储器的数据宽度。具体规则如下:


- 如果外部存储器的数据宽度是 8 位按字节对齐, EXMC 内部将 HADDR[25:0]与 EXMC_A[25:0]相连, 然后 EXMC_A[25:0]与外部存储器的地址线相连;
- 如果外部存储器的数据宽度是 16 位按半字对齐, 就需要将 HADDR 的字节地址转化为半字地址之后再连接外存储器。EXMC 内部将 HADDR[25:1]与 EXMC_A[24:0]相连, 然后 EXMC_A[24:0]与外部存储器的地址线相连。

NAND/PC Card 地址映射

Bank1和Bank2用来访问NAND Flash,Bank3用来访问PC Card。每个Bank如<u>**图21-4.**</u> NAND/PC Card地址映射被分为多个存储空间。


图 21-4. NAND/PC Card 地址映射

NAND 地址映射

对于NAND Flash,通用和属性空间又可以细划分为3个区域。**图21-5. Bank1通用空间**为Bank1通用存储空间的数据区域,指令区域和地址区域的划分。

图 21-5. Bank1 通用空间

AHB利用HADDR[17:16]来实现对以上三个区的选择:

■ HADDR[17:16]=00,即选择数据区;

■ HADDR[17:16]=01 即选择命令区;

■ HADDR[17:16]=1X 即选择地址区。

应用软件使用这3个区访问NAND Flash。操作规则如下:

指令区: 指定NAND Flash将要执行的指令,软件在命令区写入指令。在指令传输过程中,EXMC 会使能命令锁存信号(CLE), CLE映射到EXMC_A[16]。

地址区:指定操作NAND Flash的地址,软件在地址区写入地址。在地址传输过程中,EXMC会使能地址锁存信号(ALE),ALE映射到EXMC_A[17]。

数据区: NAND Flash读写数据,软件在数据区读出或写入数据。当EXMC在数据发送模式,软件需要在数据区写入数据,当EXMC在数据接收模式,软件需要在数据区读取数据。由于NAND Flash会自动累加其内部操作地址,故在读写时不需要软件修改操作地址。

21.3.4. NOR/PSRAM 控制器

EXMC模块的NOR/PSRAM控制器控制Bank0,它可以支持NOR Flash、PSRAM、SRAM、ROM和CRAM外部存储器。EXMC对Bank0每个Region输出一个唯一的片选信号,NE[x](x=0..3),用于在4个Region中进行片选,所有其他的信号都是共享的。每个Region都有专门的寄存器控制。

注意:

在异步模式下,所有控制器输出信号在内部AHB总线时钟(HCLK)的上升沿改变。

在同步模式下,所有控制器输出数据在外部存储器时钟(EXMC_CLK)的下降沿改变。

NOR/PSRAM 接口描述

表 21-1. NOR Flash 接口信号描述

EXMC 引脚	传输方向	模式	功能描述
EXMC_CLK	输出	同步	同步时钟信号
Non-muxed			
EXMC_A[25:0]	输出	异步/同步	地址总线
Muxed EXMC_A[25:16]			
	输入/输出	异步/同步	地址/数据总线
EXMC_D[15:0]	捌/√/捌 山	(复用)	地址/奴饰心纹
EXIVIC_D[15.0]	输入/输出	异步/同步	数据总线
	柳八柳山	(非复用)	数
EXMC_NE[x]	输出	异步/同步	片选, x=0/1/2/3
EXMC_NOE	输出	异步/同步	读使能
EXMC_NWE	输出	异步/同步	写使能
EXMC_NWAIT	输入	异步/同步	等待输入信号
EXMC_NL(NADV)	输出	异步/同步	地址有效

表 21-2. PSRAM 非复用接口信号描述

EXMC 引脚	传输方向	模式	功能描述
EXMC_CLK	输出	同步	同步时钟信号
EXMC_A[25:0]	输出	异步/同步	地址总线
EXMC_D[15:0]	输入/输出	异步/同步	数据总线
EXMC_NE[x]	输出	异步/同步	片选, x=0/1/2/3
EXMC_NOE	输出	异步/同步	读使能
EXMC_NWE	输出	异步/同步	写使能
EXMC_NWAIT	输入	异步/同步	等待输入信号
EXMC_NL(NADV)	输出	异步/同步	地址锁存信号
EXMC_NBL[1] 输出		异步/同步	高字节使能
EXMC_NBL[0]	输出	异步/同步	低字节使能

支持的存储器访问模式

<u>表21-3. EXMC的Bank0 支持的所有处理</u>列出了EXMC对NOR,PSRAM和SRAM支持的访问模式。

表 21-3. EXMC 的 Bank0 支持的所有处理

存储器类型	访问模式	读/写	AHB 传输宽度	存储器传输宽度	注释
	异步	R	8	16	
	异步	R	16	16	
	异步	W	16	16	
NOR Flash	异步	R	32	16	分成2次EXMC访问
	异步	W	32	16	分成2次EXMC 访问
	同步	R	16	16	
	同步	R	32	16	
	异步	R	8	16	
	异步	W	8	16	使用字节信号 NBL[1: 0]
	异步	R	16	16	
	异步	W	16	16	
	异步	R	32	16	分成2次EXMC 访问
PSRAM	异步	W	32	16	分成2次EXMC 访问
	同步	R	16	16	
	同步	R	32	16	
	同步	W	8	16	使用字节信号 NBL[1: 0]
	同步	W	16	16	
	同步	W	32	16	
	异步	R	8	8	
SRAM and	异步	R	8	16	
ROM	异步	R	16	8	分成2次EXMC 访问
	异步	R	16	16	

存储器类型	访问模式	读/写	AHB 传输宽度	存储器传输宽度	注释
	异步	R	32	8	分成 4 次 EXMC 访问
	异步	R	32	16	分成2次EXMC访问
	异步	W	8	8	
	异步	W	8	16	使用字节信号 NBL[1: 0]
	异步	W	16	8	
	异步	W	16	16	
	异步	W	32	8	
	异步	W	32	16	

NOR Flash/PSRAM 控制时序

EXMC为SRAM、ROM、PSRAM、NOR Flash等外部静态存储器提供可编程的时序参数以及 多种时序模型以满足不同的需求。

表 21-4. NOR/PSRAM 控制时序参数

参数	功能	访问模式	单位	最小值	最大值
CKDIV	同步时钟分频比	同步	HCLK	2	16
DLAT	数据延迟	异步	EXMC_CLK	2	17
BUSLAT	总线延迟	异步/同步读	HCLK	1	16
DSET	数据建立时间	异步	HCLK	2	256
AHLD	地址保持时间	异步(复用)	HCLK	2	16
ASET	地址建立时间	异步	HCLK	1	16

表 21-5. EXMC 时序模型

时序模型		扩展模式	模式描述	写时序参数	读时序参数
	棋士 1	莫式 1		DSET	DSET
	侯八 I	模式 1 0 SRAM/PSRAM/CRAM		ASET	ASET
	## ₽ 2	0	NOR Flash	DSET	DSET
	模式 2	U	NOR Flasii	ASET	ASET
	模式A	1	SRAM/PSRAM/CRAM 在数据阶	WDSET	DSET
	疾八 A	'	段 EXMC_NOE 翻转	WASET	ASET
	模式 B	1	NOR Flash	WDSET	DSET
	(吳八 D	'	NOR Flasii	WASET	ASET
异步	模式 C	1	NOR Flash 在数据阶段	WDSET	DSET
	疾八し		EXMC_NOE 翻转	WASET	ASET
				WDSET	DSET
	模式D	1	有地址保持功能	WAHLD	AHLD
				WASET	ASET
				DSET	DSET
	模式 AM	0	NOR Flash 数据/地址复用	AHLD	AHLD
	(天八 AIVI	莫式 AM 0	NON Fla5II 奴伽/地址友用	ASET	ASET
				BUSLAT	BUSLAT

时序模型		扩展模式	模式描述	写时序参数	读时序参数
同步	模式E	0	NOR/PSRAM/CRAM 同步读 PSRAM/CRAM 同步写	DLAT CKDIV	DLAT CKDIV
	模式 SM	0	NOR Flash 数据/地址复用	DLAT CKDIV	DLAT CKDIV

如<u>表21-5. EXMC时序模型</u>所示,EXMC模块NOR Flash/PSRAM控制器可以提供多种时序模型。用户可以通过修改<u>表21-4. NOR/PSRAM控制时序参数</u>中列出的参数来使C之适合不同类型外部存储器的时序以及满足用户的要求。当将寄存器EXMC_SNCTLx位EXMODEN 置 1 使 能 扩 展 模 式 后 , 可 以 通 过 寄 存 器 EXMC_SNTCFGx 和 EXMC_SNWTCFGx将读写配置成独立的时序。

异步访问时序

模式1 - SRAM/CRAM

图 21-6. 模式 1 读时序

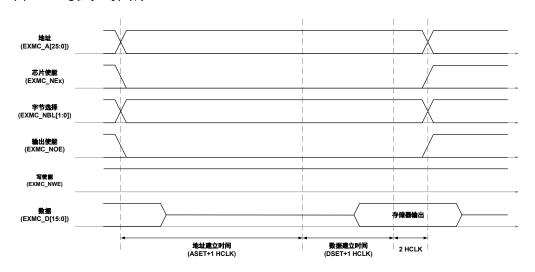


图 21-7. 模式 1 写时序

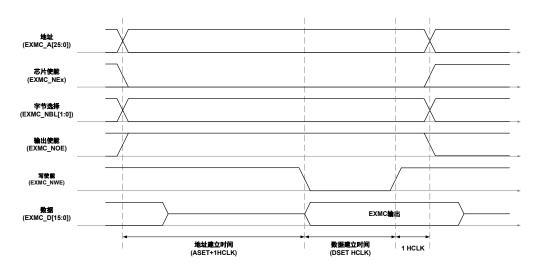


表 21-6. 模式 1 相关寄存器配置

位域/位	名称	参考设定值		
EXMC_SNCTLx				
31-20	保留	0x000		
19	SYNCWR	0x0		
18-16	CPS	0x0		
15	ASYNCWAIT	取决于存储器		
14	EXMODEN	0x0		
13	NRWTEN	0x0		
12	WEN	取决于用户		
11	NRWTCFG	无影响		
10	WRAPEN	0x0		
9	NRWTPOL	仅当位 15 为 1 时有效		
8	SBRSTEN	0x0		
7	保留	0x1		
6	NREN	无影响		
5-4	NRW	取决于存储器		
3-2	NRTP	取决于存储器,Nor Flash: 2		
1	NRMUX	0x0		
0	NRBKEN	0x1		
		EXMC_SNTCFGx		
31-30	保留	0x0000		
29-28	ASYNCMOD	无影响		
27-24	DLAT	无影响		
23-20	CKDIV	无影响		
19-16	BUSLAT	EXMC_NE[x]上升沿到下降沿的时间		
15-8	DSET	取决于存储器与用户(写操作为 DSET+1 HCLK 时钟周期,读		
13-0	DSET	操作为 DSET +3HCLK 时钟周期)		
7-4	AHLD	无影响		
3-0	ASET	取决于存储器与用户		

模式A – SRAM/PSRAM(CRAM) OE翻转

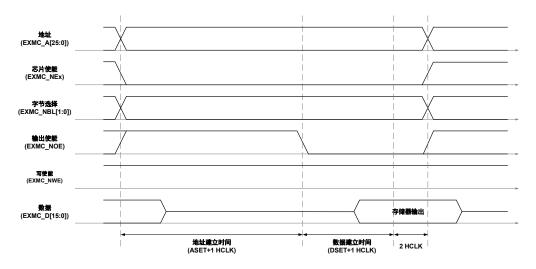
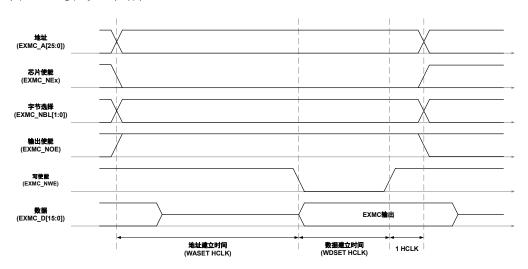



图 21-9. 模式 A 写时序

模式A和模式1的区别在于写时序,当两个模式的寄存器有相同的时序配置时,模式A的写时序独立于读时序。

表 21-7. 模式 A 相关寄存器配置

位域/位	名称	参考设定值		
	EXMC_SNCTLx			
31-20	保留	0x000		
19	SYNCWR	0x0		
18-16	CPS	0x0		
15	ASYNCWTEN	取决于存储器		
14	EXMODEN	0x1		
13	NRWTEN	0x0		
12	WEN	取决于用户		
11	NRWTCFG	无影响		
10	WRAPEN	0x0		
9	NRWTPOL	仅当位 15 为 1 时有效		

位域/位	名称	参考设定值
	EXN	MC_SNCTLx
8	SBRSTEN	0x0
7	保留	0x1
6	NREN	无影响
5-4	NRW	取决于存储器
3-2	NRTP	取决于存储器,Nor Flash: 2
1	NRMUX	0x0
0	NRBKEN	0x1
	EXMC_S	SNTCFGx(Read)
31-30	保留	0x0
29-28	ASYNCMOD	0x0
27-24	DLAT	无影响
23-20	CKDIV	无影响
19-16	BUSLAT	EXMC_NE[x]上升沿到下降沿的时间
15-8	DSET	取决于存储器与用户(读操作为 DSET+3HCLK 时钟周
13-6	DSET	期)
7-4	AHLD	无影响
3-0	ASET	取决于存储器与用户
	EXMC_S	NWTCFGx(Write)
31-30	保留	0x0
29-28	WASYNCMOD	0x0
27-20	保留	0x00
19-16	WBUSLAT	EXMC_NE[x]上升沿到下降沿的时间
15-8	WDSET	取决于存储器与用户(写操作为 WDSET+1HCLK 时钟
10-0	WDSET	周期)
7-4	WAHLD	0x0
3-0	WASET	取决于存储器与用户

模式2/B - NOR Flash

图 21-10. 模式 2/B 读时序

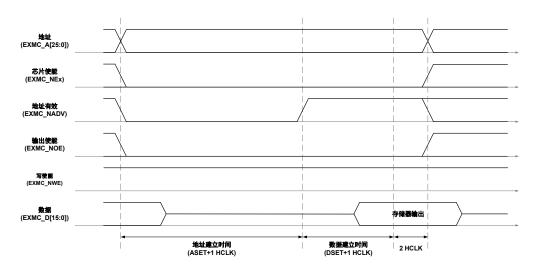


图 21-11. 模式 2 写时序

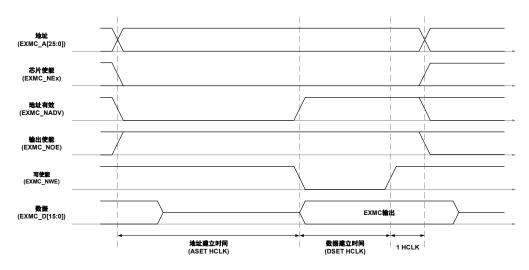


图 21-12. 模式 B 写时序

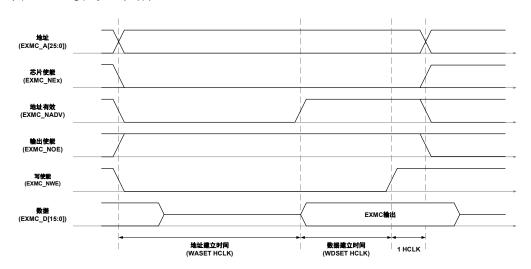
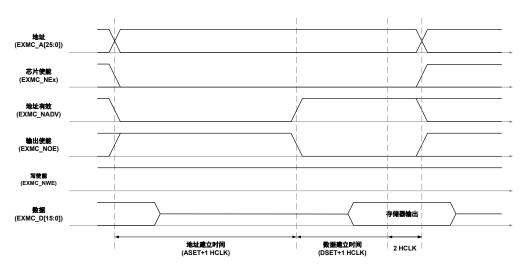
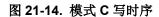


表 21-8. 模式 2/B 相关寄存器配置


位域/位	名称	参考设定值	
EXMC_SNCTLx(模式 2,模式 B)			
31-20	保留	0x000	
19	SYNCWR	0x0	
18-16	CPS	0x0	
15	ASYNCWTEN	取决于存储器	
14	EXMODEN	模式 2: 0x0,模式 B: 0x1	
13	NRWTEN	0x0	
12	WEN	取决于用户	
11	NRWTCFG	无影响	
10	WRAPEN	0x0	
9	NRWTPOL	仅当位 15 为 1 时有效	
8	SBRSTEN	0x0	
7	保留	0x1	


位域/位	名称	参考设定值
	EXMC_SNC1	[Lx(模式 2,模式 B)
6	NREN	0x1
5-4	NRW	取决于存储器
3-2	NRTP	Nor Flash: 2
1	NRMUX	0x0
0	NRBKEN	0x1
	EXMC_SNTCFGx(模式	2 读/写操作,模式 B 读操作)
31-30	保留	0x0000
29-28	ASYNCMOD	模式 B: 0x1
27-24	DLAT	无影响
23-20	CKDIV	无影响
19-16	BUSLAT	EXMC_NE[x]上升沿到下降沿的时间
15-8	DSET	取决于存储器与用户(读操作为 DSET+3HCLK 时钟
15-6		周期)
7-4	AHLD	0x0
3-0	ASET	取决于存储器与用户
	EXMC_SNWT	CFGx(模式 B 写操作)
31-30	保留	0x0000
29-28	WASYNCMOD	模式 B: 0x1
27-20	保留	0x000
19-16	WBUSLAT	EXMC_NE[x]上升沿到下降沿的时间
15-8	WDSET	取决于存储器与用户(写操作为 WDSET+1HCLk 时
10-0		钟周期)
7-4	WAHLD	0x0
3-0	WASET	取决于存储器与用户

模式C - NOR Flash OE翻转

图 21-13. 模式 C 读时序

模式C和模式1的区别在于写时序,当两个模式的寄存器有相同的时序配置时,模式C的写时序独立于读时序。

表 21-9. 模式 C 相关寄存器配置

位域/位	名称	参考设定值		
EXMC_SNCTLx				
31-20	保留	0x000		
19	SYNCWR	0x0		
18-16	CPS	0x0		
15	ASYNCWTEN	取决于存储器		
14	EXMODEN	0x1		
13	NRWTEN	0x0		
12	WEN	取决于用户		
11	NRWTCFG	无影响		
10	WRAPEN	0x0		
9	NRWTPOL	仅当位 15 为 1 时有效		
8	SBRSTEN	0x0		
7	保留	0x1		
6	NREN	0x1		
5-4	NRW	取决于存储器		
3-2	NRTP	Nor Flash: 2		
1	NRMUX	0x0		
0	NRBKEN	0x1		
EXMC_SNTCFGx				
31-30	保留	0x0000		
29-28	ASYNCMOD	模式 C: 0x2		
27-24	DLAT	无影响		
23-20	CKDIV	无影响		
19-16	BUSLAT	EXMC_NE[x]上升沿到下降沿的时间		

位域/位	名称	参考设定值
15-8	DSET	取决于存储器与用户(读操作为 DSET+3HCLk 时钟周期)
7-4	AHLD	0x0
3-0	ASET	取决于存储器与用户
	EXM	C_SNWTCFGx
31-30	保留	0x0
29-28	WASYNCMOD	模式 C: 0x2
27-20	保留	0x000
19-16	WBUSLAT	EXMC_NE[x]上升沿到下降沿的时间
15-8	WDSET	取决于存储器与用户(写操作为 WDSET+1HCLK 时钟周期)
7-4	WAHLD	0x0
3-0	WASET	取决于存储器与用户

模式D - 带地址扩展的异步操作

图 21-15. 模式 D 读时序

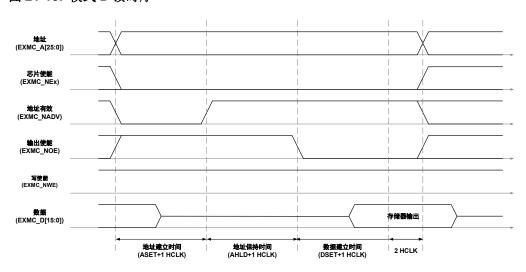


图 21-16. 模式 D 写时序

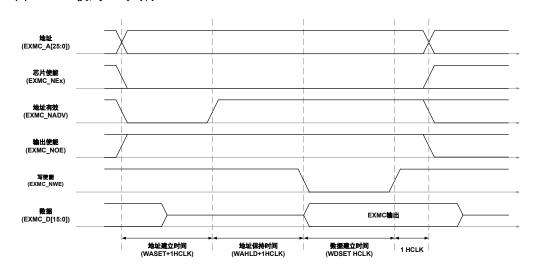


表 21-10. 模式 D 相关寄存器配置

	参考设定值
	C_SNCTLx
	0x000
	0x0
	0x0
ASYNCWTEN	取决于存储器
EXMODEN	0x1
NRWTEN	0x0
WEN	取决于用户
NRWTCFG	无影响
WRAPEN	0x0
NRWTPOL	仅当位 15 为 1 时有效
SBRSTEN	0x0
保留	0x1
NREN	取决于存储器
NRW	取决于存储器
NRTP	取决于存储器
NRMUX	0x0
NRBKEN	0x1
EXMC	SNTCFGx
保留	0x0
ASYNCMOD	模式 D: 0x3
DLAT	无关
CKDIV	无影响
BUSLAT	EXMC_NE[x]上升沿到下降沿的时间
DSFT	取决于存储器与用户(读操作为 DSET+3HCLK 时
	钟周期)
AHLD	取决于存储器与用户
ASET	取决于存储器与用户
EXMC_	SNWTCFGx
保留	0x0
WASYNCMOD	模式 D: 0x3
保留	0x00
WBUSLAT	EXMC_NE[x]上升沿到下降沿的时间
WDSET	取决于存储器与用户(写操作为 WSET+1HCLk 时钟周期)
WALL D	
WAHLD	取决于存储器与用户
	保留 SYNCWR CPS ASYNCWTEN EXMODEN NRWTEN WEN NRWTCFG WRAPEN NRWTPOL SBRSTEN (保留 NREN NRW NRTP NRMUX NRBKEN EXMC (保留 ASYNCMOD DLAT CKDIV BUSLAT DSET AHLD ASET EXMC (保留 WASYNCMOD R留 WASYNCMOD RY

模式AM – NOR Flash地址/数据总线复用

图 21-17. 复用模式读时序

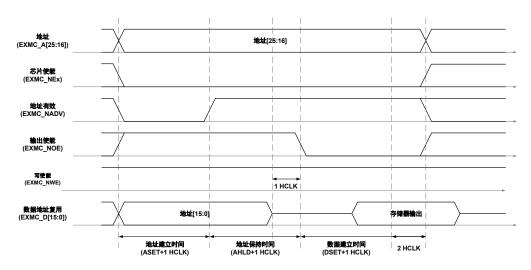


图 21-18. 复用模式写时序

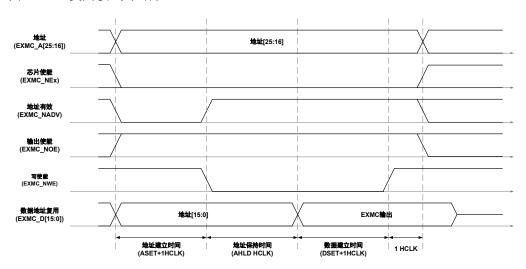


表 21-11. 复用模式相关寄存器配置

位域/位	名称	参考设定值		
	EXMC_SNCTLx			
31-20	保留	0x000		
19	SYNCWR	0x0		
18-16	CPS	0x0		
15	ASYNCWTEN	取决于存储器		
14	EXMODEN	0x0		
13	NRWTEN	0x0		
12	WEN	取决于存储器		
11	NRWTCFG	无影响		
10	WRAPEN	0x0		
9	NRWTPOL	仅当位 15 为 1 时有效		
8	SBRSTEN	0x0		
7	保留	0x1		

GD32F403xx 用户手册

位域/位	名称	参考设定值					
	EXMC	_SNCTLx					
6	NREN	0x1					
5-4	NRW	取决于存储器					
3-2	NRTP	0x2: NOR Flash					
1	NRMUX	0x1					
0	NRBKEN	0x1					
	EXMC_	SNTCFGx					
31-30	保留	0x0					
29-28	ASYNCMOD	0x0					
27-24	DLAT	无影响					
23-20	CKDIV	无影响					
19-16	BUSLAT	EXMC_NE[x]上升沿到下降沿的时间					
15-8	DSET	取决于存储器与用户(写操作为 DSET+2HCLK 时					
15-6	DSET	钟周期,读操作为 DSET+3HCLK 时钟周期)					
7-4	AHLD	取决于存储器与用户					
3-0	ASET	取决于存储器与用户					

异步通信的等待时间:

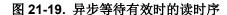
等待功能由寄存器EXMC_SNCTLx位ASYNCWAIT控制。在访问外部存储器期间,若使能异步等待功能(ASYNCWAIT=1),数据建立时间将会自动延长。延长时间的计算如下:

若存储器等待信号与EXMC_NOE/ EXMC_NWE信号对齐:

$$T_{DATA SETUP} \ge maxT_{WAIT ASSERTION} + 4HCLK$$
 (21-1)

若存储器等待信号与EXMC_NE信号对齐:

如果


$$maxT_{WAIT_ASSERTION} \ge T_{ADDRES_PHASE} + T_{HOLD_PHASE}$$
 (21-2)

则

否则

$$T_{DATA SETUP} \ge 4HCLK$$
 (21-4)

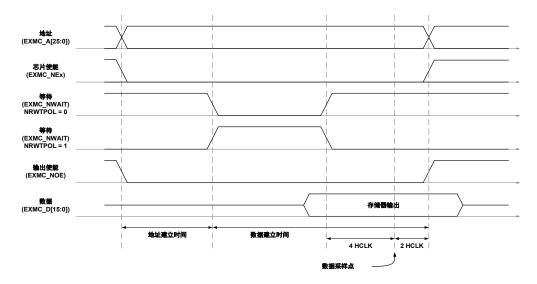
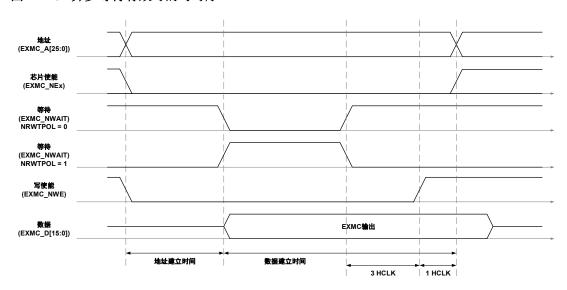



图 21-20. 异步等待有效时的写时序

同步访问时序

同步访问模式中,存储器时钟(EXMC_CLK)与系统时钟(HCLK)关系如下:

$$EXMC_CLK = \frac{HCLK}{CKDIV+1}$$
 (21-5)

其中CKDIV是同步时钟分频比,通过配置寄存器EXMC_SNTCFGx中的CKDIV位来设置不同的值。

1. 数据延迟与 NOR Flash 延迟

数据延迟 DLAT 是指在采样数据之前需要等待的 EXMC_CLK 周期数。它和 NOR 闪存延迟的 关系如下:

NOR闪存延迟不包含NADV,二者之间的关系为:

NOR 闪存延迟=DLAT+2

(21-6)

(21-7)

NOR闪存延迟包含NADV, 二者之间的关系为:

NOR 闪存延迟=DLAT+3

2. 数据等待

用户需要保证 EXMC_NWAIT 信号与外部设备一致。该信号通过寄存器 EXMC_SNCTLx 来设置,位 NRWTEN 使能,位 NRWTCFG 决定 EXMC_NWAIT 信号是等待状态同时有效,或者比等待状态提前一个时钟周期有效,位 NRWTPOL 设置 EXMC_NWAIT 信号极性。

在 NOR Flash 的同步突发模式中,当寄存器 EXMC_SNCTLx 位 NRWTEN 置 1,在数据延迟之后后检测到 EXMC_NWAIT 信号。如果 EXMC_NWAIT 有效,在 EXMC_NWAIT 无效之前会一直插入等待时钟。

■ EXMC NWAIT 有效极性:

NRWTPOL = 1, EXMC_NWAIT 高电平有效

NRWTPOL = 0, EXMC_NWAIT 低电平有效

■ 在同步突发模式中,EXMC_NWAIT 信号有两种配置:

NRWTCFG = 1, EXMC_NWAIT 信号有效时, 当前时钟周期数据无效

NRWTCFG = 0, EXMC_NWAIT 信号有效时,下一个时钟周期数据无效,这是复位后的默认配置。

在 EXMC_NWAIT 信号有效的等待周期内, EXMC 会持续的给存储器发送时钟信号, 保持片选和输出使能有效, 并且忽视总线上的无效数据。

3. CRAM 页边界突发传输的自动分组

CRAM1.5 中禁止突发传输跨越页边界,EXMC 遇到边界会进行传输的自动分组。为了保证正确的突发分组操作,用户需要在寄存器 EXMC_SNCTLx 位 CPS 中需要设定 CRAM 的页大小。

4. 模式 SM - 单次突发传输

对于同步突发传输,如果 AHB 需要的数据为 16 位,则 EXMC 会执行一次长度为 1 的成组传输;如果 AHB 需要的数据为 32 位,则 EXMC 会把这次传输分成 2 次 16 位的传输,即执行一次长度为 2 的突发传输。

对于其他的配置,请参考表 21-3. EXMC 的 Bank0 支持的所有处理.

同步复用突发读时序 - NOR,PSRAM(CRAM)

图 21-21. 同步复用突发传输读时序

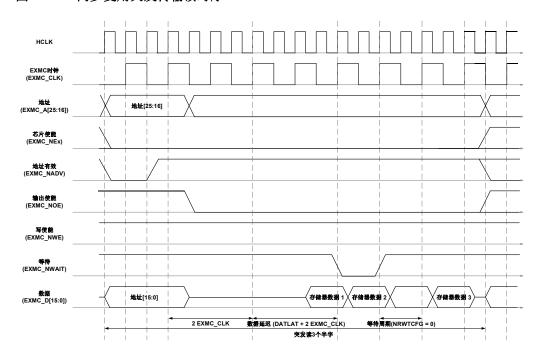


表 21-12. 同步复用模式读时序配置

位域/位	名称	参考设定值
	EXMO	C_SNCTLx
31-20	保留	0x000
19	SYNCWR	无影响
18-16	CPS	0x0
15	ASYNCWTEN	0x0
14	EXMODEN	0x0
13	NRWTEN	取决于存储器
12	WEN	无影响
11	NRWTCFG	取决于存储器
10	WRAPEN	0x0
9	NRWTPOL	取决于存储器
8	SBRSTEN	0x1,突发读使能
7	保留	0x1
6	NREN	取决于存储器
5-4	NRW	0x1
3-2	NRTP	取决于存储器, 0x1/0x2
1	NRMUX	0x1,取决于存储器与用户
0	NRBKEN	0x1
	EXMC_SN	NTCFGx(Read)
31-30	保留	0x0
29-28	ASYNCMOD	0x0
27-24	DLAT	数据延迟
23-20	CKDIV	上图设置: 0x1,EXMC_CLK=2HCLK

位域/位	名称	参考设定值						
19-16	BUSLAT	EXMC_NE[x]上升沿到下降沿的时间						
15-8	DSET	无影响						
7-4	AHLD	无影响						
3-0	ASET	无影响						

同步复用突发写时序 - NOR,PSRAM(CRAM)

图 21-22. 同步复用突发传输写时序

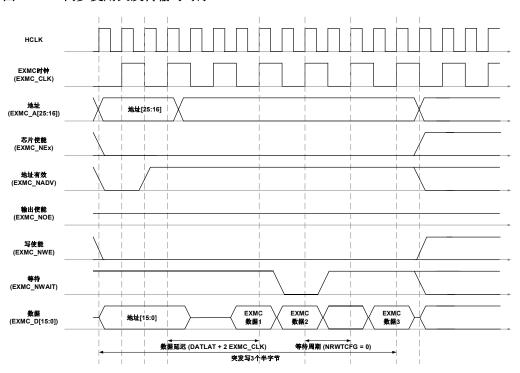


表 21-13. 同步复用模式写时序配置

位域/位	名称	参考设定值
	EXMC_	SNCTLx
31-20	保留	0x000
19	SYNCWR	0x1,同步写使能
18-16	CPS	0x0
15	AYSNCWAIT	0x0
14	EXMODEN	0x0
13	NRWTEN	取决于存储器
12	WREN	0x1
11	NRWTCFG	0x0(这里必须为 0)
10	WRAPEN	0x0
9	NTWTPOL	取决于存储器
8	SBRSTEN	无影响
7	保留	0x1
6	NREN	取决于存储器
5-4	NRW	0x1

位域/位	名称	参考设定值						
3-2	NRTP	0x1						
1	NRMUX	0x1,取决于用户						
0	NRBKEN	0x1						
	EXMC_SNT	CFGx(Write)						
31-30	保留	0x0						
29-28	ASYNCMOD	0x0						
27-24	DLAT	数据延迟						
23-20	CKDIV	上图设置: 0x1, EXMC_CLK=2HCLK						
19-16	BUSLAT	EXMC_NE[x]上升沿到下降沿的时间						
15-8	DSET	无影响						
7-4	AHLD	无影响						
3-0	ASET	无影响						

21.3.5. NAND Flash 或 PC Card 控制器

EXMC模块Bank1、Bank2支持NAND Flash,Bank3支持PC Card设备。对于每个Bank,EXMC 提供独立的寄存器来配置访问时序,支持8位、16位的NAND Flash以及16位PC卡。对于NAND Flash,EXMC还提供ECC计算模块,保证数据传输和保存的鲁棒性。

NAND Flash/PC Card 接口功能

表 21-14. 8 位/16 位 NAND 接口信号描述

EXMC 引脚	传输方向	功能描述						
EXMC_A[17]	输出	NAND Flash 地址锁存(ALE)						
EXMC_A[16]	输出	NAND Flash 命令锁存(CLE)						
EXMC_D[7:0]/	输入 /输出	8 位复用,双向地址/数据总线						
EXMC_D[15:0]	制八 / 制 山	16 位复用,双向地址/数据总线						
EXMC_NCE[x]	输出	片选, x = 1,2						
EXMC_NOE(NR	输出	输出使能						
E)	111111	# 1 山 文 比						
EXMC_NWE	输出	写使能						
EXMC_NWAIT/	输入	NAND Flash 就绪/忙输入信号 EXMC,x=1,2						
EXMC_INT[x]	刊八	NAND Flash						

表 21-15. 16 位 PC Card 接口信号描述

EXMC 引脚	传输方向	功能描述					
EXMC_A[10:0]	输出	地址总线					
EXMC_NIOS16	输入	仅适合 16 位传输的 I/O 空间的数据传输宽度(必须接地)					
EXMC_NIORD	输出	I/O 空间输出使能					
EXMC_NIOWR	输出	I/O 空间写使能					
EXMC_NREG	输出	决定访问通用空间还是属性空间					
EXMC_D[15:0]	输入/输出	双向数据总线					

EXMC 引脚	传输方向	功能描述						
EXMC_NCE3_x	输出	片选(x=0,1)						
EXMC_NOE	输出	输出使能						
EXMC_NWE	输出	写使能						
EXMC_NWAIT	输入	PC Card 等待信号						
EXMC_INTR	输入	PC Card 中断输入信号						
EXMC_CD	输入	PC Card 卡存在检测信号,高有效						

支持的存储器访问模式

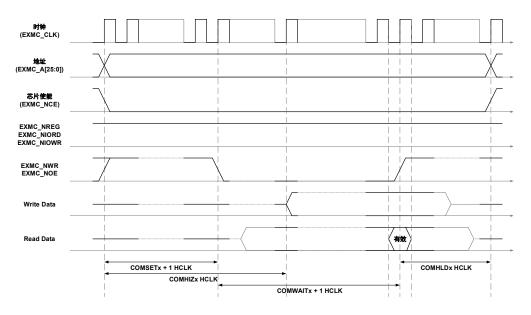
表 21-16. Bank1/2/3 支持的访问模式

文 21-16. Daily 11215 文刊即例问读入											
存储器	模式	读/写	AHB 传输宽度	注释							
	异步	R	8								
	异步	W	8								
8 位	异步	R	16	分成2次EXMC 访问							
NAND	异步	W	16	が成る次 EXIVIC 切凹							
	异步	R	32	八世本海上VMC 计问							
	异步	W	32	分成 4 次 EXMC 访问							
	异步	R	8								
	异步	W	8	不支持此操作							
16 位	异步	R	16								
NAND/PC Card	异步	W	16								
	异步	R	32	八世の海上VMの一十月							
	异步	W	32	分成2次EXMC 访问							

NAND Flash/PC Card 的控制时序

EXMC能够为NAND Flash、PC卡等设备产生合适的时序信号。每个Bank都有相应的寄存器来对外部存储器进行管理和控制,EXMC_NPCTLx、EXMC_NPINTENx、EXMC_NPCTCFGx、EXMC_NPATCFGx、EXMC_PIOTCFG3、EXMC_NECCx,其中寄存器EXMC_NPINTENx、EXMC_NPCTCFGx、EXMC_NPATCFGx都可以配置4个时序参数,可以根据用户需求和外部存储器的特性来进行相应的配置。

表 21-17. NADN/PC Card 可编程参数


参数	读/写	単位	功能描述	NAND Flash/ PC Card		
				最小值	最大值	
存储器数据总线高阻时间 (HIZ)	W/R	HCLK	启动写操作之后保持数据总线 为高阻态的时间	0	255	
存储器保持时间(HLD)	W/R	HCLK	在发送命令结束后保持地址的 (HCLK)时钟周期数目,写操作 时也是数据的保持时间	1	254	

参数	读/写	单位	功能描述	NAND Flash/ PC Card		
				最小值	最大值	
存储器等待时间(WAIT)	W/R	HCLK	发出命令的最短持续时间 (HCLK)时钟周期数目	2	256	
存储器建立时间(SET)	W/R	HCLK	发出命令之前建立地址的 (HCLK)时钟周期数目	1	255	

图21-23. PC Card通用空间操作时序给出了在通用存储空间中操作的可编程参数定义,属性存储空间和I/O空间(只适用于PC Card)中操作与此相似。

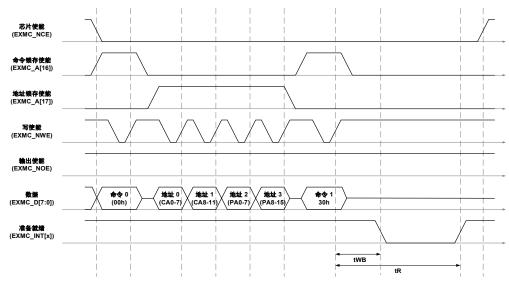
图 21-23. PC Card 通用空间操作时序

NAND Flash 操作

EXMC在对NAND Flash发送命令或地址时,需要利用其命令锁存信号(A[16])或地址锁存信号(A[17])这两条地址线,即CPU需要在特定的地址进行写操作。

示例: NAND Flash读操作步骤:

- 1) 配置 EXMC_NPCTLx、 EXMC_NPCTCFGx, 若需要预等待功能, 还需配置 EXMC_NPATCFGx;
- 2) 往通用空间写入 NAND Flash 读数据命令,即在 EXMC_NCE 和 EXMC_NWE 有效期间, EXMC CLE(A[16])变为有效电平(高),则被 NAND 认为写入命令;
- 3) 往通用空间写入读操作的起始地址,即在 EXMC_NCE 和 EXMC_NWE 有效期间, EXMC_ALE (A[17]) 变为有效电平(高),则被 NAND 认为写入地址;
- 4) 等待 NAND 就绪信号, NAND 控制器会在这期间将和 EXMC NCE 一直保持有效;
- 5) 从通用空间的数据区逐字节的读出数据;
- 6) 在不写入新的命令和地址,可以自动读出 NAND 下一页数据;或转到 3) 写入新的地址进行下一页的读取;或转到 2) 写入新的命令和地址。



NAND Flash 预等待功能

某些NAND Flash要求在输入最后一个地址字节后,控制器等待NAND Flash就绪,并且还有一些对EXMC_NCE敏感型的NAND Flash还要求在其就绪前NCE必须保持有效。

下面以TOSHIBA128M*8bit NADN Flash为例:

- 1) 往 NAND 的通用空间命令区写入命令 CMD0
- 2) 往 NAND 的通用空间地址区写入操作地址 ADD0
- 3) 往 NAND 的通用空间地址区写入操作地址 ADD1
- 4) 往 NAND 的通用空间地址区写入操作地址 ADD2
- 5) 往 NAND 的通用空间地址区写入操作地址 ADD3
- 6) 往 NAND 的属性空间命令区写入命令 CMD1

在 6)中写命令操作,EXMC 使用的是寄存器 EXMC_NPATCFGx 定义的时序。经过 ATTHLD 时间后,NAND Flash 等待 EXMC_INTx 信号,ATTHLD 要大于 twb(EXMC_NWE 高到 EXMC INTx 低)。对于那些对 EXMC NCE 敏感的 NAND Flash,

对于那些对片选信号敏感的 NAND Flash,在地址字节之后的第一个地址字节输入后,一直到 B/NB 就绪状态到来的这段时间中,要求片选信号 NCE 一直保持低电平。这里可以通过配置属性存储空间的 ATTHT 的值来满足 twb 的时序,这样 CPU 只有在地址字节之后写入第一个命令字节时才使用属性存储空间的时序,而在其他时候都使用通用存储空间的时序。

NAND Flash 的 ECC 计数模块

EXMC模块中的Bank1和Bank2各有一个ECC计算的硬件模块,用户可以根据EXMC_NPCTLx中的ECCSZ来选择ECC计算的页面大小,通过ECC计算可以矫正1个bit的错误并且能检测2个bit的错误。

当NAND存储器块使能,ECC模块就会检测D[15:0]以及EXMC_NCE、EXMC_NWE信号。当已经完成ECCSZ大小字节的读写操作时,软件必须读出EXMC_NECCx中的结果值。如果需要再次开始ECC计算,软件需要先将EXMC_NECCx中ECCEN清0来清除EXMC_NPCTLx中的值,再将ECCEN置1来重新启动ECC计算。

PC/CF Card 访问

EXMC 的 Bank3 用来访问 PC/CF Card,同时支持存储器和 IO 模式。Bank3 分为 3 个子空间,分别为存储空间,属性空间和 IO 空间。

EXMC_NCE3_0 和 EXMC_NCE3_1 是字节选择信号,当仅有 EXMC_NCE3_0 有效时,低字节或高字节的选择取决于 EXMC_A[0],当仅有 EXMC_NCE3_1 有效时,硬件不支持,当 EXMC_NCE3_0 和 EXMC_NCE3_1 都有效时,16 位操作。复位 NDTP 来选择 PC/CF Card 作为外部存储器,寄存器 EXMC_NPCTLx 位 NDW 必须设置为 01 来保证 EXMC 的正确操作。

下面是对不同空间的访问:

- 1. 通用空间: EXMC_NCE3_x(x= 0,1)是片选信号,表示同时支持 8 位和 16 位的访问操作。在 EXMC_NREG 位高电平时,EXMC_NWE 为低电平时写操作,EXMC_NOE 为低电平时读操作。
- 2. 属性空间: EXMC_NCE3_x(x= 0,1)是片选信号,表示同时支持 8 位和 16 位的访问操作。在 EXMC_NREG 位低电平时, EXMC_NWE 为低电平时写操作,EXMC_NOE 为低电平时读操作。
- 3. IO 空间: EXMC_NCE3_x(x= 0,1)是片选信号,表示同时支持 8 位和 16 位的访问操作。在 EXMC_NREG 位低电平时,EXMC_NIOWR 为低电平时写操作,EXMC_NIORD 为低电平时读操作。

AHB 访问 16 位的 PC/CF Card:

- 1. 通用空间:数据存储的位置,支持字节和半字访问,奇地址禁止字节访问。当 AHB 进行字访问,EXMC 会自动分成两次连续的半字操作。在 EXMC_NREG 位高电平时,EXMC_NWE 为低电平时写操作,EXMC_NOE 为低电平时读操作。
- 2. 属性空间:配置信息存储的位置,仅偶地址支持字节访问,半字访问会被转换为单次字节操作,字访问会被转换为两次字节访问。半字与字访问时,只有 EXMC_NCE3_0 有效。在 EXMC_NREG 位低电平时,EXMC_NWE 为低电平时写操作,EXMC_NOE 为低电平时读操作。
- 4. IO 空间:同时支持字节和半字访问,EXMC_NREG 位低电平时,EXMC_NIOWR 为低电平时写操作,EXMC_NIORD 为低电平时读操作。

21.4. EXMC 寄存器

21.4.1. NOR/PSRAM 控制器寄存器

SRAM/NOR Flash 控制寄存器 (EXMC_SNCTLx) (x=0, 1, 2, 3)

偏移地址: 0x00 + 8 * x, (x = 0, 1, 2, 3)

复位值: 0x0000 30DB (对于region0), 0x0000 30D2 (对于region1、region2和region3)

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					保	(S))						SYNC		CPS[2:0]	
					冰	Ħ						WR		CF3[2.0]	
												rw		rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ASYNC	EXMO	NRWT	WREN	NRWT	WRAPEN	NRWT	SBR	但囟	NR	NRV	/[1·0]	NIDTI	P[1:0]	NR	NRBK
WAIT	DEN	EN	WIXLIN	CFG	WINAFLIN	POL	STEN	ЖШ	保留 EN		v[1.0]	NIXII	[1.0]	MUX	EN
rw	rw	rw	rw	rw	rw	rw	rw		rw	r	w	r	W	rw	rw

位/位域	名称	·····································
31:20	保留	必须保持复位值。
19	SYNCWR	选择写操作模式 0: 异步写操作 1: 同步写操作
18:16	CPS[2:0]	CRAM页大小 000: 页边界自动突发分割 001: 128字节 010: 256字节 011: 512字节 100: 1024字节 其他: 保留
15	ASYNCWAIT	异步等待功能使能位 0: 禁用异步等待功能 1: 使能异步等待功能
14	EXMODEN	扩展模式使能 0: 禁用扩展模式 1: 使能扩展模式
13	NRWTEN	NWAIT信号使能 对于存储器的突发模式访问,该位使能/禁用等待状态插入NWAIT信号功能 0:禁用NWAIT信号

		32321 133711 7137
		1:使能NWAIT信号
12	WREN	写操作使能 0:禁止EXMC对外部存储器的写操作,否则产生一个AHB错误 1:允许EXMC对外部存储器的写操作(复位缺省值)
11	NRWTCFG	NWAIT信号配置,只在同步模式有效 0: NWAIT信号在等待状态前的一个数据周期有效 1: NWAIT信号在等待状态期间有效
10	WRAPEN	非对齐成组模式使能 0:禁止非对齐成组操作 1:允许非对齐成组操作
9	NRWTPOL	NWAIT信号极性 0: NWAIT低电平有效 1: NWAIT高电平有效
8	SBRSTEN	同步突发模式使能 0:禁止同步突发模式 1:使能同步突发模式
7	保留	必须保持复位值。
6	NREN	NOR闪存访问使能 0: 禁止NOR Flash访问 1: 允许NOR Flash访问
5:4	NRW[1:0]	存储器数据宽度 00:8位 01:16位(复位缺省值) 10/11:保留
3:2	NRTP[1:0]	存储器类型 00: SRAM(region1~region3复位之后的默认值) 01: PSRAM(CRAM) 10: NOR Flash(region0复位之后的默认值) 11: 保留
1	NRMUX	数据线/地址线复用 0: 禁用地址/数据复用功能 1: 允许地址/数据复用功能
0	NRBKEN	存储块使能 0: 禁用对应的存储器块 1: 使能对应的存储器块

SRAM/NOR Flash 时序寄存器 (EXMC_SNTCFGx) (x=0, 1, 2, 3)

偏移地址: 0x04 + 8 * x, (x = 0, 1, 2, 3)

复位值: 0x0FFF FFFF

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保	留	ASYNCMOD[1:0] DLAT[3:0]						CKDI	V[3:0]		BUSLAT[3:0]				
		r	w		r	w			n	v			n	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DSET[7:0]						AHLD[3:0]				ASET[3:0]				

位/位域 31:30 29:28	名称 保留 ASYNCMOD[1:0]	描述 必须保持复位值。 异步访问模式
29:28	ASYNCMOD[1:0]	异
		该位只有在扩展模式中使用
		00: 模式A
		01: 模式B
		10: 模式C
		11: 模式D
27:24	DLAT[3:0]	NOR Flash数据延时,仅在同步模式有效
		0x0: 第一数据的保持时间为2个EXMC_CLK时钟周期
		0x1: 第一数据的保持时间为3个EXMC_CLK时钟周期
		0xF: 第一数据的保持时间为17个EXMC_CLK时钟周期
23:20	CKDIV[3:0]	同步模式时钟分频比,仅在同步模式有效
		0x0: 保留
		0x1: EXMC_CLK周期=2个HCLK周期
		0xF: EXMC_CLK周期=16个HCLK周期
19:16	BUSLAT[3:0]	总线延迟时间
		在复用读模式中使用,避免总线冲突,是总线恢复到高阻态的最小时间
		0x0:总线延迟=1个HCLK周期
		0x1: 总线延迟=2个HCLK周期
		0xF: 总线延迟=16个HCLK周期
15:8	DSET[7:0]	异步数据建立时间
		该位域仅在异步模式有效
		0x00: 保留
		0x01: 数据建立时间=2个HCLK周期

.

0xFF: 数据建立时间=256个HCLK周期

7:4 AHLD[3:0] 异步地址保持时间

该位域设置地址保持时间,仅在模式D与复用模式有效

0x0: 保留

0x1: 地址建立时间=2个HCLK

.

0xF: 地址建立时间=16个HCLK

3:0 ASET[3:0] 异步地址建立时间

该位域设置地址建立时间

注意: 该位域仅在SRAM,ROM,NOR Flash的异步模式有效

0x0: 地址建立时间= 1个HCLK

.

0xF: 地址建立时间= 16个HCLK

SRAM/NOR Flash 写时序寄存器 (EXMC_SNWTCFGx) (x=0, 1, 2, 3)

偏移地址: 0x104 + 8 * x, (x = 0, 1, 2, 3)

复位值: 0x0FFF FFFF

该寄存器只能按字(32位)访问。

该寄存器仅在扩展模式使能(寄存器EXMC_SNCTL位EXMODEN置1)后有效。

保留 WASYNCMOD[1:0] 保留 WBUSLAT[3:0] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	智	WASYNC	:MOD[1:0]				保	:留					WBUSL	AT[3:0]	
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1			r	W										r	N	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WDSET[7:0] WAHLD[3:0] WASET[3:0]		WDSET[7:0]						WAHLD[3:0]				WASET[3:0]				

位/位域	名称	描述
31:30	保留	必须保持复位值。
29:28	WASYNCMOD[1:0]	异步访问模式
		该位只有在扩展模式中使用
		00: 模式A
		01: 模式B
		10: 模式C
		11: 模式D
27:20	保留	必须保持复位值。
19:16	WBUSLAT[3:0]	总线延迟时间 在每次写传输结束的时候增加总线延时时间来满足连续传输之间的最小时间。

0x0: 总线延迟=1个HCLK周期

GigaDevice		GD32F403XX 用户手册
		0x1:总线延迟=2个HCLK周期 0xF:总线延迟=16个HCLK周期
15:8	WDSET[7:0]	异步数据建立时间 该位域仅在异步模式有效 0x00: 保留 0x01: 数据建立时间=2个HCLK周期
7:4	WAHLD[3:0]	0xFF:数据建立时间=256个HCLK周期 异步地址保持时间 该位域设置地址保持时间,仅在模式D与复用模式有效 0x0:保留 0x1:地址建立时间=2个HCLK 0xF:地址建立时间=16个HCLK
3:0	WASET[3:0]	异步地址建立时间 该位域设置地址建立时间 注意: 该位域仅在SRAM,ROM,NOR Flash的异步模式有效 0x0: 地址建立时间= 1个HCLK 0x1: 地址建立时间= 2个HCLK 0xF: 地址建立时间= 16个HCLK

21.4.2. NAND Flash/PC Card 控制器寄存器

NAND Flash/PC Card 控制寄存器 (EXMC_NPCTLx) (x=1, 2, 3)

偏移地址: 0x40 + 0x20 * x, (x = 1, 2, 3)

复位值: 0x0000 0018

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					保	留							ECCSZ[2:0]	ATR[3]
													rw		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ATR[2:0]		CTR[3:0]			保留		ECCEN	NDW[1:0]		NDTP	NDBKEN	NDWTEN	保留	
	rw	rw rw rw					N	rw	rw	rw					

位/位域	名称	描述
31:20	保留	必须保持复位值。
19:17	ECCSZ[2:0]	ECC块大小

		000: 256字节
		001: 512字节 010: 1024字节
		011: 2048字节
		100: 4096字节
		101:8192字节
16:13	ATR[3:0]	ALE至RE的延迟
		0x0: 1个HCLK
		······ 0xF:16个HCLK
		OXI: 10 HOLK
12:9	CTR[3:0]	CLE至RE的延迟
		0x0: 1个HCLK
		0x1: 2个HCLK
		······ 0xF:16个HCLK
		UXF: 107 FICEN
8:7	保留	必须保持复位值。
6	ECCEN	ECC使能
		0: 关闭ECC,并复位EXMC_NECCx
		1: 打开ECC
5:4	NDW[1:0]	外部存储器数据宽度
		00: 8位
		01: 16位
		其他:保留
		注意:对于PC/CF Card,数据宽度必须选择16位
3	NDTP	外部存储器的类型
		0: PC Card, CF Card, PCMCIA
		1: NAND Flash
2	NDBKEN	存储块使能
		0: 禁用对应的存储器块
		1: 使能对应的存储器块
1	NDWTEN	NWAIT信号使能位
		0: 关闭等待功能
		1: 使能等待功能
0	保留	必须保持复位值。

NAND Flash/PC Card 中断使能寄存器 (EXMC_NPINTENx) (x=1, 2, 3)

偏移地址: 0x44 + 0x20 * x, (x = 1, 2, 3)

复位值: 0x0000 0042 (对于bank1和bank2), 0x0000 0043 (对于bank3)

该寄存器只能按字(32位)访问。

除了中断控制比特位,该寄存器还包含一个FIFO空状态位,该位主要用于ECC。当写外部存储器时,FIFO可以容纳来自AHB访问的2个字,使得AHB总线可以暂时被释放而用于其他外设。ECC计算是基于从FIFO传递的数据。为了得到正确的ECC值,用户应该在FIFO空状态标志位为1时才去读ECC寄存器。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留					FFEPT	INTFEN	INTHEN	INTREN	INTFS	INTHS	INTRS
									-	nu.	211	nu	nu	P14/	2044

位/位域	名称	描述
31:7	保留	必须保持复位值。
6	FFEPT	FIFO空标志位 0: FIFO非空 1: FIFO空
5	INTFEN	中断下降沿检测使能 0: 禁用中断下降沿检测 1: 使能中断下降沿检测
4	INTHEN	中断高电平检测使能 0: 禁用中断高电平检测 1: 使能中断高电平检测
3	INTREN	中断上升沿中断检测使能 0:禁用中断上升沿检测 1:使能中断上升沿检测
2	INTFS	中断下降沿状态 0: 没有检测到中断下降沿 1: 检测到中断下降沿
1	INTHS	中断高电平状态 0: 没有检测到中断高电平 1: 检测到中断高电平
0	INTRS	中断上升沿状态 0: 没有检测到中断上升沿 1: 检测到中断上升沿

NAND Flash/PC Card 通用空间时序寄存器 (EXMC_NPCTCFGx) (x=1, 2, 3)

偏移地址: 0x48 + 0x20 * x, (x = 1, 2, 3)

复位值: 0xFCFC FCFC

该寄存器只能按字(32位)访问。

这些操作适用于以下类型的外部存储器的通用存储空间16位的PC Card, CF card和NAND Flash。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			СОМН	IZ[7:0]							СОМН	LD[7:0]			
			rv	v							n	N			_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	COMWAIT[7:0]										COMS	ET[7:0]			

v rv

位/位域	名称	描述
31:24	COMHIZ[7:0]	通用空间数据总线的高阻时间
		定义在通用空间进行写操作后数据总线保持高阻态时间
		0x00: 1个HCLK
		0xFE: 255个HCLK
		OxFF: 保留
23:16	COMHLD[7:0]	通用空间的保持时间
		在发送地址后的地址保持时间,在写操作时,也作为数据信号保持的时间
		0x00: 保留
		0x01: 1个HCLK
		0xFE: 254个HCLK
		0xFF: 保留
15:8	COMWAIT[7:0]	通用空间的等待时间
		定义了保持命令的最小时间
		0x00: 保留
		0x01: 2个HCLK (加上NWAIT时钟周期)
		0xFE: 255个HCLK (加上NWAIT时钟周期)
		0xFF: 保留
7:0	COMSET[7:0]	通用空间的建立时间
		定义地址信号的建立时间
		0x00: 1个HCLK
		0xFE: 255个HCLK
		0xFF: 保留

NAND Flash/PC Card 属性空间时序寄存器 (EXMC_NPATCFGx) (x=1, 2, 3)

偏移地址: 0x4C + 0x20 * x, (x = 1, 2, 3)

复位值: 0xFCFC FCFC

该寄存器只能按字(32位)访问。

用于8位访问PC卡的属性空间,或是用另一种时序来对Nand Flash的最后地址进行写操作。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ATTHI	Z[7:0]							ATTHI	.D[7:0]			
			rv	v							r	N			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ATTWAIT[7:0]										ATTS	ET[7:0]			

rw rw

位/位域	名称	描述
31:24	ATTHIZ[7:0]	属性空间数据总线的高阻时间
		定义在属性空间进行写操作后数据总线保持高阻态时间
		0x00: 1个HCLK
		0xFE: 255个HCLK
		OxFF: 保留
23:16	ATTHLD[7:0]	属性空间的保持时间
		在发送地址后的地址保持时间,在写操作时,也作为数据信号保持的时间
		0x00: 保留
		0x01: 1个HCLK
		0xFE: 254个HCLK
		OxFF: 保留
15:8	ATTWAIT[7:0]	属性空间的等待时间
		定义了保持命令的最小时间
		0x00: 保留
		0x01: 2个HCLK (加上NWAIT时钟周期)
		0xFE: 255个HCLK (加上NWAIT时钟周期)
		OxFF: 保留
7:0	ATTSET[7:0]	属性空间的建立时间
		定义地址信号的建立时间
		0x00: 1个HCLK
		0xFE: 255个HCLK
		OxFF: 保留

PC Card I/O 空间时序寄存器 (EXMC_PIOTCFG3)

偏移地址: 0xB0

复位值: 0xFCFC FCFC

该寄存器只能按字(32位)访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IOHIZ[7:0]										IOHL	D[7:0]			
			rv	v							r	W			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IOWAIT[7:0]										IOSE	T[7:0]			

N rv

位/位域	名称	描述
31:24	IOHIZ[7:0]	I/O空间数据总线的高阻时间
		定义在IO空间进行写操作后数据总线保持高阻态时间
		0x00: 0个HCLK
		0xFF: 255个HCLK
23:16	IOHLD[7:0]	I/O空间的保持时间
		在发送地址后的地址保持时间,在写操作时,也作为数据信号保持的时间0x00:保
		留
		0x01: 1个HCLK
		0xFF: 255个HCLK
15:8	IOWAIT[7:0]	I/O空间的等待时间
		定义了保持命令的最小时间
		0x00: 保留
		0x01: 2个HCLK (加上NWAIT时钟周期)
		0xFF: 256个HCLK (加上NWAIT时钟周期)
7:0	IOSET[7:0]	I/O空间的建立时间
		定义地址信号的建立时间
		0x00: 1个HCLK
		0xFF: 256个HCLK

NAND Flash ECC 结果寄存器 (EXMC_NECCx) (x=1, 2)

偏移地址: 0x54+0x20 * x, (x =1, 2)

复位值: 0x0000 0000

该寄存器只能按字(32位)访问。

GD32F403xx 用户手册

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ECC[31:16]							
							ı	r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ECC[15:0]														

r

位/位域 名称 描述

31:0 ECC[31:0] ECC计算结果

ECCSZ[2:0]	NAND Flash 页大小	ECC 位
0b000	256	ECC[21:0]
0b001	512	ECC[23:0]
0b010	1024	ECC[25:0]
0b011	2048	ECC[27:0]
0b100	4096	ECC[29:0]
0b101	8192	ECC[31:0]

22. 控制器局域网络(CAN)

22.1. 简介

CAN(Controller Area Network)总线是一种可以在无主机情况下实现微处理器或者设备之间相互通信的总线标准。

CAN 总线控制器作为 CAN 网络接口,遵循 CAN 总线协议 2.0A 和 2.0B。CAN 总线控制器可以处理总线上的数据收发,在 GD32F403xx 系列产品中具有 28 个过滤器。过滤器用于筛选并接收用户需要的消息。用户可以通过 3 个发送邮箱将待发送数据传输至总线,邮箱发送的顺序由发送调度器决定。并通过 2 个深度为 3 的接收 FIFO 获取总线上的数据,接收 FIFO 的管理完全由硬件控制。同时 CAN 总线控制器硬件支持时间触发通信(Time-trigger communication)功能。

22.2. 主要特征

- 支持 CAN 总线协议 2.0A 和 2.0B;
- 通信波特率最大为 1Mbit/s;
- 支持时间触发通信 (Time-triggered communication);
- 中断使能和清除。

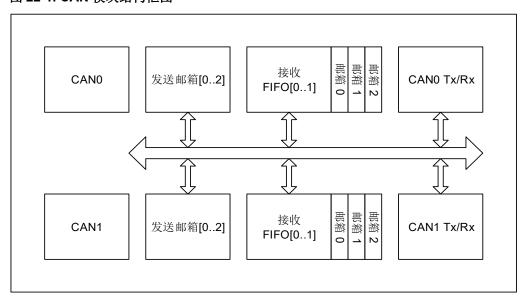
发送功能

- 3个发送邮箱;
- 支持发送优先级;
- 支持发送时间戳。

接收功能

- 2 个深度为 3 的接收 FIFO;
- 在 GD32F403xx 系列产品中,具有 28 个过滤器;
- FIFO 锁定功能。

时间触发通信


- 在时间触发通信模式下禁用自动重传;
- 16 位定时器;
- 接收时间戳;
- 发送时间戳。

22.3. 功能说明

CAN 模块结构框图如图 22-1. CAN 模块结构框图所示。

图 22-1. CAN 模块结构框图

22.3.1. 工作模式

CAN 总线控制器有 3 种工作模式:

- 睡眠工作模式;
- 初始化工作模式;
- 正常工作模式。

睡眠工作模式

芯片复位后, CAN总线控制器处于睡眠工作模式。该模式下CAN总线控制器的时钟停止工作并处于一种低功耗状态。

将CAN_CTL寄存器的SLPWMOD位置1,可以使CAN总线控制器进入睡眠工作模式。当进入睡眠工作模式后,CAN_STAT寄存器的SLPWS位将被硬件置1。

将CAN_CTL寄存器的AWU位置1,并当CAN检测到总线活动时,CAN总线控制器将自动退出睡眠工作模式。将CAN_CTL寄存器的SLPWMOD位清0,也可以退出睡眠工作模式。

由睡眠模式进入初始化工作模式:将CAN_CTL寄存器的IWMOD位置1,SLPWMOD位清0。

由睡眠模式进入正常工作模式:将CAN_CTL寄存器的IWMOD位和SLPWMOD位清0。

初始化工作模式

如果需要配置 CAN 总线通信参数,CAN 总线控制器必须进入初始化工作模式。将 CAN_CTL 寄存器的 IWMOD 位置 1,使 CAN 总线控制器进入初始化工作模式,将其清 0 则离开初始化

工作模式。在进入初始化工作模式后, CAN_STAT 寄存器的 IWS 位将被硬件置 1。

由初始化模式进入睡眠模式: CAN_CTL 寄存器的 SLPWMOD 位置 1, IWMOD 位清 0。

由初始化模式进入正常工作模式: CAN_CTL 寄存器的 SLPWMOD 位和 IWMOD 位清 0。

正常工作模式

在初始化工作模式中配置完 CAN 总线通信参数后,将 CAN_CTL 寄存器的 IWMOD 位清 0 可以进入正常工作模式并与 CAN 总线网络中的节点进行正常通信。

由正常工作模式进入睡眠工作模式: CAN_CTL 寄存器的 SLPWMOD 位置 1,并等待当前数据收发过程结束。

由正常工作模式初始化工作模式: CAN_CTL 寄存器的 IWMOD 位置 1,并等待当前数据收发过程结束。

22.3.2. 通信模式

CAN 总线控制器有 4 种通信模式:

- 静默(Silent)通信模式;
- 回环(Loopback)通信模式;
- 回环静默(Loopback and Silent)通信模式;
- 正常(Normal)通信模式。

静默 (Silent) 通信模式

在静默通信模式下,可以从 CAN 总线接收数据,但不向总线发送任何数据。将 CAN_BT 寄存器中的 SCMOD 位置 1,使 CAN 总线控制器进入静默通信模式,将其清 0 可以退出静默通信模式。

静默通信模式可以用来监控 CAN 网络上的数据传输。

回环(Loopback)通信模式

在回环通信模式下,由 CAN 总线控制器发送的数据可以被自己接收并存入接收 FIFO,同时这些发送数据也送至 CAN 网络。将 CAN_BT 寄存器中的 LCMOD 位置 1,使 CAN 总线控制器进入回环通信模式,将其清 0 可以退出回环通信模式。

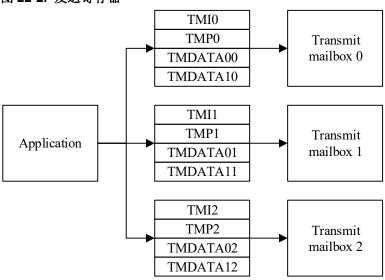
回环通信模式通常用来进行 CAN 通信自测。

回环静默(Loopback and Silent)通信模式

在回环静默通信模式下,CAN 的 RX 和 TX 引脚与 CAN 网络断开。CAN 总线控制器既不从 CAN 网络接收数据,也不向 CAN 网络发送数据,其发送的数据仅可以被自己接收。将 CAN_BT 寄存器中的 LCMOD 位和 SCMOD 位置 1,使 CAN 总线控制器进入回环静默通信模式,将它们清 0 可以退出回环静默通信模式。

回环静默通信模式通常用来进行 CAN 通信自测。对外 TX 引脚保持隐性状态(逻辑 1), RX 引脚保持高阻态。

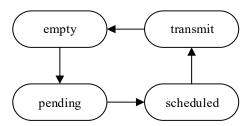
正常(Normal)通信模式


CAN 总线控制器通常工作在正常通信模式下,可以从 CAN 总线接收数据,也可以向 CAN 总线发送数据。这时需要将 CAN BT 寄存器的 LCMOD 位和 SCMOD 位清 0。

22.3.3. 数据发送

发送寄存器

数据发送通过 3 个发送邮箱进行,可以通过寄存器 CAN_TMIx, CAN_TMPx, CAN_TMDATA0x和 CAN_TMDATA1x对发送邮箱进行配置。如图 22-2.发送寄存器所示。


图 22-2. 发送寄存器

发送邮箱状态转换

当发送邮箱处于 empty 状态时,应用程序才可以对邮箱进行配置。当邮箱被配置完成后,可以将 CAN_TMIx 寄存器的 TEN 位置 1,从而向 CAN 总线控制器提交发送请求,这时发送邮箱处于 pending 状态。当超过 1 个邮箱处于 pending 状态时,需要对多个邮箱进行调度,这时发送邮箱处于 scheduled 状态。当调度完成后,发送邮箱中的数据开始向 CAN 总线上发送,这时发送邮箱处于 transmit 状态。当数据发送完成,邮箱变为空闲,可以再次交给应用程序使用,这时发送邮箱重新变为 empty 状态。如图 22-3. 发送邮箱状态转换所示。

图 22-3. 发送邮箱状态转换

发送状态和错误信息

CAN_TSTAT寄存器中的MTF, MTFNERR, MAL和MTE位用来说明发送状态和错误信息。

- MTF: 发送完成标志位。当数据发送完成时, MTF 置 1。
- MTFNERR: 无错误发送完成标志位。当数据发送完成且没有错误时,MTFNERR 置 1。
- MAL: 仲裁失败标志位。当发送数据过程中出现仲裁失败时,MAL置1。
- MTE: 发送错误标志位。当发送过程中检测到总线错误时,MTE置1。

数据发送步骤

数据发送步骤如下:

第1步:选择一个空闲发送邮箱;

第2步:根据应用程序要求,配置4个发送寄存器;

第3步:将CAN_TMIx寄存器的TEN置1;

第4步:检测发送状态和错误信息。典型情况是检测到MTF和MTFNERR置1,说明数据被成功发送。

发送选项

中止数据发送

将CAN TSTAT寄存器的MST置1,可以中止数据发送。

当发送邮箱处于pending和scheduled状态, CAN_TSTAT寄存器的MST置1可以立即中止数据发送。

当发送邮箱处于transmit状态,则面临两种情况。一种情况是数据发送被成功地完成,MTF和MTFNERR为1,这时发送邮箱将转换为empty状态。相对的,如果数据发送过程中出现了问题,这时发送邮箱将转换为scheduled状态,这时数据发送被中止。

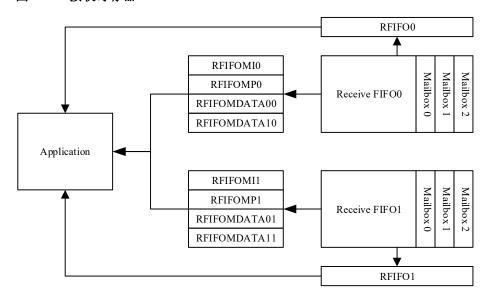
发送优先级

当有2个及其以上发送邮箱等待发送时,寄存器CAN_CTL的TFO位的值可以决定发送顺序。 当TFO为1,所有等待发送的邮箱按照先来先发送(FIFO)的顺序进行。

当TFO为0,具有最小标识符(Identifier)的邮箱最先发送。如果所有的标识符(Identifier)相等,具有最小邮箱编号的邮箱最先发送。

22.3.4. 数据接收

接收寄存器


应用程序通过2个深度为3的FIFO接收来自CAN网络的数据。

寄存器 CAN_RFIFOx 可以操作 FIFO ,也包含 FIFO 状态。寄存器 CAN_RFIFOMIx,CAN RFIFOMPx,CAN RFIFOMDATA0x和CAN RFIFOMDATA1x用于接收数据帧。

如图 22-4. 接收寄存器所示。

图 22-4. 接收寄存器

接收 FIFO

每个接收FIFO包含3个接收邮箱,用来接收存储数据帧。这些邮箱按照先进先出方式进行组织,最早从CAN网络接收的数据,最早被应用程序处理。

寄存器CAN_RFIFOx包含FIFO状态信息和帧的数量。当FIFO中包含数据时,可以通过寄存器CAN_RFIFOMIx, CAN_RFIFOMPx, CAN_RFIFOMDATA0x和CAN_RFIFOMDATA1x读取数据,之后将寄存器CAN_RFIFOx的RFD置1释放邮箱。

接收 FIFO 状态信息

接收FIFO状态信息包含在寄存器CAN RFIFOx中。

RFL: FIFO中包含的帧数量。FIFO为空时,RFL为0: FIFO为满时,RFL为3。

RFF: FIFO满状态标志位。这时RFL为3。

RFO: FIFO溢出标志位。当FIFO已经包含了3个数据帧时,新的数据帧到来使FIFO发生溢出。如果CAN_CTL寄存器的RFOD位被置1,新的数据帧将丢弃。如果该位被清0,新的数据帧将覆盖接收FIFO中最后一帧数据。

数据接收步骤

第1步: 查看FIFO中帧的数量。

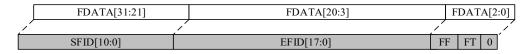
第 2 步 : 通 过 CAN_RFIFOMIx , CAN_RFIFOMPx , CAN_RFIFOMDATA0x 和 CAN_RFIFOMDATA1x读取数据。

第3步:将寄存器CAN_RFIFOx的RFD置1释放邮箱,并且等待其由硬件自动清0。

22.3.5. 过滤功能

一个待接收的数据帧会根据其标识符(Identifier)进行过滤:硬件会将通过过滤的帧送至接收

FIFO,并丢弃没有通过过滤的帧。


过滤器位宽

在 GD32F403xx系列产品中,过滤器包含28个单元,它们是bank0到bank27。

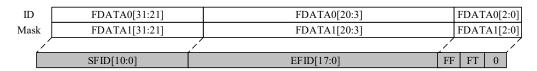
每一个过滤器单元有2个寄存器CAN_FxDATA0和CAN_FxDATA1,它们可以配置为2种位宽: 32-bit位宽和16-bit位宽。

32-bit 位宽 CAN_FDATAx 包含字段: SFID[10:0], EFID[17:0], FF 和 FT。如<u>**图 22-5. 32-bit</u>** 位**宽过滤器**所示。</u>

图 22-5. 32-bit 位宽过滤器

16-bit 位宽 CAN_FDATAx 包含字段: SFID[10:0], FT, FF 和 EFID[17:15]。如<u>**图 22-6. 16-bit**</u> 位宽过滤器所示。

图 22-6. 16-bit 位宽过滤器



掩码模式

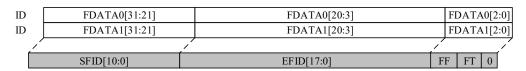
对于一个待过滤的数据帧的标识符(Identifier),掩码模式用来指定哪些位必须与预设的标识符相同,哪些位无需判断。

一个 32-bit 位宽掩码模式过滤器如图 22-7. 32-bit 位宽掩码模式过滤器所示。

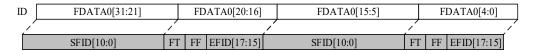
图 22-7. 32-bit 位宽掩码模式过滤器

图 22-8. 16-bit 位宽掩码模式过滤器

ID	FDATA0[15:5]		FDATA0[4:0]	FDATA1[15:5]		FDATA1[4:0]
Mask	FDATA0[31:21]		FDATA0[20:16]	FDATA1[31:21]		FDATA1[20:16]
_/		./		/	/	
	SFID[10:0]	FT	FF EFID[17:15]	SFID[10:0]	FT	FF EFID[17:15]


列表模式

对于一个待过滤的数据帧的标识符(Identifier),列表模式用来表示与预设的标识符列表中能够 匹配则通过,否则丢弃。



一个 32-bit 位宽列表模式过滤器如图 22-9. 32-bit 位宽列表模式过滤器所示。

图 22-9. 32-bit 位宽列表模式过滤器

图 22-10. 16-bit 位宽列表模式过滤器

过滤序号

过滤器由若干过滤单元(Bank)组成,每个过滤单元因为位宽和模式的选择不同,而具有不同的过滤效果。例如*表 22-1. 32-bit 过滤序号*所示的 2 个过滤单元,Bank0 是 32-bit 位宽掩码模式,Bank1 是 32-bit 位宽列表模式。

表 22-1. 32-bit 过滤序号

过滤 单元	过滤器数据寄存器	过滤序号
0	F0DATA0-32bit-ID	0
	F0DATA1-32bit-Mask	U
1	F1DATA0-32bit-ID	1
	F1DATA1-32bit-ID	2

过滤器关联的 FIFO

28个过滤单元均可以关联接收FIFO0或接收FIFO1。一旦一个过滤单元关联到接收FIFO,只有通过这个过滤单元的帧才会被传送到接收FIFO中存储。

过滤器激活控制

一个过滤单元如果被应用程序用到,就必须激活。通过CAN FW寄存器可以进行配置。

过滤索引

一个包含过滤序号(Fiter Number)N 的过滤单元通过了某个帧,则该帧数据的过滤索引(Filtering Index)为 N。这时 CAN_RFIFOMPx 中 FI 的值为 N。<u>表 22-2. 过滤索引</u>是一个过滤索引的例子。

在<u>**表 22-2**. 过滤索引</u>中,如果一个帧通过了 FIFO0 中过滤序号 10(Filter Number=10)的过滤单元,那么该帧的过滤索引为 10。这时 CAN RFIFOMPx 中 FI 的值为 10。

过滤序号不关心对应的过滤单元(Bank)是否处于工作状态。例如Bank3被关联到FIFO0,且为"不激活"状态,但它仍然包含过滤序号3和4。

表 22-2. 过滤索引

	22-2. 过滤系列						
过 滤	FIFO0	激活	过滤序 号	过 滤	FIFO1	激活	过滤序 号
	F0DATA0-32bits-ID				F2DATA0[15:0]-16bits-ID		
0	FODATA1 22bita Maak	是	0		F2DATA0[31:16]-16bits-		0
	F0DATA1-32bits-Mask			2	Mask	是	
	F1DATA0-32bits-ID		1		F2DATA1[15:0]-16bits-ID	疋	
1	E4DATA4 22bita ID	是	2		F2DATA1[31:16]-16bits-		1
	F1DATA1-32bits-ID		2		Mask		
	F3DATA0[15:0]-16bits-ID				F4DATA0-32bits-ID		
	F3DATA0[31:16]-16bits-		3	4	EADATA4 20bita Maak	否	2
0	Mask	不			F4DATA1-32bits-Mask		
3	F3DATA1[15:0]-16bits-ID	否			F5DATA0-32bits-ID		3
	F3DATA1[31:16]-16bits-		4	5	FEDATA4 20bit- ID	否	4
	Mask				F5DATA1-32bits-ID		4
	F7DATA0[15:0]-16bits-ID		5		F6DATA0[15:0]-16bits-ID		5
	F7DATA0[31:16]-16bits-		6	6	F6DATA0[24:46] 46bite ID		6
7	ID	否	0		F6DATA0[31:16]-16bits- ID	B	0
,	F7DATA1[15:0]-16bits-ID	Ė	7		F6DATA1[15:0]-16bits-ID	是	7
	F7DATA1[31:16]-16bits-		8		F6DATA1[31:16]-16bits- ID		8
	ID		0		FODATAT[31.10]-1001(5-10		0
	F8DATA0[15:0]-16bits-ID		9		F10DATA0[15:0]-16bits-ID		
	F8DATA0[31:16]-16bits-		10		F10DATA0[31:16]-16bits-		9
8	ID	是	10	10	Mask	示	
o	F8DATA1[15:0]-16bits-ID	足	11	10	F10DATA1[15:0]-16bits-ID	否	
	F8DATA1[31:16]-16bits-		12		F10DATA1[31:16]-16bits-		10
	ID		12		Mask		
	F9DATA0[15:0]-16bits-ID				F11DATA0[15:0]-16bits-ID		11
	F9DATA0[31:16]-16bits-		13		F11DATA0[31:16]-16bits- ID		12
9	Mask	是		11	FTTDATA0[31.10]-100lis-1D	否	12
9	F9DATA1[15:0]-16bits-ID	疋		''	F11DATA1[15:0]-16bits-ID	Ħ	13
	F9DATA1[31:16]-16bits-		14		F11DATA1[31:16]-16bits- ID		14
	Mask				ו ווטתותונטו. וטן- וטטונס- וט		14
12	F12DATA0-32bits-ID	是	15	13	F13DATA0-32bits-ID	是	15
12	F12DATA1-32bits-Mask	圧	10	13	F13DATA1-32bits- ID	(左	16

优先级

过滤器优先级规则如下:

- 1、32-bits位宽模式高于16-bits位宽模式;
- 2、列表模式高于掩码模式;
- 3、较小的过滤序号(Filter Number)具有较高的优先级。

22.3.6. 时间触发通信

时间触发通信是CAN数据链路层应用协议。CAN网络中的所有节点都按照一个预先设定的时间序列进行通信,尤其适合于时间周期性应用和时间确定性应用。

在这种通信模式下,一个内部的16-bit计数器开始工作,在每一个CAN位时间(Bit time)增1。这个内部计数器为数据发送和数据接收提供时间戳,这些时间戳存放在寄存器CAN RFIFOMPx和CAN TMPx中。

在这种通信模式下, 自动重发功能是禁止的。

22.3.7. 通信参数

自动重发禁止模式

在时间触发通信模式下,要求自动重发必须是禁止的,可以通过将CAN_CTL寄存器的ARD位置1满足要求。

在这种模式下,数据只会被发送一次,如果因为仲裁失败或者总线错误而导致发送失败,CAN 总线控制器不会像通常那样进行数据自动重发。

发送结束时,寄存器CAN_TSTAT的MTF位被硬件置1,而发送状态信息可以通过MTFNERR,MAL和MTE获得。

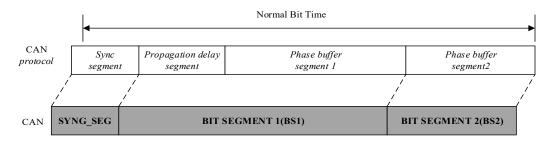
位时序(Bit time)

CAN协议采用位同步传输方式。这种方式不仅增大了传输容量,而且意味着需要一种复杂的位同步方法。面向字节传输的位同步方式适用于接收在每个字节前都有起始位的情况,而同步传输协议只要求数据帧的最开始有一个起始位。为保证接收器能正确读取信息,需要不断地进行重新同步。因此,在相位缓冲段采样点前面和后面都应该插入一个帧间隔。

可以通过位操作仲裁方式访问CAN总线。信号从发送器到接收器,再回到发送器必须在一个位时间内完成。为了达到同步的目的,除了相位缓冲段外,还需要一个传输延时段。在信号传输过程中,传输延时段被视为发送或接收延时。

CAN总线控制器将位时间分为3个部分。

同步段(Synchronization segment),记为SYNC SEG。该段占用1个时间单元($1 \times t_a$)。


位段1 (Bit segment 1) ,记为BS1。该段占用1到16个时间单元。相对于CAN协议而言,BS1相当于传播时间段(Propagation delay segment)和相位缓冲段1(Phase buffer segment 1)。

位段2(Bit segment 2),记为BS2。该段占用1到8个时间单元。相对于CAN协议而言,BS2相当于相位缓冲段2(Phase buffer segment 2)。

对比与 CAN 协议,位时序如图 22-11.位时序所示。

图 22-11. 位时序

再同步补偿宽度SJW(resynchronization Jump Width)对CAN网络节点同步误差进行补偿,占用1到4个时间单元。

有效跳变定义为,在CAN控制器,没有发送隐性位时,一个位时间内显性位到隐性位的第一次转变。

如果有效跳变在BS1期间被检测到,而不是SYNC_SEG期间,BS1将会最多被延长SJW,因此采样点延时。

相反,如果有效跳变在BS2期间被检测到,而不是SYNC_SEG期间,BS2将会最多被缩短SJW,因此采样点提前。

波特率

波特率计算公式如下:

$$BaudRate = \frac{1}{Normal\ Bit\ Time}$$
 (\(\pi\)22-1)

Normal Bit Time =
$$t_{SYNC SEG} + t_{BS1} + t_{BS2}$$
 (\sharp 22-2)

其中:

$$t_{SYNC_SEG} = 1 \times t_q \tag{\pi 22-3}$$

$$t_{BS1} = (1 + BT.BS1) \times t_q \tag{\ddagger 22-4}$$

$$t_{BS2} = (1 + BT.BS2) \times t_q \tag{\ddagger 22-5}$$

$$t_q = (1 + BT.BAUDPSC) \times t_{PCLK1}$$
 (式22-6)

22.3.8. 错误标志

CAN总线的状态可以通过CAN_ERR寄存器的发送错误计数值(Transmit Error Counter,记为TECNT)和接收错误计数值(Receive Error Counter,记为RECNT)反映,其值会根据错误的情况由硬件增加或减少,软件可以通过这些值判断CAN网络的稳定性。关于错误计数值的详细信息请参考CAN协议相关章节。

通过使能CAN INTEN寄存器中的相应位(ERRIE等),软件可以在检测到错误时产生相应中断。

离线恢复

当TECNT大于255时, CAN总线控制器进入离线状态, 这时寄存器CAN_ERR中的BOERR置1,

并且发送和接收失效。

根据寄存器CAN_CTL中的ABOR配置,离线恢复(变为主动错误状态)有2种方式。这两种方式都要求处于离线状态的CAN总线控制器检测到CAN协议所定义的离线恢复序列(在CAN_RX检测到128次连续11个位的隐性位)时,才会自动恢复。

如果ABOR为1,将在检测到离线恢复序列后自动恢复。

如果ABOR为0,则必须先将CAN_CTL中的IWMOD置1进入初始化工作模式,然后进入正常工作模式并在检测到离线恢复序列后恢复。

22.3.9. 中断

CAN总线控制器占用4个中断向量,通过寄存器CAN_INTEN进行控制。这4个中断向量对应4 类中断源:

- 发送中断;
- FIFO0 中断;
- FIFO1 中断;
- 错误和状态改变中断。

发送中断

发送中断包括:

- 寄存器CAN TSTAT中的MTF0置1: 发送邮箱0变为空闲。
- 寄存器CAN_TSTAT中的MTF1置1:发送邮箱1变为空闲。
- 寄存器CAN_TSTAT中的MTF2置1:发送邮箱2变为空闲。

FIFO0 中断

FIFO0中断包括:

- FIFO0中包含待接收数据:寄存器CAN_RFIFO0中的RFL0不为0,CAN_INTEN寄存器中RFNEIE0被置位;
- FIFO0满: 寄存器CAN RFIFO0中的RFF0为1, CAN INTEN寄存器中RFFIE0被置位;
- FIFO0溢出: 寄存器CAN_RFIFO0中的RFO0为1, CAN_INTEN寄存器中RFOIE0被置位。

FIFO1 中断

FIFO1中断包括:

- FIFO1中包含待接收数据:寄存器CAN_RFIFO1中的RFL1不为0,CAN_INTEN寄存器中RFNEIE1被置位:
- FIFO1满:寄存器CAN_RFIFO1中的RFF1为1,CAN_INTEN寄存器中RFFIE1被置位;
- FIFO1溢出: 寄存器CAN RFIFO1中的RFO1为1, CAN INTEN寄存器中RFOIE1被置位。

错误和工作模式改变中断

错误和工作模式改变中断可由以下条件触发:

- 错误: CAN_STAT寄存器的ERRIF和CAN_INTEN寄存器的ERRIE被置位,请参考CAN_STAT寄存器中ERRIF位描述;
- 唤醒: CAN_STAT寄存器中的WUIF和CAN_INTEN寄存器的WIE被置位;
- 进入睡眠模式: CAN_STAT寄存器中的SLPIF和CAN_INTEN寄存器的SLPWIE被置位。

CAN总线控制器的中断产生条件可参考<u>表22-3. CAN事件/中断标志</u>。

表 22-3. CAN 事件/中断标志

中断事件	事件/中断标志		使能控	控制位	
	发送邮箱 0 空闲标志				
发送中断	发送邮箱 1 空闲标志	TMEIE			
	发送邮箱 2 空闲标志	MTF2			
	接收 FIFOO 中帧的数量 F	RFL0[1:0]	RFN	EIE0	
FIFO0 中断	接收 FIFO0 满 RFI	F0	RFF	·IE0	
	接收 FIFO0 溢出 RF	O0	RFC	DIE0	
	接收 FIFO1 中帧的数量 F	RFNEIE1			
FIFO1 中断	接收 FIFO1 满 RFI	RFF	·IE1		
	接收 FIFO1 溢出 RF	- O1	RFC	DIE1	
	警告错误 WERR		WERRIE		
	被动错误 PERR	错误中断标志	PERRIE	ERRIE	
EWMC 中断	离线错误 BOERR	ERRIF	BOIE	ERRIE	
EVVIVIC 中國	错误种类 1<= ERRN[2:0] <= 6		ERRNIE		
	从睡眠工作模式唤醒的状态改变中	断标志WUIF	W	IE	
	进入睡眠工作模式的状态改变中断	标志SLPIF	SLP	WIE	

22.4. CAN 寄存器

CAN0基地址: 0x4000 6400 CAN1基地址: 0x4000 6800

22.4.1. 控制寄存器(CAN_CTL)

地址偏移: 0x00

复位值: 0x0001 0002

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								DFZ
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SWRST				保留				TTC	ABOR	AWU	ARD	RFOD	TFO	SLPWMO D	IWMOD
rs								rw	rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:17	保留	必须保持复位值。
16	DFZ	调试冻结如果 DBG_CTL0 寄存器中 CANx_HOLD 被置位,该位用来定义 CAN 控制器工作在调试冻结或正常工作状态。如果 DBG_CTL0 寄存器中 CANx_HOLD 被清零,该位无效。 0: 处于 Debug 时,CAN 接收和发送正常工作 1: 处于 Debug 时,CAN 接收和发送停止
15	SWRST	软件复位 0:正常操作 1:复位 CAN 并进入睡眠工作模式。该位会自动清 0
14:8	保留	必须保持复位值。
7	TTC	时间触发通信 0: 禁用时间触发通信 1: 使能时间触发通信
6	ABOR	自动离线恢复 0:通过软件手动地从离线状态恢复 1:通过硬件自动的从离线状态恢复
5	AWU	自动唤醒 一旦自动唤醒后,CAN_CTL 寄存器的 SLPWMOD 位将自动被清 0。 0:通过软件手动的从睡眠工作模式唤醒

_		
		1: 通过硬件自动的从睡眠工作模式唤醒
4	ARD	自动重发禁止 0: 使能自动重发 1: 禁用自动重发
3	RFOD	禁用接收 FIFO 满时覆盖 0: 使能接收 FIFO 满时覆盖。当接收 FIFO 满时,FIFO 中的数据被新来的数据覆盖 1: 禁用接收 FIFO 满时覆盖。当接收 FIFO 满时,新来的数据被丢弃,FIFO 中的数据保持不变,不会被覆盖
2	TFO	发送 FIFO 顺序 0: 标识符(Identifier)较小的帧先发送 1: 所有等待发送的邮箱按照先进先出(FIFO)的顺序发送
1	SLPWMOD	睡眠工作模式 如果软件将该位置 1, CAN 将会在当前发送或接收完成时进入睡眠工作模式。该位可由软件或者硬件清 0。如果 CAN_CTL 寄存器中 AWU 被置位,当检测到 CAN 总线工作时,该位被清 0。 0: 禁用睡眠工作模式 1: 使能睡眠工作模式
0	IWMOD	初始化工作模式 0: 禁用初始化工作模式 1: 使能初始化工作模式

22.4.2. 状态寄存器 (CAN_STAT)

地址偏移: 0x04

复位值: 0x0000 0C02

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	/□	G77		DVI	LACTRY	DC	TC		/ti tivi		CL DIE	WILLE	EDDIE	CL DWC	IMC

位/位域	名称	描述
31:12	保留	必须保持复位值。
11	RXL	RX 引脚电平
10	LASTRX	RX 引脚最近一次的采样值
9	RS	接收状态

rc_w1

_		
		0: CAN 当前不是接收器 1: CAN 当前是接收器
8	TS	发送状态 0: CAN 当前不是发送器 1: CAN 当前是发送器
7:5	保留	必须保持复位值。
4	SLPIF	进入睡眠工作模式的状态改变中断标志 该位在进入睡眠工作模式时由硬件置位。当 CAN 不再处于睡眠工作模式时由硬件 清零。该位也可以由软件写 1 清 0。 0: CAN 没有进入睡眠工作模式 1: CAN 进入睡眠工作模式。如果相应的中断使能位为 1,则发生中断
3	WUIF	从睡眠工作模式唤醒的状态改变中断标志 该位在睡眠工作模式时检测到 CAN 总线上的活动时由硬件置位。该位由软件写 1 清 0。 0: 没有检测到唤醒信号 1: 发现唤醒信号。如果相应的中断使能位为 1,则发生中断
2	ERRIF	错误中断标志 该位由以下事件置位。CAN_ERR 寄存器中 BOERR 位和 CAN_INTEN 寄存器中 BOIE 位都置位。或 CAN_ERR 寄存器中 PERR 位和 CAN_INTEN 寄存器中 PERRIE 位都置位。或 CAN_ERR 寄存器中 WERR 位和 CAN_INTEN 寄存器中 WERRIE 位都置位。或 CAN_ERR 寄存器中 ERRN 位域的值不为 0 且 CAN_INTEN 寄存器中 ERRNIE 位置位。该位由软件写 1 清零。 0: 没有错误 1: 发生错误。如果相应的中断使能位为 1,则发生中断
1	SLPWS	睡眠工作状态 将 CAN_CTL 寄存器中 SLPWMOD 位置位进入睡眠工作模式后该位由硬件置位。 当 CAN 由正常通信模式切换到睡眠工作模式,需等待当前发送过程或者接收过程 完成。当 CAN 离开睡眠工作模式(清除 CAN_CTL 寄存器中 SLPWMOD 位或是在 CAN_CTL 寄存器中 AWU 置位时检测到 CAN 总线上的活动)时,该位由硬件清 零。如果由睡眠工作模式切换到正常工作模式,该位在 CAN 接收到来自总线的连续 11 个隐性位后被清 0。 0: CAN 没有处于睡眠工作状态 1: CAN 处于睡眠工作状态
0	IWS	初始化工作状态 将 CAN_CTL 寄存器中 IWMOD 位置位进入初始化模式后该位由硬件置位。当 CAN 由正常通信模式切换到初始化工作模式,需等待当前发送过程或者接收过程完成。 在清除 CAN_CTL 寄存器中 IWMOD 位离开初始化模式后,该位由硬件清 0。如果 由初始化工作模式切换到正常工作模式,该位在 CAN 接收到来自总线的连续 11 个

隐性位后被清 0。

0: CAN 没有处于初始化工作状态

1: CAN 处于初始化工作状态

22.4.3. 发送状态寄存器(CAN_TSTAT)

地址偏移: 0x08

复位值: 0x1C00 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TMLS2	TMLS1	TMLS0	TME2	TME1	TME0	NUM	1[1:0]	MST2		保留		MTE2	MAL2	MTFNER R2	MTF2
r	r	r	r	r	r		r	rs				rc_w1	rc_w1	rc_w1	rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MST1		保留		MTE1	MAL1	MTFNER R1	MTF1	MST0		保留		MTE0	MAL0	MTFNER R0	MTF0
rs				rc_w1	rc_w1	rc_w1	rc_w1	rs				rc_w1	rc_w1	rc_w1	rc_w1

位/位域	名称	·····································
31	TMLS2	在发送 FIFO 中邮箱 2 最后发送 该位为 1 表明, 当有 2 个及其以上帧等待发送时,发送邮箱 2 具有最后的发送顺
		序。
30	TMLS1	在发送 FIFO 中邮箱 1 最后发送 该位为 1 表明,当有 2 个及其以上帧等待发送时,发送邮箱 1 具有最后的发送顺序。
29	TMLS0	在发送 FIFO 中邮箱 0 最后发送 该位为 1 表明,当有 2 个及其以上帧等待发送时,发送邮箱 0 具有最后的发送顺序。
28	TME2	发送邮箱 2 空 0: 发送邮箱 2 不为空 1: 发送邮箱 2 空
27	TME1	发送邮箱 1 空 0: 发送邮箱 1 不为空 1: 发送邮箱 1 空
26	TME0	发送邮箱 0 空 0: 发送邮箱 0 不为空 1: 发送邮箱 0 空
25:24	NUM[1:0]	当发送 FIFO 不满时,NUM 表示下一个将要发送的邮箱号。 当发送 FIFO 满时,NUM 表示最后一个将要发送的邮箱号。
23	MST2	邮箱 2 停止发送 将其置 1,将停止邮箱 2 的发送过程。

algabevice		OD321 403XX /11/ 1 /1/1
		当邮箱 2 变为 emtpy 状态时,该位被硬件自动清 0。
22:20	保留	必须保持复位值。
19	MTE2	邮箱 2 发送错误 当发生发送错误时,该位由硬件置 1。由软件写 1 清 0 或对 CAN_TSTAT 寄存器中 MTF2 写 1 清 0。也可以在下一次发送开始时由硬件清 0。 当发生错误时该位被置 1。
18	MAL2	邮箱 2 仲裁失败 当发生仲裁失败时,该位由硬件置 1。由软件写 1 清 0 或对 CAN_TSTAT 寄存器中 MTF2 写 1 清 0。也可以在下一次发送开始时由硬件清 0。 当发生仲裁失败时该位被置 1。
17	MTFNERR2	邮箱 2 无错发送完成 当发送结束并且没有错误产生时,该位由硬件置1。由软件写1清0或对CAN_TSTAT 寄存器中MTF2写1清0。也可以在无错传输结束时由硬件清0。 0: 传输结束时发生了错误 1: 传输结束且没有错误
16	MTF2	邮箱 2 发送完成 当发送完成或被中止时,该位由硬件置 1。由软件写 1 清 0,或当 CAN_TIM2 寄存 器的 TEN 被置位时清 0。 0:发送邮箱 2 正在发送 1:发送邮箱 2 完成发送
15	MST1	邮箱 1 停止发送 将其置 1,将停止邮箱 1 的发送过程。 当邮箱 1 变为 emtpy 状态时,该位被硬件自动清 0。
14:12	保留	必须保持复位值。
11	MTE1	邮箱 1 发送错误 当发生发送错误时,该位由硬件置 1。由软件写 1 清 0 或对 CAN_TSTAT 寄存器中 MTF1 写 1 清 0。也可以在下一次发送开始时由硬件清 0。 当发生错误时该位被置 1。
10	MAL1	邮箱 1 仲裁失败 当发生仲裁失败时,该位由硬件置 1。由软件写 1 清 0 或对 CAN_TSTAT 寄存器中 MTF1 写 1 清 0。也可以在下一次发送开始时由硬件清 0。 当发生仲裁失败时该位被置 1。
9	MTFNERR1	邮箱 1 无错发送完成 当发送结束并且没有错误产生时,该位由硬件置1。由软件写1清0或对CAN_TSTAT 寄存器中MTF1写1清0。也可以在无错传输结束时由硬件清0。 0: 传输结束时发生了错误 1: 传输结束且没有错误
8	MTF1	邮箱 1 发送完成

GigaDevice		GD32F403xx 用尸手册
		当发送完成或被中止时,该位由硬件置 1。由软件写 1 清 0,或当 CAN_TIM1 寄存器的 TEN 被置位时清 0。 0:发送邮箱 1 正在发送 1:发送邮箱 1 完成发送
7	MST0	邮箱 0 停止发送 将其置 1,将停止邮箱 0 的发送过程。 当邮箱 0 变为 emtpy 状态时,该位被硬件自动清 0。
6:4	保留	必须保持复位值。
3	MTE0	邮箱 0 发送错误 当发生发送错误时,该位由硬件置 1。由软件写 1 清 0 或对 CAN_TSTAT 寄存器中 MTF0 写 1 清 0。也可以在下一次发送开始时由硬件清 0。 当发生错误时该位被置 1。
2	MAL0	邮箱 0 仲裁失败 当发生仲裁失败时,该位由硬件置 1。由软件写 1 清 0 或对 CAN_TSTAT 寄存器中 MTF0 写 1 清 0。也可以在下一次发送开始时由硬件清 0。 当发生仲裁失败时该位被置 1。
1	MTFNERR0	邮箱 0 无错发送完成 当发送结束并且没有错误产生时,该位由硬件置1。由软件写1清0或对CAN_TSTAT 寄存器中MTF0写1清0。也可以在无错传输结束时由硬件清0。 0: 传输结束时发生了错误 1: 传输结束且没有错误
0	MTF0	邮箱 0 发送完成 当发送完成或被中止时,该位由硬件置 1。由软件写 1 清 0,或当 CAN_TIMO 寄存 器的 TEN 被置位时清 0。 0: 发送邮箱 0 正在发送 1: 发送邮箱 0 完成发送

22.4.4. 接收 FIFO0 寄存器(CAN_RFIFO0)

地址偏移: 0x0C 复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保	留					RFD0	RFO0	RFF0	保留	RFL	0[1:0]
										rs	rc_w1	rc_w1			r

位/位域 名称 描述

		/ 14/
31:6	保留	必须保持复位值。
5	RFD0	释放一次 FIFO0 中的数据 该位被置 1, 将释放 FIFO0 中的一帧数据。 FIFO 释放相应的数据空间后,该位被清 0。
4	RFO0	接收 FIFO0 溢出 当接收 FIFO0 溢出时被置位,由软件写 1 清 0。 0:接收 FIFO0 没有溢出 1:接收 FIFO0 溢出
3	RFF0	接收 FIFO0 满 当接收 FIFO0 满时被置位,由软件写 1 清 0。 0:接收 FIFO0 不满 1:接收 FIFO0 满
2	保留	必须保持复位值。
1:0	RFL0[1:0]	接收 FIFO0 中帧的数量

22.4.5. 接收 FIFO1 寄存器(CAN_RFIFO1)

地址偏移: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保	留					RFD1	RFO1	RFF1	保留	RFL1	[1:0]
										rs	rc_w1	rc_w1		r	

位/位域	名称	描述
31:6	保留	必须保持复位值。
5	RFD1	释放一次 FIFO1 中的数据
		该位被置 1,将释放 FIFO1 中的一帧数据。
		FIFO 释放相应的数据空间后,该位被清 0。
4	RFO1	接收 FIFO1 溢出
		当接收 FIFO1 溢出时被置位,由软件写 1 清 0。
		0: 接收 FIFO1 没有溢出
		1:接收 FIFO1 溢出
3	RFF1	接收 FIFO1 满
		当接收 FIFO1 满时被置位,由软件写 1 清 0。
		0:接收 FIFO1 不满

1:接收 FIFO1满

2 保留 必须保持复位值。

1:0 RFL1[1:0] 接收 FIFO1 中帧的数量

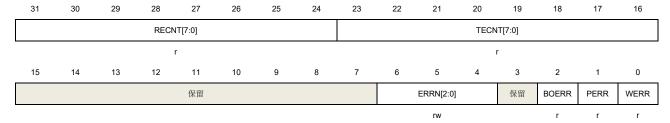
22.4.6. 中断使能寄存器 (CAN_INTEN)

地址偏移: 0x14

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保	留							SLPWIE	WIE
														rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ERRIE		保留		ERRNIE	BOIE	PERRIE	WERRIE	保留	RFOIE1	RFFIE1	RFNEIE1	RFOIE0	RFFIE0	RFNEIE0	TMEIE
rw				rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw

位/位域	名称	描述
31:18	保留	必须保持复位值。
17	SLPWIE	睡眠中断使能 0: 禁用睡眠中断 1: 使能睡眠中断
16	WIE	唤醒中断使能0: 禁用唤醒中断1: 使能唤醒中断
15	ERRIE	错误中断使能 0: 禁用错误中断 1: 使能错误中断
14:12	保留	必须保持复位值。
11	ERRNIE	错误种类中断使能 0: 禁用错误种类中断 1: 使能错误种类中断
10	BOIE	离线中断使能 0: 禁用离线中断 1: 使能离线中断
9	PERRIE	被动错误中断使能 0: 禁用被动错误 1: 使能被动错误
8	WERRIE	警告错误中断使能



,			0002.	100/07	111/	1 /1/1
		0: 禁用警告错误中断 1: 使能警告错误中断				
7	保留	必须保持复位值。				
6	RFOIE1	接收 FIFO1 溢出中断使能 0: 禁用接收 FIFO1 溢出中断 1: 使能接收 FIFO1 溢出中断				
5	RFFIE1	接收 FIFO1 满中断使能 0:禁用接收 FIFO1 满中断 1:使能接收 FIFO1 满中断				
4	RFNEIE1	接收 FIFO1 非空中断使能 0:禁用接收 FIFO1 非空中断 1:使能接收 FIFO1 非空中断				
3	RFOIE0	接收 FIFO0 溢出中断使能 0: 禁用接收 FIFO0 溢出中断 1: 使能接收 FIFO0 溢出中断				
2	RFFIE0	接收 FIFO0 满中断使能 0: 禁用接收 FIFO0 满中断 1: 使能接收 FIFO0 满中断				
1	RFNEIE0	接收 FIFO0 非空中断使能 0: 禁用接收 FIFO0 非空中断 1: 使能接收 FIFO0 非空中断				
0	TMEIE	发送邮箱空中断使能 0:禁用发送邮箱空中断 1:使能发送邮箱空中断				
22.4.7.	错误寄存器(CAN_ERR)				
	₩₩偏移. 0v18					

地址偏移: 0x18

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

位/位域 名称 描述

31:24	RECNT[7:0]	接收错误计数值
23:16	TECNT[7:0]	发送错误计数值
15:7	保留	必须保持复位值。
6:4	ERRN[2:0]	错误种类 ERRN 由硬件更新,可以反映位传输过程中的错误情况。当位传输成功没有错误时,ERRN为0。软件可以设置ERRN为0b111。 000: 无错误 001: 填充错误 010: 格式错误 011: ACK 错误 100: 位隐性错 101: 位显性错误 111: 软件设置值
3	保留	必须保持复位值。
2	BOERR	离线错误 当 TEC 上溢(超过 255)时,CAN 总线控制器进入离线状态,该位被置 1。
1	PERR	被动错误 当 TECNT 或者 RECNT 大于 127 时,该位由硬件置 1。
0	WERR	警告错误 当 TECNT 或 RECNT 大于等于 96 时,该位由硬件置 1。

22.4.8. 位时序寄存器(CAN_BT)

地址偏移: 0x1C 复位值: 0x0123 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SCMOD	LCMOD		保	留		SJW	[1:0]	保留		BS2[2:0]			BS1	[3:0]	
rw	rw					n	W			rw			r	w	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		保	留							BAUDP	SC[9:0]				

 位/位域
 名称
 描述

 31
 SCMOD
 静默通信模式

 0: 禁用静默通信模式

 1: 使能静默通信模式

 30
 LCMOD
 回环通信模式

		0: 禁用回环通信模式
		1: 使能回环通信模式
29:26	保留	必须保持复位值。
25:24	SJW[1:0]	再同步补偿宽度
		再同步补偿占用的时间单元数量= SJW[1:0]+1
23	保留	必须保持复位值。
22:20	BS2[2:0]	位段2
		位段 2 占用的时间单元数量=BS2[2:0]+1
19:16	BS1[3:0]	位段 1
		位段 1 占用的时间单元数量=BS1[3:0]+1
15:10	保留	必须保持复位值。
9:0	BAUDPSC[9:0]	波特率分频系数

22.4.9. 发送邮箱标识符寄存器 (CAN_TMIx) (x = 0...2)

地址偏移: 0x180, 0x190, 0x1A0 复位值: 0xXXXX XXXX (bit0 = 0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				SFID[10:0]/EFID[[28:18]							EFID[17:13]	
					rw								rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						EFID[12:0]							FF	FT	TEN
	•	•	•	•	•	rw	•			•		•	rw	rw	rw

位/位域	名称	描述
31:21	SFID[10:0]/EFID[28:	1 标识符
	8]	SFID[10:0]: 标准格式帧标识符
		EFID[28:18]: 扩展格式帧标识符
20:16	EFID[17:13]	标识符
		EFID[17:13]: 扩展格式帧标识符
15:3	EFID[12:0]	标识符
		EFID[12:0]: 扩展格式帧标识符
2	FF	帧格式
		0: 标准格式帧
		1: 扩展格式帧
1	FT	帧种类

0: 数据帧

1: 遥控帧

0 TEN 发送使能

当应用程序想要发送数据时,该位被置1将启动发送过程。当发送结束,发送邮箱

为空时,该位由硬件清0。

0: 禁用发送

1: 使能发送

22.4.10. 发送邮箱属性寄存器(CAN_TMPx)(x = 0...2)

地址偏移: 0x184, 0x194, 0x1A4

复位值: 0xXXXX XXXX

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TS[1	5:0]							
							n	v							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留				TSEN		保	:留			DLEN	C[3:0]	
							nu.						-	14/	

rw rw

位/位域	名称	描述
31:16	TS[15:0]	时间戳 发送时间戳
15:9	保留	必须保持复位值。
8	TSEN	时间戳使能 0: 禁用时间戳 1: 使能时间戳。时间戳 TS[15:0]将放在寄存器 CAN_TMDATA1 的 DATA6 和 DATA7 中 只有当寄存器 CAN_CTL 中的 TTC 为 1 时,该位才有效。
7:4	保留	必须保持复位值。
3:0	DLENC[3:0]	数据长度,DLENC[3:0]表示帧内数据长度。

22.4.11. 发送邮箱 data0 寄存器 (CAN_TMDATA0x) (x = 0...2)

地址偏移: 0x188, 0x198, 0x1A8

复位值: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			DB3	[7:0]							DB2	[7:0]			

			r\	N							r	w			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			DB1	[7:0]							DBC	[7:0]			

位/位域	名称	描述
31:24	DB3[7:0]	字节3
23:16	DB2[7:0]	字节 2
15:8	DB1[7:0]	字节 1
7:0	DB0[7:0]	字节 0

22.4.12. 发送邮箱 data1 寄存器(CAN_TMDATA1x)(x = 0...2)

地址偏移: 0x18C, 0x19C, 0x1AC

复位值: 0xXXXX XXXX

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			DB7[7:0]								DB6[7:0]				
			rw								rw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			DB5[7:0]								DB4[7:0]				

位/位域	名称	描述
31:24	DB7[7:0]	字节 7
23:16	DB6[7:0]	字节 6
15:8	DB5[7:0]	字节 5
7:0	DB4[7:0]	字节 4

22.4.13. 接收 FIFO 邮箱标识符寄存器(CAN_RFIFOMIx)(x = 0,1)

地址偏移: 0x1B0, 0x1C0 复位值: 0xXXXX XXXX

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					SFID[10:0]/EFID[28:18]						1	EFID[17:13]		
-						r								r		_
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

GD32F403xx 用户手册

	EFID[12:0]	FF	FT	保留
--	------------	----	----	----

位	区域	说明
31:21	SFID[10:0]/EFID[28:1 8]	标识符 SFID[10:0]:标准格式帧标识符 EFID[28:18]:扩展格式帧标识符
20:16	EFID[17:13]	标识符 EFID[17:13]: 扩展格式帧标识符
15:3	EFID[12:0]	标识符 EFID[12:0]: 扩展格式帧标识符
2	FF	帧格式 0:标准格式帧 1:扩展格式帧
1	FT	帧种类 0:数据帧 1:遥控帧
0	保留	必须保持复位值。

22.4.14. 接收 FIFO 邮箱属性寄存器 (CAN_RFIFOMPx) (x = 0,1)

地址偏移: 0x1B4, 0x1C4 复位值: 0xXXXX XXXX

该寄存器只能按字(32位)访问

	TS[15:0]														
							1	r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FI[7:0] 保留 DLENC[3:0]														

23

22

24

位/位域	名称	描述
31:16	TS[15:0]	时间戳 接收时间戳
15:8	FI[7:0]	过滤索引 帧通过过滤器时的过滤序号
7:4	保留	必须保持复位值。
3:0	DLENC[3:0]	数据长度

DLENC[3:0]表示帧内数据长度。

22.4.15. 接收 FIFO 邮箱 data0 寄存器(CAN_RFIFOMDATA0x)(x=0,1)

地址偏移: 0x1B8, 0x1C8 复位值: 0xXXXX XXXX

该寄存器只能按字(32位)访问

DB3[7:0] r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DB1[7:0] DB0[7:0]	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				DB3	[7:0]							DB2	[7:0]			
					r							r				
DB1[7:0] DB0[7:0]	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				DB1	[7:0]						DB0	[7:0]				

 位/位域
 名称
 描述

 31:24
 DB3[7:0]
 字节 3

 23:16
 DB2[7:0]
 字节 2

 15:8
 DB1[7:0]
 字节 1

 7:0
 DB0[7:0]
 字节 0

22.4.16. 接收 FIFO 邮箱 data1 寄存器(CAN_RFIFOMDATA1x)(x=0,1)

地址偏移: 0x1BC, 0x1CC 复位值: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			DB7	[7:0]							DB6	[7:0]			
			ı	r						F	R				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			DB5	[7:0]						DB4	[7:0]				

位/位域	名称	描述
31:24	DB7[7:0]	字节 7
23:16	DB6[7:0]	字节 6
15:8	DB5[7:0]	字节 5
7:0	DB4[7:0]	字节 4

22.4.17. 过滤器控制寄存器 (CAN_FCTL) (仅 CAN0 可用)

地址偏移: 0x200 复位值: 0x2A1C 0E01

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	:留			HBC1	F[5:0]						保留				FLD
		•		r	W										rw

位/位域 描述 名称 31:14 保留 必须保持复位值。 HBC1F[5:0] CAN1 过滤器单元起始位置 13:8 这些位用来定义 CAN1 过滤器起始位置。CAN0 可以用编号为 0~HBC1F-1 过滤 器, CAN1 可以用编号为 HBC1F~27 过滤器。当这些位的值为 0, CAN0 将没有过 滤器可以使用。当这些位的值为 28 时, CAN1 将没有过滤器可以使用。 7:1 保留 必须保持复位值。 FLD 过滤器锁禁用 0 0: 使能过滤器锁 1: 禁用过滤器锁

22.4.18. 过滤器模式配置寄存器(CAN_FMCFG)(仅 CAN0 可用)

地址偏移: 0x204 复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	:留		FMOD27	FMOD26	FMOD25	FMOD24	FMOD23	FMOD22	FMOD21	FMOD20	FMOD19	FMOD18	FMOD17	FMOD16
				rw											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FMOD15	FMOD14	FMOD13	FMOD12	FMOD11	FMOD10	FMOD9	FMOD8	FMOD7	FMOD6	FMOD5	FMOD4	FMOD3	FMOD2	FMOD1	FMOD0
rw															

位/位域	名称	描述
31:28	保留	必须保持复位值。
27:0	FMODx	过滤器模式 0: 掩码模式 1: 列表模式

22.4.19. 过滤器位宽配置寄存器 (CAN_FSCFG) (仅 CAN0 可用)

地址偏移: 0x20C 复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	:留		FS27	FS26	FS25	FS24	FS23	FS22	FS21	FS20	FS19	FS18	FS17	FS16
				rw											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FS15	FS14	FS13	FS12	FS11	FS10	FS9	FS8	FS7	FS6	FS5	FS4	FS3	FS2	FS1	FS0
rw															

位/位域	名称	描述
31:28	保留	必须保持复位值。
27:0	FSx	过滤器位宽
		0: 16-bit 位宽
		1. 32-hit 位實

22.4.20. 过滤器关联 FIFO 寄存器 (CAN_FAFIFO) (仅 CAN0 可用)

地址偏移: 0x214 复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保	留		FAF27	FAF26	FAF25	FAF24	FAF23	FAF22	FAF21	FAF20	FAF19	FAF18	FAF17	FAF16
				rw											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FAF15	FAF14	FAF13	FAF12	FAF11	FAF10	FAF9	FAF8	FAF7	FAF6	FAF5	FAF4	FAF3	FAF2	FAF1	FAF0
rw															

位/位域	名称	描述
31:28	保留	必须保持复位值。
27:0	FAFx	过滤器关联 FIFO 0: 关联 FIFO0
		1: 关联 FIFO1

22.4.21. 过滤器激活寄存器 (CAN_FW) (仅 CAN0 可用)

地址偏移: 0x21C 复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留				FW26	FW25	FW24	FW23	FW22	FW21	FW20	FW19	FW18	FW17	FW16
				rw											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FW15	FW14	FW13	FW12	FW11	FW10	FW9	FW8	FW7	FW6	FW5	FW4	FW3	FW2	FW1	FW0
rw															

位/位域	名称	描述
31:28	保留	必须保持复位值。
27:0	FWx	过滤器激活
		0: 没有激活
		1: 激活工作

22.4.22. 过滤器 (x) 数据 (y) 寄存器 (CAN_FxDATAy) (x = 0...27, y = 0,1) (仅 CAN0 可用)

地址偏移: 0x240 + 8 * x + 4 * y, (x = 0..27, y = 0,1)

复位值: 0xXXXX XXXX

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FD31	FD30	FD29	FD28	FD27	FD26	FD25	FD24	FD23	FD22	FD21	FD20	FD19	FD18	FD17	FD16
 rw	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FD15	FD14	FD13	FD12	FD11	FD10	FD9	FD8	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

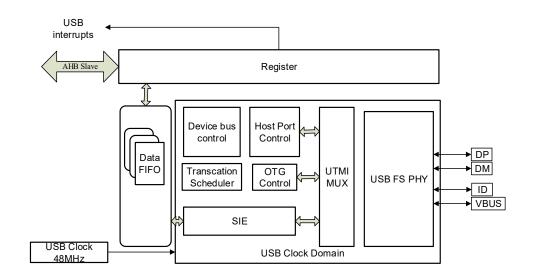
位/位域	名称	描述
31:0	FDx	过滤器数据
		掩码模式下:
		0: 标识符的 Bit(x)不需参与比较
		1: 标识符的 Bit(x)需要参与比较
		列表模式下:
		0: 标识符的 Bit(x)必须为 0

1: 标识符的 Bit(x)必须为 1

23. 通用串行总线全速接口(USBFS)

23.1. 简介

USB全速(USBFS)控制器为便携式设备提供了一套USB互联解决方案。USBFS不仅支持主机模式和设备模式,也支持遵循HNP(主机协商协议)和SRP(会话请求协议)的OTG模式。USBFS包含了一个内部的全速USB PHY,并且不再需要外部PHY芯片。USBFS可以支持USB 2.0协议所定义的所有四种传输方式(控制传输、批量传输、中断传输和同步传输)。


23.2. 主要特性

- 支持USB 2.0全速(12Mb/s)/低速(1.5Mb/s)主机模式;
- 支持USB 2.0全速(12Mb/s)设备模式;
- 支持遵循HNP(主机协商协议)和SRP(会话请求协议)的OTG协议;
- 支持所有的4种传输方式:控制传输、批量传输、中断传输和同步传输;
- 在主机模式下,包含USB事务调度器,用于有效地处理USB事务请求;
- 包含一个1.25KB的FIFO RAM;
- 在主机模式下,支持8个通道;
- 在主机模式下,包含2个发送FIFO(周期性发送FIFO和非周期性发送FIFO)和1个接收FIFO(由所有的通道共享);
- 在设备模式下,包含4个发送FIFO(每个IN端点一个发送FIFO)和1个接收FIFO(由所有的OUT端点共享);
- 在设备模式下,支持4个OUT端点和4个IN端点;
- 在设备模式下,支持远程唤醒功能;
- 包含一个支持USB协议的全速USB PHY;
- 在主机模式下,SOF的时间间隔可动态调节;
- 可将SOF脉冲输出到PAD;
- 可检测ID引脚电平和VBUS电压;
- 在主机模式或者OTG A设备模式下,需要外部部件为连接的USB设备提供电源。

23.3. 结构框图

图 23-1. USBFS 结构框图

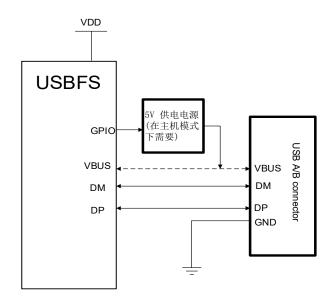
23.4. 信号线描述

表 23-1. USBFS 信号线描述

I/O 端口	类型	描述				
VBUS	输入	总线电源端口				
DM	输入/输出	差分信号 D-端口				
DP	输入/输出	差分信号 D+端口				
ID	输入	USB 识别: 微连接器识别接口				

23.5. 功能描述

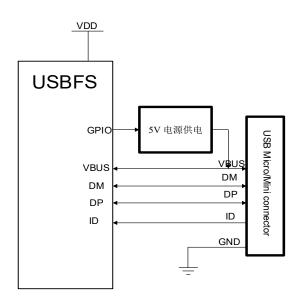
23.5.1. USBFS 时钟及工作模式


USBFS可以作为一个主机、一个设备或者一个DRD(双角色设备),并且包含一个内部全速 PHY。USBFS可支持的最大速率为全速。

内部PHY支持全速和低速的主机模式、全速的设备模式以及具备HNP和SRP的OTG模式。 USBFS所使用的USB时钟需要配置为48MHz。该48MHz USB时钟从系统内部时钟产生,并且 其时钟源和分频器需要在RCU模块中配置。

上拉或下拉电阻已经集成在内部全速PHY的内部,并且USBFS可根据当前模式(主机、设备或OTG模式)和连接状态进行自动控制。一个利用内部全速PHY的典型连接示意图如图25-2. 在主机或设备模式下连接示意图所示。

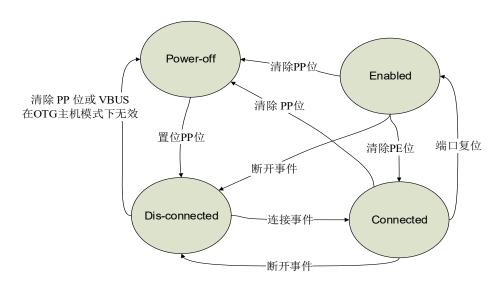
图 23-2. 在主机或设备模式下连接示意图


当USBFS工作在主机模式下时(FHM控制位置位、FDM控制位清除),VBUS为USB协议所定义的5V电源检测引脚。内部PHY不能提供5V VBUS电源,仅在VBUS信号线上具有电压比较器和充电、放电电路。所以,如果应用需要提供VBUS电源,那么则需要一个外部的供电电源IC。在主机模式下,USBFS和USB连接头之间的VUBS连接可以被忽略,这是由于USBFS并不检测VBUS引脚的电平状态,并假定5V供电电源一直存在。

当USBFS工作在设备模式下时(FHM控制位清除、FDM控制位置位),VBUS检测电路由USBFS_GCCFG寄存器中的VBUSIG控制位所配置。因此,如果设备不需要检测VBUS引脚电压,可以配置VBUSIG控制位,并可释放VBUS引脚作为其他用途。否则,VBUS引脚的连接不能够被忽略,并且USBFS需要不断的检测VBUS电平状态,一旦VBUS电压降至所需有效值以下,需要立即关闭DP信号线上的上拉电阻,从而产生一个断开状态。

OTG 模式连接示意图如图 25-3. OTG 模式下连接示意图 所示。当 USBFS 工作在 OTG 模式下时,USBFS_GUSBCS 寄存器内的 FHM、FDM 控制位和 USBFS_GCCFG 寄存器的 VBUSIG 位都应该被清除。在这种模式下,USBFS 需要以下四个引脚:DM、DP、VBUS 和 ID,并且需要使用若干个电压比较器检测这些引脚的电压。 USBFS 也包含 VBUS 充电和放电电路,用以完成 OTG 协议中所描述的 SRP 请求。OTG A 设备或 B 设备由 ID 引脚的电平状态所决定。在实现 HNP 协议的过程中,USBFS 控制上拉和下拉电阻。

图 23-3. OTG 模式下连接示意图



23.5.2. USB 主机功能

USB主机端口状态

主机应用可以通过USBFS_HPCS寄存器控制USB端口状态。系统初始化之后,USB端口保持掉电状态。通过软件置位PP控制位后,内部USB PHY将被上电,并且USB端口变为断开状态。检测到连接后,USB端口变为连接状态。在USB总线上产生一个复位后,USB端口将变为使能状态。

图 23-4. 主机端口状态转移图

连接、复位和速度识别

作为USB主机,在检测到一个连接事件后,USBFS会为应用触发一个连接标志;同样,若检测到一个断开事件后,将会触发一个断开标志。

PRST控制位用于实现USB复位序列。应用可以置位该控制位以启动一个USB复位序列,或者清除该控制位以结束USB复位序列。仅当端口在连接或使能状态时,该控制位有效。

USBFS在对设备连接和复位时执行速度检测,并且速度检测的结果会反馈在USBFS_HPCS寄存器的PS位域中。USBFS以DM或DP的电平状态确定设备速度,如USB协议所描述,全速设备上拉DP信号线,而低速设备上拉DM信号线。

挂起和复位

USBFS支持挂起和复位状态,当USBFS端口在使能状态时,向USBFS_HPCS寄存器的PSP控制位写1,USBFS会进入到挂起状态。在挂起状态下,USBFS停止在USB总线上发送SOF,并且这样会让所连接的USB设备在3ms后进入挂起状态。应用程序能够置位USBFS_HPCS寄存器中的PREM控制位以启动一个恢复序列,从而唤醒挂起的设备,当清除该控制位时,则可以停止恢复序列。如果主机在挂起状态下检测到一个远程唤醒信号,将会置位USBFS_GINTF寄存器的WKUPIF标志位,并且触发USBFS唤醒中断。

SOF产生器

在主机模式下,USBFS向USB总线发送SOF令牌包。如USB 2.0协议所描述,全速连接下,每毫秒产生一次SOF令牌包(由主机控制器或者HUB事务转换器产生)。

每当USBFS进入到使能状态后,它将会按照USB2.0所定义的周期发送SOF令牌包。然而,应用程序可以通过写USBFS_HFT寄存器中的FRI位来调整一帧的间隔。FRI位定义了在一帧中的USB时钟周期个数,并且应用程序应该基于USBFS所使用的USB时钟频率计算该值。FRT位显示当前帧剩余的时钟周期个数,并且在挂起状态时,该值将停止改变。

USBFS能够在每个SOF令牌包中产生一个脉冲信号,并且将其输出至一个引脚。该脉冲信号长度为12个HCLK周期。如果应用程序希望使用该功能,需要置位USBFS_GCCFG寄存器的SOFOEN控制位,并且配置相应的引脚寄存器为GPIO功能。

USB通道和事务

USBFS在主机模式下包含8个独立的通道。每个通道能够与一个USB设备端点通信。通道的传输类型、方向、数据包长和其他信息都在通道相应的寄存器中配置,例如USBFS_HCHxCTL和USBFS_HCHxLEN寄存器。

USBFS支持所有的四种传输类型:控制、批量、中断和同步。USB 2.0协议将这些传输类型划分为两类:非周期性传输(控制和批量)和周期性传输(中断和同步)。基于此,为了有效地进行事务调度,USBFS包含两种请求队列:周期性请求队列和非周期性请求队列。在上述请求队列中的请求条目可能代表一个USB事务请求或者一个通道操作请求。

如果应用程序想要在USB总线上启动一个OUT事务,需要通过AHB寄存器接口向数据FIFO中写入数据包。USBFS硬件会在整包数据写完后,自动产生一个事务请求并进入请求队列。

请求队列中的请求条目通过事务控制模块按顺序处理。USBFS通常首先尝试处理周期性请求 队列,然后处理非周期性请求队列。

帧起始后,USBFS首先开始处理周期性队列,直到队列为空抑或当前周期性请求队列所需时间不够,然后处理非周期性队列。这种做法保证了一帧中周期性传输的带宽。每次USBFS从请求队列中读取并取出一个请求条目。如果取出的是通道禁用请求,这将直接禁用通道并准备处理

下个条目。

如果当前请求是一个事务请求并且USB总线时间能够处理这个请求, USBFS会使用SIE在USB总线上产生该事务。

在当前帧内,当前请求所需的总线时间不足时,如果当前请求为周期性请求,USBFS停止处理该周期性请求队列,并启动处理非周期性请求。如果当前请求为非周期性请求,USBFS会停止处理任何队列,并等待直到当前帧结束。

23.5.3. USB 设备功能

USB设备连接

在设备模式下,USBFS在初始化后保持掉电状态。利用VBUS引脚上的5V电源连接USB主机后或者置位USBFS_GCCFG寄存器中VBUSIG控制位,USBFS将进入供电状态。USBFS首先打开DP信号线上的上拉电阻,之后主机将会检测到一个连接事件。

复位和速度识别

USB主机在检测到设备连接之后,总是会启动一个USB复位序列,并且在设备模式下,检测到 USB总线复位事件后,USBFS会为软件触发一个复位中断。

在复位序列后,USBFS将会触发USBFS_GINTF寄存器中的ENUMF中断,并且利用USBFS DSTAT寄存器内的ES标志位指示当前枚举设备速度,该位总是为11(全速)。

如USB 2.0协议所描述, USBFS在外设模式下不支持低速。

挂起和唤醒

USB总线保持IDLE状态并且数据线3ms无变化,USB设备将会进入挂起状态。当USB设备在挂起状态时,软件能够关闭大部分的时钟以节省电能。USB主机可以通过在USB总线上产生恢复信号,来唤醒挂起的设备。USBFS检测到恢复信号后,将置位USBFS_GINTF寄存器的WKUPIF标志位并且触发USBFS唤醒中断。

在挂起设备模式,USBFS也能够远程唤醒USB总线。软件可以通过置位USBFS_DCTL寄存器的RWKUP控制位来发送一个远程唤醒信号,并且如果USB主机支持远程唤醒,主机会在USB总线上启动发送一个恢复信号。

软件断开

USBFS支持软件断开。设备进入到供电状态后,USBFS会打开DP信号线的上拉电阻,并且这样主机会检测到设备连接。然后,软件可以通过置位USBFS_DCTL寄存器中SD控制位进行强制断开。在SD控制位被置位后,USBFS将会直接关闭上拉电阻。这样,USB主机将会在USB总线上检测到设备断开。

SOF跟踪

当USBFS在USB总线上接收到一个SOF令牌包时,将触发一个SOF中断,并且开始利用本地USB时钟计算总线时间。当前帧的帧号将会反应在USBFS_DSTAT寄存器的FNRSOF位域中。当USB总线时间达到EOF1或EOF2点(帧结束,在USB 2.0协议中描述),USBFS会触发USBFS GINTF寄存器中的EOPFIF中断。软件能够使用这些标志位和寄存器以获得当前总线

时间和位置信息。

23.5.4. OTG 功能概述

USBFS支持OTG协议1.3中所描述的OTG功能,OTG功能包括SRP和HNP。

A设备和B设备

当标准A或微型A插头插入相应的插座时,具有OTG能力的USB设备为A设备。A设备向VBUS供电,并且在会话开始时默认为主机。当标准B、微型B、迷你B插头插入相应的插座或采用一端为标准A插头的不可分离电缆时,具有OTG能力的USB设备为B设备。B设备在会话开始时默认为外设。USBFS使用ID引脚电平状态决定A设备或B设备。ID引脚状态反馈在USBFS_GOTGCS寄存器的IDPS状态位。为了了解A设备和B设备之间传输的详细状态,请参考OTG1.3协议。

HNP

主机协商协议(HNP)允许主机功能在两个直接连接的OTG设备之间转换,并且用户不需要为了设备之间通信控制的改变而切换电缆线的连接。典型地,HNP协议是由B设备上的用户或应用启动,HNP只能通过设备上的微型AB插座执行。

一旦OTG设备具有一个微型AB插座,该OTG设备可通过插入的插头类型决定默认为主机或设备(微型A插头插入为主机,微型B插头插入为设备)。通过使用主机协商协议(HNP),一个默认为外设的OTG设备可以请求成为主机。主机角色切换的过程在下段中描述。此协议使用户不需要为了更改连接设备的角色而切换电缆线的连接。

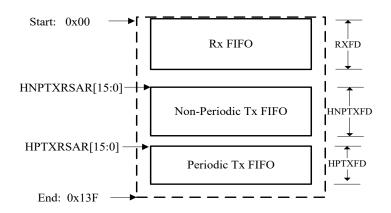
当USBFS工作在OTG A主机模式时,并且其想放弃主机角色,可以首先置位USBFS_HPCS寄存器的PSP控制位来使USB总线进入挂起状态,然后B设备在3ms后进入挂起状态。如果B设备想要变为主机,软件需要置位USBFS_GOTGCS寄存器的HNPREQ控制位,然后USBFS会开始在总线上执行HNP协议,最后,HNP的结果会反馈在USBFS_GOTGCS寄存器的HNPS状态位。另外,软件总能从USBFS_GINTF寄存器的COPM状态位获取当前设备角色(主机或外设)。

SRP

会话请求协议(SRP)允许B设备请求A设备打开VBUS并启动一个会话。该协议允许A设备(或许是电池供电)当总线无活动时通过关闭VBUS以节省电能,并为B设备启动总线活动提供了一种方法。如OTG协议中所描述,OTG设备必须和几个阈值比较VBUS电压,并且将比较结果反馈在USBFS_GOTGCS寄存器的ASV和BSV状态位中。

当USBFS工作在B设备OTG模式时,软件可以通过置位USBFS_GOTGCS寄存器的SRPREQ 控制位来启动一个SRP请求,并且如果SRP请求成功,USBFS会在USBFS_GOTGCS寄存器中产生一个成功标志位SRPS。

当USBFS工作在OTG A设备模式且从B设备检测到一个SRP请求时,USBFS将会置位USBFS_GINTF寄存器中的SESIF标志位。软件获取该标志位后,需要准备为VBUS引脚打开5V供电电源。


23.5.5. 数据 FIFO

USBFS中采用1.25K字节数据FIFO存储包数据,数据FIFO是通过USBFS的内部SRAM实现的。

主机模式

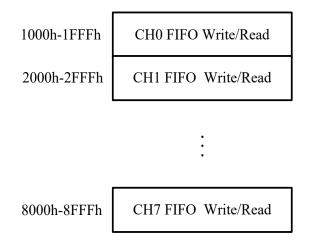

主机模式下,数据 FIFO 空间分为三个部分,分别是:用于接收数据包的 Rx FIFO、用于非周期性发送数据包的非周期性 Tx FIFO 和用于周期性发送数据包的周期性 Tx FIFO。所有的 IN 通道通过共享 Rx FIFO 接收数据。所有的周期性 OUT 通道通过共享周期性 Tx FIFO 来发送数据,所有的非周期性 OUT 通道通过共享非周期性 Tx FIFO 来发送数据。通过寄存器 USBFS_GRFLEN、USBFS_HNPTFLEN 和 USBFS_HPTFLEN,软件可以配置以上数据 FIFO 的大小和起始偏移地址。图 25-5. 主机模式 FIFO 空间 所描述的是 SRAM 中各 FIFO 的结构,图中的数值是按照 32 位为单位写的。

图 23-5. 主机模式 FIFO 空间

USBFS 为程序提供了专有寄存器空间来读写数据 FIFO。**图 25-6. 主机模式 FIFO 访问寄存器 欧射表**所描述的是数据 FIFO 所访问的寄存器存储空间,图中的数值是以字节为单位寻址。尽管所有的非周期通道共享相同的 FIFO 以及所有的周期通道共享相同的 FIFO,每个通道都拥有它们的 FIFO 访问寄存器空间。对 USBFS 而言,获知当前压入数据包的通道号是非常重要的,通过寄存器 USBFS GRXTATR/USBFS GRSTATP 来访问数据包所从属的 Rx FIFO。

图 23-6. 主机模式 FIFO 访问寄存器映射表

设备模式

在设备模式下,数据 FIFO 分为多个部分,其中包含 1 个 Rx FIFO 和 4 个 Tx FIFO,每个 Tx FIFO 对应着一个 IN 端点,所有的 OUT 端点通过共享 Rx FIFO 接收数据包。通过寄存器 USBFS_GRFLEN 和 USBFS_DIEPxTFLEN (x=0...3),程序可配置数据 FIFO 的大小和起始偏移地址。图 25-7. 设备模式 FIFO 空间</u>所描述的是 SRAM 中各 FIFO 的结构,图中的数值是以按照 32 位写的。

图 23-7. 设备模式 FIFO 空间

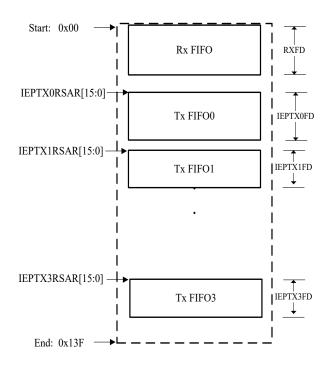
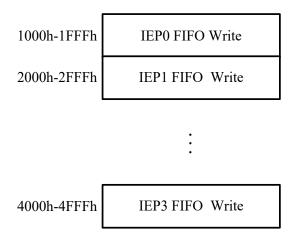



图 23-8. 设备模式 FIFO 访问寄存器映射表

23.5.6. 操作手册

该部分描述的是USBFS的操作手册。

主机模式

全局寄存器初始化顺序:

- 1、根据应用的需求,如Tx FIFO的空阈值等,设置寄存器USBFS_GAHBCS,此时,GINTEN位需要保持清零状态:
- 2、根据应用的需求,如操作模式(主机、设备或OTG)、某些OTG参数和USB协议,设置寄存器USBFS_GUSBCS;
- 3、根据应用的需求,设置寄存器USBFS_GCCFG;
- 4、根据应用的需求,设置寄存器USBFS_GRFLEN、USBFS_HNPTFLEN_DIEP0TFLEN、USBFS HPTFLEN,配置数据FIFO;
- 5、通过设置寄存器USBFS_GINTEN使能模式错误和主机端口中断,置位USBFS_GAHBCS 寄存器的GINTEN位使能全局中断;
- 6、设置寄存器USBFS_HPCS,置位PP位;
- 7、等待设备连接,当设备连接后,触发寄存器USBFS_HPCS的PCD位,然后置位PRST位, 执行一次端口复位,等待至少10毫秒后,清除PRST位;
- 8、等待USBFS_HPCS寄存器的PEDC中断,然后读取PE位以确认端口被成功地使能,读取PS位以获取连接的设备速度,之后,如果软件需要改变SOF间隔,设置USBFS_HFT寄存器。

通道初始化和使能顺序:

- 1、根据期望的传输类型、方向、包大小等信息,设置寄存器USBFS_HCHxCTL,在设置期间,要保证位CEN和CDIS保持清除;
- 2、 设置寄存器USBFS HCHxINTEN,设置期望的中断使能位;
- 3、设置寄存器USBFS_HCHxLEN,PCNT表示一次传输中的包数,TLEN表示一次传输中发送或接收的包数据的总字节数:
- 4、对于OUT通道,如果PCNT为1,单包的大小等于TLEN。如果PCNT大于1,前PCNT-1个包被认定为最大包长度的包,其大小是由寄存器USBFS_HCHxCTL的位MPL所定义。最后一包的大小可通过PCNT、TLEN和MPL计算得到。如果程序想要发出一个零长度的包,应该设定TLEN为0,PCNT位1;
- 5、对于IN通道,因为在IN事务结束之前,程序不知道实际接收的数据大小,程序可将TLEN设定为Rx FIFO所支持的最大值;
- 6、置位寄存器USBFS HCHxCTL中的CEN位以使能通道。

通道除能顺序:

程序可以通过同时置位CEN和CDIS除能通道。在寄存器操作后,USBFS将在请求队列中产生一个通道除能请求条目。当这个请求条目到达请求队列的顶部时,USBFS立即进行处理。

对于OUT通道而言,特定的通道将被立即除能。然后,会产生CH标志,USBFS将清除CEN和 CDIS位。

对于IN通道而言,USBFS将通道除能状态条目压入Rx FIFO,然后,程序应该处理Rx FIFO非空事件:读和取出该状态条目,然后会产生CH标志,USBFS将清除CEN和CDIS位。

IN传输操作顺序:

- 1、初始化USBFS全局寄存器;
- 2、初始化相应的通道;
- 3、 使能相应的通道:
- 4、通过软件使能IN通道后,USBFS在相应请求队列中生成一个Rx请求条目;
- 5、当Rx请求条目到达请求队列的顶部时, USBFS开始执行该请求条目。对于由请求条目所指示的事务而言, 如果总线时间足够, USBFS在USB总线上开始IN事务;
- 6、当IN事务结束时(收到ACK握手包),USBFS将接收到的数据包压入Rx FIFO,ACK标志 位被触发,否则,状态标志(NAK)会指示事务结果:
- 7、如果步骤5所描述的IN事务完成后,步骤2的PCNT的数值比1大,程序将会返回步骤3,继续接收剩下的数据包。如果步骤5中描述的IN事务没有成功完成,程序将会返回步骤3来再次发送该数据包;
- 8、在所有的传输中的所有事务都被成功接收后,USBFS将TF状态条目压入RxFIFO的最后的数据包的顶部,这样,软件在读取所有接收的数据包后,再读取TF状态条目。USBFS生成TF标志来指示传输成功结束;
- 9、除能通道,当通道处于空闲状态,即可为其他传输做准备。

OUT传输操作顺序:

- 1、初始化USBFS全局寄存器;
- 2、初始化及使能相应通道;
- 3、将数据包写入通道的Tx FIFO(周期性Tx FIFO或非周期性Tx FIFO)。在所有的数据包都被写入FIFO后,USBFS在相应的请求队列中产生一个Tx请求条目,并且将USBFS_HCHxTLEN中的TLEN值减少,减少的数值等于已写的包大小;
- 4、当请求条目到达请求队列的顶部时,USBFS开始执行该请求条目。如果请求条目对应的事务的总线时间足够,USBFS在USB总线上开展OUT事务;
- 5、当由请求条目所指示的OUT事务结束时,寄存器USBFS_HCHnTLEN的位PCNT减1。如果该事务完成(收到ACK握手包),ACK标志位被触发,否则,状态标志(NAK)会指示事务结果:
- 6、如果步骤5所描述的OUT事务完成后且步骤2的PCNT的数值比1大,程序将会返回步骤3,继续发送剩下的数据包。如果步骤5中描述的OUT事务没有成功完成,程序将会返回步骤3来再次发送该包;
- 7、在所有的传输中的所有事务都被成功送达后,USBFS生成TF标志来指示传输成功结束;
- 8、除能通道, 当通道处于空闲状态, 即可为其他传输做准备。

设备模式

全局寄存器初始化顺序:

- 1、根据应用的需求,如Tx FIFO的空阈值等,设置寄存器USBFS_GAHBCS,此时,GINTEN 位需要保持清零状态:
- 2、根据应用的需求,如操作模式(主机、设备或OTG)、某些OTG参数、USB协议,设置寄存器USBFS_GUSBCS;

- 3、根据应用的需求,设置寄存器USBFS_GCCFG;
- 4、根据应用的需求,设置寄存器USBFS_GRFLEN、USBFS_HNPTFLEN_DIEP0TFLEN、USBFS HPTFLEN,配置数据FIFO;
- 5、通过设置寄存器USBFS_GINTEN使能模式错误、挂起、SOF、枚举完成和USB复位中断,置位USBFS GAHBCS寄存器的GINTEN位使能全局中断;
- 6、根据应用的需求,如设备的地址等,设置寄存器USBFS_DCFG;
- 7、在设备连接上主机上后,主机在USB总线上执行端口复位,触发寄存器USBFS_GINTF的RST中断;
- 8、等待寄存器USBFS GINTF的ENUMF中断。

端点初始化和使能顺序:

- 1、根据预期的传输类型、包大小等信息,设置寄存器 USBFS_DIEPnCTL 或 USBFS DOEPxCTL;
- 2、 设定寄存器 USBFS DIEPINTEN 或 USBFS DOEPINTEN,置位相应中断使能位;
- 3、 设定寄存器 USBFS_DIEPxLEN 或 USBFS_DOEPxLEN, PCNT表示一次传输中的包数, TLEN表示一次传输中发送或接收的数据包的总字节数;
- 4、对于 IN 端点,如果 PCNT等于 1,单数据包的大小等于 TLEN。如果 PCNT大于 1,前 PCNT-1个包被认定为最大包长度的包,其大小是由寄存器 USBFS_DIEPxCTL的位 MPL所定义。最后一包的大小可通过 PCNT、TLEN和 MPL 计算得到。如果程序想要发出一个零长度的包,应该设定 TLEN为 0, PCNT位 1;
- 5、 对于 OUT 端点,因为在 IN 事务结束之前,程序不知道实际接收的数据大小,程序可将 TLEN 设定为 Rx FIFO 所支持的最大值;
- 6、 置位 USBFS DIEPxCTL 或 USBFS DOEPxCTL 寄存器 EPEN 位使能端点。

端点除能顺序

当USBFS_DIEPnCTL或USBFS_DOEPnCTL寄存器的EPEN位被清除时,程序可以在任何时候除能端点

IN传输操作顺序:

- 1、初始化USBFS全局寄存器:
- 2、初始化和使能IN端点;
- 3、将数据包写入端点的Tx FIFO,每当数据包写入FIFO,USBFS减少USBFS_DIEPxLEN寄存器的TLEN域的数值,其减少的数值等于已写的数据包大小;
- 4、当IN令牌接收后,USBFS发送数据包,在USB总线上的事务完成后,USBFS_DIEPxLEN 寄存器的PCNT值减1。如果事务成功完成(接收到ACK握手包),ACK标志被触发,或者,其他状态标志表示事务的结果;
- 5、在一次传输的所有数据包都被成功发送,USBFS生成一个TF标志位以表明传输成功结束,除能相应IN端点。

OUT传输操作顺序(DMA除能):

- 1、初始化USBFS全局寄存器;
- 2、初始化和使能端点:
- 3、当OUT令牌接收后,USBFS接收数据包或基于Rx FIFO状态和寄存器配置回复NAK握手包。如果事务成功完成(USBFS接收并保存数据到Rx FIFO,发送ACK握手包),

- USBFS_DOEPxLEN寄存器的PCNT值减1。如果事务成功完成(接收到ACK握手包),ACK 标志被触发,或者,其他状态标志表示事务的结果;
- 4、在一次传输的所有数据包都被成功接收,USBFS将TF状态条目压入Rx FIFO的最后的数据包的顶部,这样,软件在读取所有接收的数据包后,再读取TF状态条目。USBFS生成TF标志来指示传输成功结束。USBFS生成一个TF标志位以表明传输成功结束,除能相应OUT端点。

23.6. 中断

OTG 有两种中断:全局中断、唤醒中断。

全局中断是软件需要处理的主要中断,全局中断的标志位可在 USBFS_GINTF 寄存器读取,列举在表 25-2. USBFS 全局中断中。

表 23-2. USBFS 全局中断

中断标志	描述	运行模式
SESIF	会话中断	主机或设备模式
DISCIF	断开连接中断标志	主机模式
IDPSC	ID 引脚状态变化	主机或设备模式
PTXFEIF	周期性 Tx FIFO 空中断标志	主机模式
HCIF	主机通道中断标志	主机模式
HPIF	主机端口中断	主机模式
ISOONCIF/PXNCIF	周期性传输未完成中断标志 / 同步OUT传输未完成中断标志	主机或设备模式
ISOINCIF	同步 IN 传输未完成中断标志	设备模式
OEPIF	OUT 端点中断标志	设备模式
IEPIF	IN 端点中断标志	设备模式
EOPFIF	周期性帧尾中断标志	设备模式
ISOOPDIF	同步 OUT 丢包中断标志	设备模式
ENUMF	枚举完成	设备模式
RST	USB 复位	设备模式
SP	USB挂起	设备模式
ESP	早挂起	设备模式
GONAK	全局OUT NAK有效	设备模式
GNPINAK	全局非周期IN NAK有效	设备模式
NPTXFEIF	非周期Tx FIFO空中断标志	主机模式
RXFNEIF	Rx FIFO非空中断标志	主机或设备模式
SOF	帧首	主机或设备模式
OTGIF	OTG 中断标志	主机或设备模式
MFIF	模式错误中断标志	主机或设备模式

唤醒中断可以在 USBFS 处于挂起状态时触发,即使 USBFS 的时钟停止。寄存器 USBFS_GINTF 的位 WKUPIF 是唤醒源。

23.7. USBFS 寄存器

USBFS 基地址: 0x5000 0000

23.7.1. 全局控制与状态寄存器组

全局 OTG 控制和状态寄存器 (USBFS_GOTGCS)

地址偏移: 0x0000 复位值: 0x0000 0800

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					f f	呆 일						BSV	ASV	DI	CIDPS
												r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	任旨	,		DHNPEN	HHNPEN	HNPREQ	HNPS			<u>f</u>	몫 알			SRPREQ	SRPS
	•	•	•	rw	rw	rw	r	•		•	•		•	rw	r

位/位域	名称	描述
31:20	保留	必须保持复位值。
19	BSV	B会话有效(在OTG协议中描述) 0: OTG B设备VBUS电压水平低于VBSESSVLD 1: OTG B设备VBUS电压水平不低于VBSESSVLD 注意: 仅在OTB B设备模式下可访问
18	ASV	A会话有效 A主机模式收发器状态 0: OTG A设备VBUS电压水平低于VASESSVLD 1: OTG A设备VBUS电压水平不低于VASESSVLD 在会话的开始,A设备默认是主机。 注意: 仅在OTG A设备模式下可访问
17	DI	去抖动间隔 检测到连接的去抖动间隔。 0: 当USB总线上发生插入和连接时,表示长去抖动间隔 1: 当HNP协议中使用一个软连接时,指示短去抖动间隔 注意:仅在主机模式下可访问

16	CIDPS	ID引脚状态 连接器ID引脚的电压水平 0: USBFS工作在A设备模式 1: USBFS工作在B设备模式 注意:在设备和主机模式下均可访问
15:12	保留	必须保持复位值。
11	DHNPEN	设备HNP使能使能B设备HNP功能。如果该控制位清除,当应用置位USBFS_GOTGCS寄存器中的HNPREQ控制位c时,USBFS并不启动HNP协议。 0: HNP功能不使能 1: HNP功能使能 注意: 仅在设备模式下访问
10	HHNPEN	主机HNP使能使能A设备HNP功能。如果该控制位清除,USBFS不能够响应B设备的HNP请求。 0: HNP功能不使能 1: HNP功能使能注意:仅在主机模式下访问
9	HNPREQ	HNP请求 软件通过置位该控制位在USB总线上启动一个HNP。当USBFS_GOTGINTF寄存器 中HNPEND控制位置位时,软件可以通过向该控制位写0或者清除 USBFS_GOTGINTF寄存器中的HNPEND控制位来清除该控制位。 0: 不发送HNP请求 1: 发送HNP请求 注意:仅在设备模式下访问
8	HNPS	HNP成功标志位 当HNP成功时,该标志位由内核置位。当HNPREQ置位时,该控制位被清除。 0: HNP失败 1: HNP成功 注意:仅在设备模式下访问
7:2	保留	必须保持复位值。
1	SRPREQ	SRP请求 软件通过置位该控制位在USB总线上启动一个SRP会话请求。当 USBFS_GOTGINTF寄存器中的SRPEND控制位置位时,软件可以通过向该控制位 写0或者清除USBFS_GOTGINTF寄存器中的SRPEND控制位来清除该控制位。 0:没有会话请求 1:会话请求 注意:仅在设备模式下访问
0	SRPS	SRP会话请求成功 当SRP会话请求成功时,该标志位由内核置位。当SRPREQ控制位被置位时,该标 志位被清除。

0: SRP会话请求失败

1: SRP会话请求成功

注意: 仅在设备模式下访问

全局 OTG 中断状态寄存器 (USBFS_GOTGINTF)

地址偏移: 0x0004 复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					f E	呆 알						DF	ADTO	HNPDET	保留
												rc_w1	rc_w1	rc_w1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		£	₹			HNPEND	SRPEND			保留			SESEND	e E	 - - - - - - - - -
	-					rc w1	rc w1						rc w1		

位/位域	名称	描述
31:20	保留	必须保持复位值。
19	DF	去抖动完成 当设备连接去抖动完成时,USBFS置位该控制位 注意:仅在主机模式下可访问
18	ADTO	A设备超时 当A设备等待B设备连接发生超时,USBFS置位该控制位 注意:在设备和主机模式下,均可访问
17	HNPDET	检测到主机协商请求 当A设备检测到一个HNP请求时,USBFS置位该标志位 注意:在设备和主机模式下,均可访问
16:10	保留	必须保持复位值。
9	HNPEND	HNP结束 当一个HNP结束时,内核置位该标志位。软件应该读取USBFS_GOTGCS寄存器中 HNPS标志位,以获取HNP结果。 注意:在设备和主机模式下,均可访问。
8	SRPEND	SRPEND 当一个SRP结束时,内核置位该标志位。软件应该读取USBFS_GOTGCS寄存器中

SRPS标志位,以获取SRP结果。

注意: 在设备和主机模式下,均可访问。

7:3 保留 必须保持复位值。

2 SESEND 会话结束

当VBUS电压低于Vb_ses_vld时,内核置位该标志位。

全局 AHB 控制和状态寄存器 (USBFS_GAHBCS)

地址偏移: 0x0008 复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

保留

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留				РТХЕТН	ТХЕТН			1	R			GINTEN

rw rw n

位/位域	名称	描述
31:9	保留	必须保持复位值。
8	PTXFTH	周期性Tx FIFO阈值 0: 当周期性发送FIFO半空时,将触发PTXFEIF标志位 1: 当周期性发送FIFO全空时,将触发PTXFEIF标志位 注意: 只在主机模式下访问
7	TXFTH	Tx FIFO 阈值 设备模式: 0: 当IN端点发送FIFO半空时,将触发TXFEIF标志位 1: 当IN端点发送FIFO全空时,将触发TXFEIF标志位 主机模式: 0: 当非周期性发送FIFO半空时,将触发NPTXFEIF标志位 1: 当非周期性发送FIFO全空时,将触发NPTXFEIF标志位
6:1	保留	必须保持复位值。
0	GINTEN	全局中断使能

0: 全局中断不使能

1: 全局中断使能

注意: 在主机和设备模式下,均可访问

全局复位控制寄存器 (USBFS_GRSTCTL)

地址偏移: 0x0010 复位值: 0x8000 0000

应用通过该寄存器来复位内核的不同硬件特性。

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							伊旨	k H							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13	14	13	12	- ''	10						-	3		'	
		III.					TXFZ			_	_Z D	/17	퓨	HC	c,
		保留					TXFNUM[4:0]			TXFF	RXFF	保留	HFCRST	HCSRST	CSRST
							rw			rs	rs		rs	rs	rs

位/位域	名称	描述
31:11	保留	必须保持复位值。
10:6	TXFNUM[4:0]	Tx FIFO数目
		当本寄存器中TXFF控制位置位时,该标志位决定那个Tx FIFO会被冲刷
		主机模式:
		00000: 仅非周期性Tx FIFO被冲刷
		00001: 仅周期性Tx FIFO被冲刷
		1xxxx: 周期性和非周期性Tx FIFO均被冲刷
		其他:没有数据被冲刷
		设备模式:
		00000: 仅Tx FIFO0被冲刷
		00001: 仅Tx FIFO1被冲刷
		00011: 仅Tx FIFO3被冲刷
		1XXXX: 所有的Tx FIFO均被冲刷
		其他:没有数据被冲刷
5	TXFF	Tx FIFO冲刷控制位
		应用通过置位该控制位来冲刷Tx FIFO数据,并且TXFNUM[4:0]决定冲刷的FIFO数

目。当冲刷完成后,硬件自动清除该控制位。置位该控制位后,应用应该等待该控

RXFF

保留

HFCRST

4

3

2

制位清除,并且,在此之前USBFS不应有其他操作。 注意:在设备和主机模式下,均可访问 Rx FIFO冲刷控制位 应用通过置位该控制位来冲刷Rx FIFO数据。当冲刷完成后,硬件自动清除该控制 位。置位该控制位后,应用应该等待该控制位清除,并且,在此之前USBFS不应有 其他操作。 注意:在设备和主机模式下,均可访问 必须保持复位值。 主机帧计数器复位 应用通过置位该控制位来复位USBFS内的帧计数器。该控制位置位后,接下来SOF 的帧计数器将变为0。当复位操作完成后,硬件自动清除该控制位。置位该控制位 后,应用应该等待该控制位清除,并且,在此之前USBFS不应有其他操作。 注意:仅在主机模式下访问

1 HCSRST HCLK软件复位

应用通过置位该控制位来复位ABH时钟域电路

在复位操作完成后,硬件自动清除该控制位。置位该控制位后,应用应该等待该控

制位清除,并且,在此之前USBFS不应有其他操作。

注意: 在设备和主机模式下,均可访问

0 CSRST USB内核软件复位

复位AHB和USB时钟域电路,以及大多数的寄存器。

全局中断标志寄存器 (USBFS_GINTF)

地址偏移: 0x0014 复位值: 0x0400 0021

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WKUPIF	SESIF	DISCIF	IDPSC	保留.	PTXFEIF	HCIF	HPIF	任旨	-	PXNCIF/ ISOONCIF	ISOINCIF	OEPIF	IEPIF	任旨	7. 1
rc_w1	rc_w1	rc_w1	rc_w1		r	r	r			rc_w1	rc_w1	r	r		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EOPFIF	ISOOPDIF	ENUMF	RST	SP	ESP	e E	K	GONAK	GNPINAK	NPTXFEIF	RXFNEIF	SOF	OTGIF	MFIF	СОРМ
rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1			r	r	r	r	rc_w1	r	rc_w1	r

位/位域 名称 描述

31 WKUPIF 唤醒中断标志位

GD32F403xx 用户手册

digabetice		OD321 403XX /11/ 1 /1/1
		当在USB总线上检测到一个恢复信号(在设备模式下)或者一个远程唤醒信号(在主机模式下),硬件将置位该中断标志位。 注意:在设备和主机模式下,均可访问
30	SESIF	会话中断标志位 当在A设备模式下检测到一个SRP会话请求或在B设备模式下B设备的Vbus变为可用 时,硬件将置位该中断标志位 注意:在设备和主机模式下,均可访问
29	DISCIF	断开中断标志位 当设备断开后,将触发该标志位。 注意:仅在主机模式下访问
28	IDPSC	ID引脚状态改变中断标志位 当ID引脚状态改变时,内核将置位该标志位 注意:在设备和主机模式下,均可访问
27	保留	必须保持复位值。
26	PTXFEIF	周期性Tx FIFO空中断标志位 当周期性发送FIFO半空或全空时,将触发该标志位。空阈值由USBFS_GAHBCS寄存器中周期性Tx FIFO空等级控制位(PTXFTH)决定。 注意:仅在主机模式下访问
25	HCIF	主机通道中断标志位 当在主机模式下其中一个通道挂起一个中断时,USBFS将置位该标志位。软件应该 首先读取USBFS_HACHINT寄存器以获取通道号,然后读取相应的 USBFS_HCHxINTF寄存器以获取产生中断的通道标志位。当产生通道中断的独立 通道标志位被清除后,该中断标志位将自动清除。 注意:仅在主机模式下访问
24	HPIF	主机端口中断标志位 当USBFS在主机模式下检测到端口状态改变时,USB内核将置位该标志位。软件应 该读取USBFS_HPCSR寄存器以获取该中断源。当产生端口中断的标志被清除后, 该中断标志位将自动清除。 注意:仅在主机模式下访问
23:22	保留	必须保持复位值。
21	PXNCIF	周期性传输未完成中断标志位 在当前帧内,当帧结束时,周期性传输未完成,USBFS将置位该标志位(主机模 式)。
	ISOONCIF	同步OUT传输未完成中断标志位 在周期性帧结束时(由USBFS_DCFG寄存器的EOPFT控制位定义),如果仍有同步OUT端点未完成传输,USBFS将置位该标志位(设备模式)。
20	ISOINCIF	同步IN传输未完成中断标志位 在周期性帧结束时(由USBFS_DCFG寄存器的EOPFT控制位定义),如果仍有同

digubevice		GD32F403XX 用广于测
		步IN端点未完成传输,USBFS将置位该标志位(设备模式)。 注意:仅在设备模式下访问
19	OEPIF	OUT端点中断标志位 当在设备模式下,其中一个OUT端点挂起一个中断时,USBFS将置位该中断标志 位。软件应该首先读取USBFS_DAEPINT寄存器以获取设备号,然后读取相应的 USBFS_DOEPxINTF寄存器以获取产生中断的端点标志位。当产生中断的相应端 点标志位被清除后,该中断标志位被自动清除。 注意:仅在设备模式下访问
18	IEPIF	IN端点中断标志位 当在设备模式下,其中一个IN端点挂起一个中断时,USBFS将置位该标志位。软件 应该首先读取USBFS_DAEPINT寄存器以获取设备号,然后读取相应的 USBFS_DIEPxINTF寄存器以获取产生中断的端点标志位。当相应产生中断的端点 标志位被清除后,该中断标志位被自动清除。
17:16	保留	必须保持复位值。
15	EOPFIF	周期性帧结束中断标志位 当一帧内USB总线时间已经达到USBFS_DCFG寄存器中EOPFT控制位所定义的数 值时,USBFS将置位该中断标志位。 注意:仅在设备模式下访问
14	ISOOPDIF	同步OUT包丢失中断标志位 如果USBFS接收到一个同步OUT包,但是Rx FIFO没有足够的空间来接收该OUT 包,USBFS将置位该标志位。 注意:仅在设备模式下访问
13	ENUMF	枚举完成中断标志位 在速度枚举完成后,USBFS将置位该中断标志位。软件能够读取USBFS_DSTAT寄存器以获取当前设备速度。 注意:仅在设备模式下访问
12	RST	USB复位中断标志位 当USBFS在USB总线上检测到一个USB复位信号后,USBFS将置位该中断标志 位。 注意:仅在设备模式下访问
11	SP	USB挂起中断标志位 当USBFS检测到USB总线空闲3ms并且进入挂起状态,USBFS将置位该中断标志 位。 注意:仅在设备模式下访问
10	ESP	早期挂起中断标志位 当USBFS检测到USB总线空闲3ms时,USBFS将置位该中断标志位。
9:8	保留	必须保持复位值。
7	GONAK	全局OUT NAK有效标志位

digabevice		GD321 403XX /ft / 1-///
		软件能够向USBFS_DCTL寄存器的SGONAK控制位写1,并且USBFS将会在SGONAK写入有效后,置位GONAK标志位。 注意:仅在设备模式下可访问
6	GNPINAK	全局非周期性IN NAK有效标志位 软件能够向USBFS_DCTL寄存器中的SGINAK控制位写1,并且USBFS将会在 SGINAK写入有效后,置位GNPINAK标志位 注意:仅在设备模式下可访问
5	NPTXFEIF	非周期性Tx FIFO空中断标志位 当非周期性Tx FIFO为半空或全空时,将置位该中断标志位。该阈值由 USBFS_GAHBCS寄存器中的非周期Tx FIFO空等级控制位(TXFTH)决定。 注意:仅在主机模式下访问
4	RXFNEIF	Rx FIFO非空中断标志位 当至少有一个包或状态条目在Rx FIFO中时,USBFS将置位该标志位。 注意:在主机和设备模式下,均可访问
3	SOF	帧起始中断标志位 主机模式: 当准备在USB总线上发送一个SOF或保持有效信号,USBFS将置位该中断标志位。 软件可以通过写1清除该中断标志位。 设备模式: 当USBFS接收到一个SOF令牌包后,USBFS置位该标志位。应用可以读取设备状 态寄存器以获取当前帧号。软件可以通过写1清除该中断标志位。 注意:在设备和主机模式下,均可访问
2	OTGIF	OTG中断标志位 当USBFS_GOTGINTF寄存器中标志位产生一个中断时,USBFS置位该中断标志 位。软件应该读取USBFS_GOTGINTF寄存器以获取产生该中断的信号源,当 USBFS_GOTGINTF寄存器中产生该中断的标志位被清除后,该中断标志位也被自 动清除。 注意:在设备和主机模式下,均可访问
1	MFIF	模式错误中断标志位 如果软件在设备模式下操作仅主机可访问的寄存器或者在主机模式下操作仅设备可 访问的寄存器,USBFS将置位该中断标志位。这些错误操作不会产生作用。 注意:在主机和设备模式下,均可访问
0	СОРМ	当前操作模式 0:设备模式 1:主机模式 注意:在主机和设备模式下,均可访问

全局中断使能寄存器 (USBFS_GINTEN)

地址偏移: 0x0018

复位值: 0x0000 0000

这个寄存器同全局中断标志寄存器(USBFS_GINTF)一起工作来中断应用程序。当中断使能位被禁止后,相应的中断就不会产生。然而,相应的全局中断标志位依然会被置位。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WKUPIE	SESIE	DISCIE	IDPSCIE	保留	PTXFEIE	HCIE	HPIE	f E	呆 留	PXNCIE/ ISOONCIE	ISOINCIE	OEPIE	IEPIE	€ E	R
rw	rw	rw	rw		rw	rw	r			rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EOPFIE	ISOOPDIE	ENUMFIE	RSTIE	SPIE	ESPIE	f E	X	GONAKIE	GNPINAKIE	NPTXFEIE	RXFNEIE	SOFIE	OTGIE	MFIE	保留
rw	rw	rw	rw	rw	rw			rw	rw	rw	rw	rw	rw	rw	

位/位域	名称	描述	
31	WKUPIE	唤醒中断使能	
		0: 禁用唤醒中断	
		1: 使能唤醒中断	
		注意: 在主机和设备模式下,均可访问	
30	SESIE	会话中断使能	
		0: 禁用会话中断	
		1: 使能会话中断	
		注意: 在主机和设备模式下,均可访问	
29	DISCIE	断开中断使能	
		0: 禁用断开中断	
		1: 使能断开中断	
		注意: 仅在设备模式下使用	
28	IDPSCIE	ID引脚状态改变中断使能	
		0: 禁用连接器ID引脚状态中断	
		1: 使能连接器ID引脚状态中断	
		注意: 在主机和设备模式下,均可访问	
27	保留	必须保持复位值。	
26	PTXFEIE	周期性Tx FIFO空中断使能	
		0: 禁用周期性Tx FIFO空中断	
		1: 使能周期性Tx FIFO空中断	
		注意: 仅在主机模式下访问	
25	HCIE	主机通道中断使能	
			615

		0: 禁用主机通道中断 1: 使能主机通道中断 注意: 仅在主机模式下访问
24	HPIE	主机端口中断使能 0: 禁止主机端口中断 1: 使能主机端口中断 注意: 仅在主机模式下访问
23:22	保留	必须保持复位值。
21	PXNCIE	周期性传输未完成中断使能 0: 禁止周期性未完成传输中断 1: 使能周期性未完成传输中断 注意: 仅在主机模式下访问
	ISOONCIE	同步OUT传输未完成中断使能 0:禁止同步OUT传输未完成中断 1:使能同步OUT传输未完成中断 注意:仅在设备模式下访问
20	ISOINCIE	同步IN传输未完成中断使能 0: 禁止同步IN传输未完成中断 1: 使能同步IN传输未完成中断 注意: 仅在设备模式下访问
19	OEPIE	OUT端点中断使能 0: 禁止OUT端点中断 1: 使能OUT端点中断 注意: 仅在设备模式下访问
18	IEPIE	IN端点中断使能 0: 禁止IN端点中断 1: 使能IN端点中断 注意: 仅在设备模式下访问
17:16	保留	必须保持复位值。
15	EOPFIE	周期性帧结束中断使能 0:禁止周期性帧结束中断 1:使能周期性帧结束中断 注意:仅在设备模式下访问
14	ISOOPDIE	同步OUT包丢失中断使能 0: 禁止同步OUT包丢失中断 1: 使能同步OUT包丢失中断 注意: 仅在设备模式下访问
13	ENUMFIE	枚举完成中断使能

algabevice		OD321 403XX /11/ 1 ///
		0: 禁止枚举完成中断1: 使能枚举完成中断注意: 仅在设备模式下访问
12	RSTIE	USB复位中断使能 0:禁止USB复位中断 1:使能USB复位中断 注意:仅在设备模式下访问
11	SPIE	USB挂起中断使能 0: 禁止USB挂起中断 1: 使能USB挂起中断 注意: 仅在设备模式下访问
10	ESPIE	早期挂起中断使能 0:禁止早期挂起中断 1:使能早期挂起中断 注意:仅在设备模式下访问
9:8	保留	必须保持复位值。
7	GONAKIE	全局OUT NAK有效中断使能 0: 禁止全局OUT NAK有效中断 1: 使能全局OUT NAK有效中断 注意: 仅在设备模式下访问
6	GNPINAKIE	全局非周期性IN NAK有效中断使能 0: 禁止全局非周期性IN NAK有效中断 1: 使能全局非周期性IN NAK有效中断 注意: 仅在设备模式下访问
5	NPTXFEIE	非周期性发送FIFO空中断使能 0: 禁止非周期性发送FIFO空中断 1: 使能非周期性发送FIFO空中断 注意: 仅在主机模式下访问
4	RXFNEIE	接收FIFO非空中断使能 0: 禁止接收FIFO非空中断 1: 使能接收FIFO非空中断 注意: 在设备模式与主机模式下,均可访问
3	SOFIE	帧首中断使能 0: 禁止帧首中断 1: 使能帧首中断 注意: 在设备模式下与主机模式下,均可访问
2	OTGIE	OTG中断使能 0:禁止OTG中断 1:使能OTG中断

注意: 在设备模式下与主机模式下,均可访问

1 MFIE 模式错误中断使能

0: 禁止模式错误中断

1: 使能模式错误中断

注意: 在设备模式下与主机模式下,均可访问

0 保留 必须保持复位值。

全局接收状态读取/接收状态读取和弹出寄存器 (USBFS_GRSTATR/USBFS_GRSTATP)

读地址偏移: 0x001C 弹出地址偏移: 0x0020 复位值: 0x0000 0000

对接收状态读寄存器的读操作,将返回接收FIFO中顶部的条目。对接收状态读取和弹出寄存器的读操作,将额外的弹出Rx FIFO的顶部条目。

在主机模式和设备模式下,Rx FIFO中的条目具有不同的含义。当全局中断标志寄存器 (USBFS_GINTF) 中的接收FIFO非空中断标志位 (RXFNEIF) 置位后,软件应该读取该寄存器。

该寄存器只能按字(32位)访问

主机模式:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					保留							NT (20)	DDOKST[3:0]		DPID
												ı	r		r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DPID						BCOUNT[10:0]							CNOMIO.OJ	ON IM3:01	

位/位域	名称	描述				
31:21	保留	必须保持复位值。				
20:17	RPCKST[3:0]	接收包状态				
		0010: 接收到IN数据包				
		0011: IN传输完成(如果取出,触发一个中断)				
		0101:数据翻转错误(如果取出,触发一个中断)				
		0111: 通道中止(如果取出,触发一个中断)				

											/ 11/	1 /1/1	,
			其他: 仍	R 留									
16:15	DPID[1:0]		数据PID 接收包的 00: DA 10: DA 其他: 仍	勺数据P TA0 TA1	PID								
14:4	BCOUNT[10	0:0]	字节数 接收IN数	汝据包 与	字节数。								
3:0	CNUM[3:0]		通道数当前接收	女 包所属	属通道编	号。							
	设备模式:												
31 30	29 28	3 27	26	25	24	23	22	21	20	19	18	17	16
			保留							77.07.01.07.01	DDCKST3:01		DPID
										ı	-		r
15 14	13 12	2 11	10	9	8	7	6	5	4	3	2	1	0
DPID				BCOUNT[10:0]							E. MOM[O:0]		
				r									

位/位域	名称	描述
31:21	保留	必须保持复位值。
20:17	RPCKST[3:0]	接收包状态 0001: 全局OUT NAK (产生一个中断) 0010: 接收到OUT数据包 0011: OUT传输完成 (产生一个中断) 0100: SETUP传输完成 (产生一个中断) 0110: 接收到SETUP数据包 其他: 保留
16:15	DPID[1:0]	数据PID 接收到OUT数据包的数据PID 00: DATA0 10: DATA1 其他: 保留
14:4	BCOUNT[10:0]	字节数 接收数据包的字节数

3:0 EPNUM[3:0]

端点号

当前接收包所属端点编号

全局接收 FIFO 长度寄存器 (USBFS_GRFLEN)

地址偏移: 0x0024 复位值: 0x0000 0200

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保 留	R.							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Z Z								
							XX+U[15:0]								
								2							

r/rw

位/位域	名称	描述
31:16	保留	必须保持复位值。
15:0	RXFD[15:0]	Rx FIFO 深度 以32位字计数
		1≤RXFD≤1024

主机非周期性发送 FIFO 长度寄存器/设备 IN 端点 0 发送 FIFO 长度寄存器 (USBFS_HNPTFLEN_DIEP0TFLEN)

地址偏移: 0x0028 复位值: 0x0200 0200

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IEPO	I							
							IEPOTXFD[15:0]	HNPTXFD/							
							[15:0]	D/							
							r/ı	rw							<u>'</u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

HNPTXRSAR/ IEPOTXRSAR [15:0]

r/rw

主机	楷:	不告	

	工小岭天八十:	
位/位域	名称	描述
31:16	HNPTXFD[15:0]	主机非周期性Tx FIFO深度
		以32位字计数
		1≤HNPTXFD≤1024
15:0	HNPTXRSAR[15:0]	主机非周期性Tx RAM起始地址
		非周期性发送FIFO RAM的起始地址
	设备模式下:	
位/位域	名称	描述
31:16	IEP0TXFD[15:0]	输入端点0 Tx FIFO深度
		以32位字计数
		16≤IEP0TXFD≤140
15:0	IEP0TXRSAR[15:0]	输入端点0 TX RAM起始地址
		端点0发送FIFO RAM的起始地址

主机非周期性发送 FIFO/队列状态寄存器 (USBFS_HNPTFQSTAT)

地址偏移: 0x002C 复位值: 0x0008 0200

该寄存器反映了非周期性Tx FIFO和请求队列的当前状态。

请求队列包括在主机模式下的IN、OUT或其他请求条目。

注意: 在设备模式下, 该寄存器不可用。

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	NPTXRQTOP[6:0]										NPTXR	QS[7:0]			
				r								r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

NPTXFS[15:0]

位/位域	名称	描述
31	保留	必须保持复位值。
30:24	NPTXRQTOP[6:0]	非周期性发送请求队列的顶部条目 在非周期性传输请求队列中的条目。 位30:27:通道号 位26:25: - 00: IN/OUT令牌 - 01: 0长度OUT包 - 11: 通道中止请求 位24: 结束标志位,表明所选通道的最后一个条目
23:16	NPTXRQS[7:0]	非周期性发送请求队列空间 非周期性请求队列的剩余空间 0:请求队列空 1:1个条目 2:2个条目 n:n个条目(0≤n≤8) 其他:保留
15:0	NPTXFS[15:0]	非周期性Tx FIFO空间 非周期性发送FIFO剩余空间 以32位字计数 0: 非周期性Tx FIFO为空 1: 1个字 2: 2个字 n: n个字(0≤n≤NPTXFD) 其他: 保留

全局内核配置寄存器 (USBFS_GCCFG)

地址偏移: 0x0038 复位值: 0x0000 0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					£	K					VBUSIG	SOFOEN	VBUSBCEN	VBUSACEN	保留	PWRON
											rw	rw	rw	rw		rw
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

保密

位/位域	名称	描述
31:22	保留	必须保持复位值。
21	VBUSIG	V _{BUS} 忽略 当该控制位被置位,USBFS并不监测V _{BUS} 引脚电压,并且认为在主机和设备模式 下,V _{BUS} 电压一直有效,然后可释放V _{BUS} 引脚作为其他用途。 0: V _{BUS} 不被忽略 1: V _{BUS} 被忽略,并认为V _{BUS} 电压一直有效
20	SOFOEN	SOF输出使能 0: SOF脉冲输出禁止 1: SOF脉冲输出使能
19	VBUSBCEN	V _{BUS} B设备比较器使能 0: V _{BUS} B设备比较器禁止 1: V _{BUS} B设备比较器使能
18	VBUSACEN	Vaus A设备比较器使能 0: Vaus A设备比较器禁止 1: Vaus A设备比较器使能
17	保留	必须保持复位值。
16	PWRON	上电 该控制位为内部嵌入式全速PHY的电源开关 0: 嵌入式全速PHY掉电 1: 嵌入式全速PHY上电
15:0	保留	必须保持复位值。

全局 USB 控制和状态寄存器 (USBFS_GUSBCS)

地址偏移: 0x000C 复位值: 0x0000 0A80

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	FDM	FHM							保留						

GD32F403xx 用户手册

	rw	rw							r	w	rw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	保留		<u> </u>	11113.0		HNPCEN	SRPCEN			保留				TOC[2:0]	
			n	w		r/rw	r/rw							rw	

位/位域	名称	描述
31	保留	必须保持复位值。
30	FDM	强制设备模式 通过置位该控制位,可强制USB内核为设备模式,并且忽略USBFS ID引脚的输入 状态 0:正常模式 1:设备模式 设置该控制位后,应用必须等待至少25ms,让变化产生作用。 注意:在设备和主机模式下,均可访问。
29	FHM	强制主机模式 通过置位该控制位,可强制USB内核为主机模式,并且忽略USBFS ID引脚的输入 状态 0:正常模式 1:主机模式 设置该控制位后,应用必须等待至少25ms,让变化产生作用。 注意:在设备和主机模式下,均可访问
28:14	保留	必须保持复位值。
13:10	UTT[3:0]	USB运转时间 以物理时钟数来设定运转时间 注意:仅在设备模式下访问
9	HNPCEN	HNP能力使能 控制HNP能力是否使能 0: HNP能力禁用 1: HNP能力使能 注意: 在设备和主机模式下,均可访问
8	SRPCEN	SRP能力使能 控制SRP能力是否使能 0: SRP能力禁用 1: SRP能力使能 注意: 在设备和主机模式下,均可访问
7:3	保留	必须保持复位值。
2:0	TOC[2:0]	超时校准

当等待一个包时,USBFS需要使用USB2.0协议中需要的超时数值。应用可以使用 TOC[2:0]增加该数值(以PHY时钟为单位)。PHY时钟频率为48MHz。

内核 ID 寄存器 (USBFS_CID)

地址偏移: 0x003C 复位值: 0x0000 1000

该寄存器包含产品ID

该寄存器只能按字(32位)访问

CID[31:16] rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								() ()								
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								وَ	6							
								n	w							
CID[15:0]	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D[15:0]								<u>c</u>								
								<u>-</u>	D. 14 20 20 20 20 20 20 20 20 20 20 20 20 20							

 位/位域
 名称
 描述

 31:0
 CID
 内核ID

软件能够写入或读取该域值,并利用该域值为应用产生一个唯一ID。

主机周期性发送 FIFO 长度寄存器 (USBFS_HPTFLEN)

地址偏移: 0x0100 复位值: 0x0200 0600

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							[15:0]	HPTXFD							
							O]	Ĥ							
							r/ı	rw							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							[15:0]	HPTXFSAR							

r/n

位/位域	名称			描述										
31:16	HPTXI	FD[15:0]		主机周期	期性Tx	FIFO深	度							
				以32位	字计数									
				1≤HPT	XFD≤10	024								
15:0	HPTXI	FSAR[15:	0]	主机周期	期性Tx	RAM起	始地址							
				主机周期	期性发达	送FIFO F	RAM起如	台地址						
	设备 编号)	IN 端点)	发送日	FIFO ⅓	後度寄	存器 (USBF:	S_DIE	PxTFl	_EN) (x = 1:	3,其中	x为F	FIFO
	地址(扁移: 0x	0104	+ (FIFC)_numl	ber – 1) × 0x0	4						
	复位值	直: 0x02	00 04	00										
	该寄存	字器只能	按字	(32位)	访问									
31 3	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16
						ָרָרָ מָרָיִי								
						r/i	rw							
15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1	0
						15:0]	IEPTXRSAR							

r/rw

位/位域	名称	描述
31:16	IEPTXFD[15:0]	IN端点Tx FIFO深度
		以32位字计数
		1≤HPTXFD≤1024
15.0	IEDTVDCADI45.01	IN治 与FIFOV TV DAM却始地机
15:0	IEPTXRSAR[15:0]	IN端点FIFOx Tx RAM起始地址
		以32位字为单位的IN端占发送FIFOx起始抽址

23.7.2. 主机控制和状态寄存器

主机控制寄存器 (USBFS_HCTL)

地址偏移: 0x0400 复位值: 0x0000 0000

在主机模式下,上电后,该寄存器有USB内核配置。主机初始化后,无需修改。

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							(1) E	呆							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						任旨	呆 習							C	
														ř	-

rw

位/位域	名称	描述
31:2	保留	必须保持复位值。
1:0	CLKSEL	USB时钟选择
		01: 48MHz时钟
		其他:保留

主机帧间隔寄存器 (USBFS_HFT)

地址偏移: 0x0404 复位值: 0x0000 BB80

当USBFS控制器正在枚举中时,该寄存器为当前枚举速度设置帧间隔。

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							(P)	Ř							
							Í								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							7]							
							יאן יס.ט								
							2	2							

rw

位/位域	名称	描述
31:16	保留	必须保持复位值。

15:0 FRI[15:0]

帧间隔

该值描述了以PHY时钟为单位的帧周期。每次端口复位操作后,端口被使能, USBFS根据当前速度,采用一个固有值,并且软件可以向该位域写值以改变该固有 值。该值需要采用以下描述的频率来进行计算:

全速: 48MHz 低速: 6MHz

主机帧信息保持寄存器 (USBFS_HFINFR)

地址偏移: 0x0408 复位值: 0xBB80 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	п							
							7								
							٤	2							
							I								<u>.</u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							2								
							- NAOME 13.0								
							<u>.</u>	2							

 位/位域
 名称
 描述

 31:16
 FRT[15:0]
 帧剩余时间 该位域以PHY时钟为单位反映了当前帧剩余时间。

 15:0
 FRNUM[15:0]
 帧号 该位域反映了当前帧的帧号,当其增加到0x3FFF后,其值变为0。

主机周期性发送 FIFO/队列状态寄存器 (USBFS_HPTFQSTAT)

地址偏移: 0x0410 复位值: 0x0008 0200

该寄存器反映了主机周期性Tx FIFO和请求队列的当前状态。请求队列包括在主机模式下的IN、OUT或其他请求条目。

该寄存器只能按字(32位)访问

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GD32F403xx 用户手册

					PTXREQS[7:0]									
15 14	13	r 12	11	10	9	PTXFS[15:0]	7	6	5	r 4	3	2	1	0

位/位域 名称 描述 31:24 PTXREQT[7:0] 周期性Tx 请求队列的顶部条目 在周期性发送请求队列中的条目 位30:27: 通道号 位26:25: - 00: IN/OUT 令牌 - 01: 0长度OUT包 - 11: 通道中止请求 位24: 中止标志,指示所选通道的最后一个条目 23:16 PTXREQS[7:0] 周期性发送请求队列空间 周期性发送请求队列剩余空间 0: 请求队列为空 1: 1个条目 2: 2个条目 n: n个条目 (0≤n≤8) 其他: 保留 周期性发送FIFO空间 PTXFS[15:0] 15:0 周期性发送FIFO剩余空间 以32位字计数 0: 周期性发送FIFO为空 1: 1个字 2: 2个字 n: n个字 (0≤n≤PTXFD)) 其他:保留

主机所有通道中断寄存器 (USBFS_HACHINT)

地址偏移: 0x0414 复位值: 0x0000 0000

当触发一个通道中断时, USBFS在该寄存器中置位相应的位, 并且软件可以读取该寄存器以获

7:0

取产生中断的通道。

该寄存器只能按字(32位)访问

			HH / 1140		,	, , , ,									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							f E	R							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											7				
			任旨	呆留							חאכחוויון יט	<u> </u>			
											7.2	3			

描述 位/位域 名称 31:8 保留 必须保持复位值。 HACHINT[7:0] 主机所有通道中断

每一位表示一个通道: 位0代表通道0, 位7表示通道7

主机所有通道中断使能寄存器 (USBFS_HACHINTEN)

地址偏移: 0x0418 复位值: 0x0000 0000

软件可以使用该寄存器使能或禁用一个通道的中断。只有该寄存器中相应通道的中断使能控制 位被置位,USBFS_GINTF寄存器中的通道中断标志位HCIF标志位才可产生。

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保留								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											C				
			货	R 1											
											rv	W			

位/位域 名称 描述

31:8 保留 必须保持复位值。

7:0 CINTEN 通道中断使能

0: 禁用通道n中断1: 使能通道n中断

每一位表示一个通道:位0代表通道0,位7代表通道7

主机端口控制和状态寄存器 (USBFS_HPCS)

地址偏移: 0x0440 复位值: 0x0000 0000

该寄存器控制端口行为,并且也包含一些反映端口状态的标志位。如果本寄存器中的PRST、PEDC和PCD标志位被USBFS置位的话,USBFS_GINTF寄存器中的HPIF标志位会被置位。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						保留							- C	D\$[1.0]	保留
													1	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		PP	רטו[וט]	DI 0774.01	Res	PRST	PSP	PREM	f E	몫 알	PEDC	PE	PCD	PCST
			rw		r		rw	rs	rw			rc w1	rc w1	rc w1	r

位/位域	名称	描述
31:19	保留	必须保持复位值。
18:17	PS	端口速度
		反映连接到该端口的设备的枚举速度。
		01: 全速
		10: 低速
		其他:保留
16:13	保留	必须保持复位值。
12	PP	端口供电
		在端口被使用后,该控制位应该被置位。由于USBFS不具有电源供应能力,它只能
		使用该控制位以获取该端口是否在供电状态。软件应该在设置该控制位之前,保证
		在V _{BUS} 引脚上具有电源供应。
		0: 端口掉电
		1: 端口供电

11:10	PLST	端口线状态 反映USB数据线当前状态 位10: DP线状态 位11: DM线状态
9	保留	必须保持复位值。
8	PRST	端口复位 应用通过设置该控制位以在USB端口上启动一个复位信号。当应用希望停止复位信号时,应用应该清除该控制位。 0:端口不在复位状态 1:端口处于复位状态
7	PSP	端口挂起 应用设置该控制位来将端口进入挂起状态。当该控制位被置位后,端口停止发送 SOF令牌包。该控制位只能够通过以下操作清除。 — 应用置位该寄存器中的PRST控制位 — 置位该寄存器中的PREM控制位 — 检测到一个远程唤醒信号 — 检测到一个设备断开 0:端口不在挂起状态 1:端口处于挂起状态
6	PREM	端口恢复 应用通过置位该控制位以在USB端口上启动一个恢复信号。当应用希望停止恢复信 号时,应用可以清除该控制位。 0: 无恢复驱动 1: 恢复驱动
5:4	保留	必须保持复位值。
3	PEDC	端口使能/禁止更改 当该寄存器中的位2端口使能控制位更改时,USB内核置位该标志位。
2	PE	端口使能 当USB复位信号完成后,USBFS自动置位该位,并且该位不可由软件置位。 该位可通过以下事件清除: — 一个断开状态 — 软件清除该位 0:端口禁止 1:端口使能
1	PCD	端口连接检测 当检测到设备连接时,USBFS置位该标志位。可通过向该位写1清除该标志位。
0	PCST	端口连接状态 0: 设备没有连接到该端口 1: 设备连接到该端口

主机通道 x 控制寄存器 (USBFS_HCHxCTL) (x = 0...7,其中 x 为通道号)

地址偏移: 0x0500 + (通道号 × 0x20)

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CEN	CDIS	ODDFRM				DAR[6:0]				任質	R	ר ר ר	EDTVDE[1:0]	LSD	保留
rs	rs	rw				rw						r	w	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EPDIR		Confoci	EDNI MI3:01							MPL[10:0]					
rw		r	w							rw					

位/位域	名称	描述
31	CEN	通道使能
		由应用设置,并且由USBFS清除
		0: 通道禁止
		1: 通道使能
		软件应该遵循操作指南来禁用或者使能一个通道
30	CDIS	通道禁止
		软件可以置位该控制位,来从处理事务中禁用该通道。软件应该遵循操作指南来禁
		用或者使能一个通道。
29	ODDFRM	奇偶帧控制
		对于周期性传输(中断或同步传输),该位控制将要处理的通道事务为奇数帧还是
		偶数帧。
28:22	DAR	设备地址
		与该通道通信的USB设备地址。
21:20	保留	必须保持复位值。
19:18	EPTYPE	端点类型
10.10	_, , , , _	与该通道通信的端点的传输类型
		00: 控制
		01: 同步
		10: 批量
		11: 中断
17	LSD	低速设备

		与该通道通信的设备是一个低速设备。
16	保留	必须保持复位值。
15	EPDIR	端点方向 与该通道通信的端点的传输方向 0: OUT 1: IN
14:11	EPNUM	端点号 与该通道通信的端点号
10:0	MPL	最大包长 目标端点的最大包长

主机通道 x 中断标志寄存器 (USBFS_HCHxINTF) (x = 0...7, 其中 x = 通道号)

地址偏移: 0x0508 + (通道号 × 0x20)

复位值: 0x0000 0000

该寄存器包含一个通道的状态和事件,当软件获取一个通道中断时,软件需要为相应通道读取 该寄存器以获取产生中断的中断源。该寄存器中的标志位均由硬件置位,并且写1清除。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							() E	米							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						70									
		保留			DTER	REQOVR	BBER	USBER	保留	ACK	NAK	STALL	保留	오	큐
						ヹ		, , , , , , , , , , , , , , , , , , ,							
					rc_w1	rc_w1	rc_w1	rc_w1		rc_w1	rc_w1	rc_w1		rc_w1	rc_w1

位/位域	名称	描述
31:11	保留	必须保持复位值。
10	DTER	数据切换错误 IN事务获取一个数据包,但是该包的PID和USBFS_HCHxLEN寄存器中的DPID[1:0] 控制位不匹配。
9	REQOVR	请求队列上溢 当软件启动新的传输时,请求队列上溢。
8	BBER	串扰错误

		USB总线上发生一个串扰事件。产生串扰事件的典型原因是端点发送了一个数据包,但是数据包长度超过了端点的最大包长。
7	USBER	USB总线错误 当在接收一个数据包的过程中,发生以下事件时,将置位USB总线错误标志位: - 接收包有一个错误的CRC域 - 在USB总线上检测到填充错误 - 当等待一个响应包时,超时
6	保留	必须保持复位值。
5	ACK	ACK 接收或者发送一个ACK响应包
4	NAK	NAK 接收到一个NAK响应包
3	STALL	STALL 接收到一个STALL响应包
2	保留	必须保持复位值。
1	СН	通道中止 通道被当前请求所禁用,在当前请求处理的过程中,并不响应其他请求处理。
0	TF	发送完成 该通道所有的事务成功完成并且无错误发生。 对于IN通道,在USBFS_HCHxLEN寄存器的PCNT位减到0后,该标志位被置位。 对于OUT通道,当软件从RxFIFO中读取和取出一个TF状态条目时,该标志位被置 位。

主机通道 x 中断使能寄存器 (USBFS_HCHxINTEN) (x = 0...7,其中 x = 通道号)

地址偏移: 0x050C + (通道号 × 0x20)

复位值: 0x0000 0000

该寄存器包含USBFS_HCHxINTF寄存器内中断标志位的中断使能位。如果该寄存器的某位被软件置位,USBFS_HCHxINTF寄存器内的相应位能够触发一个通道中断。该寄存器内的位可由软件置位和清除。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							di di	₹							
							伊督	i							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
10		10	12		10	3	5	,	5	9	-7	3	_		J

GD32F403xx 用户手册

TW TW TW TW TW TW TW

位/位域	名称	描述
31:11	保留	必须保持复位值。
10	DTERIE	数据切换错误中断使能 0: 禁用数据切换错误中断 1: 使能数据切换错误中断
9	REQOVRIE	请求队列上溢中断使能 0:禁用请求队列上溢中断 1:使能请求队列上溢中断
8	BBERIE	串扰错误中断使能 0: 禁用串扰错误中断 1: 使能串扰错误中断
7	USBERIE	USB总线错误中断使能 0: 禁用USB总线错误中断 1: 使能USB总线错误中断
6	保留	必须保持复位值。
5	ACKIE	ACK中断使能 0:禁用ACK中断 1:使能ACK中断
4	NAKIE	NAK中断使能 0:禁用NAK中断 1:使能NAK中断
3	STALLIE	STALL中断使能 0: 禁用STALL中断 1: 使能STALL中断
2	保留	必须保持复位值。
1	CHIE	通道中止中断使能 0: 禁用通道中止中断 1: 使能通道中止中断
0	TFIE	传输完成中断使能 0: 禁用传输完成中断 1: 使能传输完成中断

主机通道 x 长度寄存器 (USBFS_HCHxLEN) (x=0...7,其中 x= 通道号)

地址偏移: 0x0510 + (通道号 × 0x20)

复位值: 0x0000 0000

该寄存器只能按字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	<u>.</u>	ספוס(1:01					- CIVI	PCNT(0.0)						TLEN[18:16]	
	r	w					r	w						rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								TI EN[15:0]							

rw

位/位域	名称	描述
31	保留	必须保持复位值。
30:29	DPID[1:0]	数据PID 软件应该在传输起始之前写该段位域。对于OUT传输,该位域包含第一个传输包的数据PID。对于IN传输,该位域包含第一个接收包的数据PID,并且如果数据PID不匹配的话,将会触发DTER标志位。在传输开始之后,USBFS遵循USB协议自动改变和切换该位域。 00: DATA0 10: DATA1 11: SETUP(仅对于控制传输) 01: 保留
28:19	PCNT[9:0]	包计数 在一个传输中希望发送(OUT)或接收(IN)的数据包个数。 软件应该在通道使能之前写该位域。在传输启动之后,该位域在USBFS正确传输每 个数据包后,自动减少。
18:0	TLEN[18:0]	传输长度 一次传输的总数据字节数。 对于OUT传输,该位域为OUT传输中期望发送的所有数据包总数据字节数。软件应该在通道使能之前写该位域。当软件或DMA正确向通道的数据FIFO中写入一个包时,该位域以包中字节大小进行减少。 对于IN传输,每次软件或DMA从RxFIFO中读取一个包后,该位域也以包中字节大小进行减少。

23.7.3. 设备控制和状态寄存器

设备配置寄存器 (USBFS_DCFG)

地址偏移: 0x0800 复位值: 0x0000 0000

在上电、枚举或执行某些控制命令后,该寄存器配置内核为设备模式。在设备初始化后,不可以改变该寄存器值。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							(t)	Ř H							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留		пС Т Т Т :					DAR[6:0]				保留	NZLSOH	[S	
			r.	v	I			rw					rw	r	N

位/位域	名称	描述
31:13	保留	必须保留为复位值。
12:11	EOPFT[1:0]	周期性帧尾时间 该域定义周期性帧时间的帧尾标志触发的时间点 00:80%的帧时间 01:85%的帧时间 10:90%的帧时间 11:95%的帧时间
10:4	DAR[6:0]	设备地址 该位定义USB设备地址,USBFS采用该位匹配接收的设备令牌地址域,在接收到来 自主机的设置地址的命令后,软件设置该域
3	保留	必须保留为复位值。
2	NZLSOH	非零长度OUT状态阶段握手 在控制传输的OUT状态阶段,当USB设备接收到一个非零长度数据包时,该域控制 控制USBFS是接收该包,还是用STALL握手信号拒绝该包。 0: 把该包视为正常包,根据设备OUT端点控制寄存器的NAKS和STALL位,回复握 手相应握手包 1: 发送STALL握手,不保存接收到的OUT数据包

1:0 DS[1:0] 设备速度

该域控制设备连入主机后的设备速度

11: 全速 其他: 保留

设备控制寄存器 (USBFS_DCTL)

地址偏移: 0x0804 复位值: 0x0000 0000

31	I 30	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								任旨	}							
15	5 14	4	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						0	(O	0	"							_
		保留			POIF	CGONAK	SGONAK	CGINAK	SGINAK		保留		GONS	GINS	SD	RWKUP
							^									

位/位域	名称	描述
31:12	保留	必须保留为复位值。
11	POIF	上电初始化完成 软件通过设置该位,通知USBFS寄存器在从掉电模式下唤醒,然后完成初始化。
10	CGONAK	清零全局OUT NAK 软件设置该位从而清零该寄存器的GONS位
9	SGONAK	设置全局OUT NAK 软件设置该位从而实现该寄存器的位GONS置位。 当GONS位为零,设置该位会引起USBFS_GINTF寄存器的GONAK标志触发,软件 应该在再写该位前清除GONAK标志。
8	CGINAK	清零全局IN NAK 软件设置该位从而清零该寄存器的GINS位
7	SGINAK	设置全局IN NAK 软件设置该位从而实现该寄存器的位GINS置位 当GINS位为零,设置该位会引起USBFS_GINTF寄存器的GINAK标志触发,软件应 该在再写该位前清除GINAK标志。
6:4	保留	必须保留为复位值。

		, ,
3	GONS	全局OUT NAK状态 0: USBFS回复OUT事务的握手信号以及是否保存OUT数据包由Rx FIFO状态、端点的NAKS、STALL位确定。 1: USBFS回复OUT事务NAK握手信号,不保存接收的OUT数据包。
2	GINS	全局IN NAK状态 0. USBFS回复IN事务的握手信号由Tx FIFO状态、端点的NAKS、STALL位确定。 1. USBFS通常回复IN事务NAK握手信号
1	SD	软断开 软件可实现USB总线上的软断开,在置1该位后,关掉DP线上的上拉电阻,从而引起主机检测设备的断开。 0:没有软断开生成 1:生成软断开
0	RWKUP	远程唤醒 在挂起状态,软件可通过该位来生成一个远程唤醒信号来通知主机恢复USB总线 0:没有远程唤醒信号生成 1:生成远程唤醒信号

设备状态寄存器 (USBFS_DSTAT)

地址偏移: 0x0808 复位值: 0x0000 0000

该寄存器包含设备模式下的 USBFS 的状态和信息。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 9 8									保留			E0[1:0]	EST-O	SPST
·		·		•	·	·	·		·		·			r	r

位/位域	名称	描述
31:22	保留	必须保留为复位值。
21:8	FNRSOF[13:0]	所接收的SOF帧编号
		USBFS会在接收到一个SOF令牌后更新该域。

7:3	保留	—————————————————————————————————————
2:1	ES[1:0]	枚举速度
		该域指示所枚举的设备速度,在寄存器USBFS_GINTF的ENUMF标志触发后,软件可以读取该域。 01: 全速 其他: 保留
0	SPST	挂起状态 该位指示设备是否处于挂起状态。 0:设备在挂起状态 1:设备不在挂起状态

设备 IN 端点通用中断使能寄存器 (USBFS_DIEPINTEN)

地址偏移: 0x810 复位值: 0x0000 0000

该寄存器包含寄存器 USBFS_DIEPxINTF 中的标志的中断使能位,如果软件置 1 某位,其在寄存器 USBFS_DIEPxINTF 中对应的位可以触发一个寄存器 USBFS_DAEPINT 端点中断。该位可以通过软件置位和清零。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							伊督	 							
							ь	Н							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15	14	13	12		10	9	0		1	5	4	3		'	
				h→.					Ē	tres.	EPT)	CI:	les.	EPI	4
				保留					IEPNEEN	保留	EPTXFUDEN	CITOEN	保留	EPDISEN	TFEN
									_		ΞN			1	
									rw		rw	rw		rw	rw

位/位域	名称	描述
31:7	保留	必须保留为复位值。
6	IEPNEEN	IN端点NAK有效中断使能位 0: 除能中断 1: 使能中断
5	保留	必须保留为复位值
4	EPTXFUDEN	端点Tx FIFO下溢中断使能位 0: 除能中断

			ODOZI 100/04 / 11 / 1 /1/1
		1: 使能中断	
3	CITOEN	控制IN事务超时中断使能位 0: 除能中断 1: 使能中断	
2	保留	必须保留为复位值。	
1	EPDISEN	端点除能中断使能位 0:除能中断 1:使能中断	
0	TFEN	传输完成中断使能位 0:除能中断 1:使能中断	

设备 OUT 端点通用中断使能寄存器 (USBFS_DOEPINTEN)

地址偏移: 0x0814 复位值: 0x0000 0000

该寄存器包含寄存器 USBFS_DOEPxINTF 中的标志的中断使能位,如果软件置 1 某位,其在寄存器 USBFS_DOEPxINTF 中对应的位可以触发一个寄存器 USBFS_DAEPINT 端点中断。该位可以通过软件置位和清零。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							货	r F							
										_					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留					BTBSTPEN	保留	EPRXFOVREN	STPFEN	保留	EPDISEN	TFEN
									rw		rw	rw		rw	rw

位/位域	名称	描述
31:6	保留	必须保留为复位值。
6	BTBSTPEN	连续SETUP包中断使能位(仅适用于控制OUT端点) 0: 除能中断 1: 使能中断
5	保留	必须保留为复位值。

9		
4	EPRXFOVREN	端点Rx FIFO上溢中断使能位 0: 除能中断 1: 使能中断
3	STPFEN	SETUP阶段完成中断使能位(仅适用于控制OUT端点) 0: 除能中断 1: 使能中断
2	保留	必须保留为复位值。
1	EPDISEN	端点除能中断使能位 0: 除能中断 1: 使能中断
0	TFEN	传输完成中断使能位 0: 除能中断 1: 使能中断

设备端点中断寄存器 (USBFS_DAEPINT)

地址偏移: 0x0818 复位值: 0x0000 0000

当一个端点的中断被触发,USBFS 置 1 该寄存器的相应位,软件可通过该寄存器知道在本次中断中的端点号。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
					份留	1						оерітв[3:0]					
													r				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
					份留	i.											

位/位域	名称	描述
31:20	保留	必须保留为复位值。
19:16	OEPITB[3:0]	设备OUT端点中断位 每个位代表一个OUT端点: Bit16代表OUT端点0, Bit19代表OUT端点3
15:4	保留	必须保留为复位值。

3:0 IEPITB[3:0]

设备IN端点中断位

每个位代表一个IN端点: Bit0代表IN端点0, Bit3代表IN端点3

设备端点中断使能寄存器 (USBFS_DAEPINTEN)

地址偏移: 0x081C 复位值: 0x0000 0000

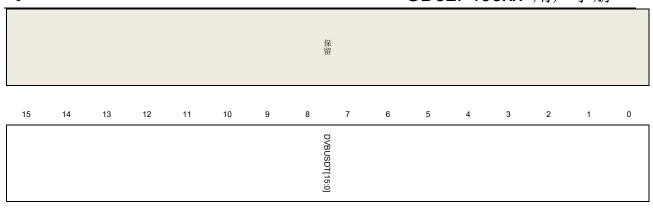
该寄存器可通过软件使能或除能端点的中断,只有当端点在该寄存器中相应位被置 1 才能触发寄存器 USBFS_GINTF 的端点中断标志 OEPIF 或 IEPIF。

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
					佐							OEPIE[3:0]					
													n	w			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
					化	T C Para								100 100 100 100 100 100 100 100 100 100			

rw

位/位域	名称	描述
31:20	保留	必须保留为复位值。
19:16	OEPIE[3:0]	OUT端点中断使能位 0:除能OUT端点n中断 1:使能OUT端点n中断 每个位代表一个OUT端点:Bit16对应OUT端点0,Bit19对应OUT端点3
15:4	保留	必须保留为复位值。
3:0	IEPIE[3:0]	IN端点中断使能位 0:除能IN端点n中断 1:使能IN端点n中断 每个位代表一个IN端点:Bit0对应IN端点0,Bit3对应IN端点3


设备 VBUS 放电时间寄存器 (USBFS_DVBUSDT)

地址偏移: 0x0828 复位值: 0x0000 17D7

该寄存器采用字(32位)访问

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GD32F403xx 用户手册

rw

位/位域	名称	描述
31:16	保留	必须保留为复位值。
15:0	DVBUSDT[15:0]	设备V _{BUS} 放电时间 在SRP协议中,在V _{BUS} 脉冲产生后,有一个放电过程,该域定义了V _{BUS} 的放电时间,真正的放电时间是1024*DVBUSDT[15:0] *T _{USBCLOCK} ,T _{USBCLOCK} 是USB时钟周期时间。

设备 VBUS 脉冲时间寄存器 (USBFS_DVBUSPT)

地址偏移: 0x082C 复位值: 0x0000 05B8

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							信	Ř.							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13	.,,	10	12		10									'	
	伊旨	₹							V B C O						
	B								באפטטד ו[וווט]						

rw

位/位域	名称	描述
31:12	保留	必须保留为复位值。
11:0	DVBUSPT[11:0]	设备V _{BUS} 脉冲时间 该域定义V _{BUS} 的脉冲时间,真正的充电时间是1024*DVBUSPT[15:0] *T _{USBCLOCK} , T _{USBCLOCK} 是USB时钟周期时间

设备 IN 端点 FIFO 空中断使能寄存器 (USBFS_DIEPFEINTEN)

地址偏移: 0x0834 复位值: 0x0000 0000

该寄存器包含 IN 端点 Tx FIFO 空中断的使能位

寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							£	呆							
							-								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													ī	ī	
					伊督								ָרָה - ביים היים מינים	D TYE	
					Ē	a a							2. 11	ក ភ្ល ឆ្ល	

位/位域 名称 描述

31:4 保留 必须保留为复位值。

3:0 IEPTXFEIE[3:0] IN端点Tx FIFO空中断的使能位 该域控制着USBFS_DIEPxINTF寄存器的TXFE位能否生成一个寄存器 USBFS_DAEPINT的端点中断位 Bit0对应IN端点0,Bit5对应IN端点5 0:除能FIFO空中断 1:使能FIFO空中断

设备 IN 端点 0 控制寄存器 (USBFS_DIEP0CTL)

地址偏移: 0x0900 复位值: 0x0000 8000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EPEN	EPD		保留	SNAK	CNAK		. XI MOM[0:0]	TXENI INF3:01		STALL	保留		EPTYPE[1:0]	NAKS	保留
rs	rs			w	w		r	w		rs		r	r	r	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

GD32F403xx 用户手册

EPACT	保留	MPL[1:0]
r		rw

描述 位/位域 名称 31 **EPEN** 端点使能 软件置位、USBFS清零 0: 端点除能 1: 端点使能 软件应该按照操作指南使能或除能端点 30 **EPD** 端点除能 软件可通过置位该位从而除能端点、软件应该按照操作指南使能或除能端点。 29:28 保留 必须保留为复位值。 **SNAK** 置位NAK 27 软件置位该位来设置该寄存器的NAKS位 26 **CNAK** 清零NAK 软件置位该位来清零该寄存器的NAKS位 25:22 TXFNUM[3:0] Tx FIFO编号 定义IN端点0的Tx FIFO编号 21 STALL握手 **STALL** 当接收IN令牌时,软件可以通过置1该位发送STALL握手包,对于相应的OUT端点 0,在接收SETUP令牌后,USBFS清除此位。该位比该寄存器的NAKS位和寄存器 USBFS_DCTL的GINS位优先级要高,如果STALL和NAKS位都被置位,STALL位 生效。 20 保留 必须保留为复位值。 19:18 EPTYPE[1:0] 端点类型 该域固定为'00',控制端点。 **NAKS** NAK状态 17 当该寄存器的STALL位和寄存器USBFS_DCTL的位GINS被清零,该位控制USBFS 的NAK状态。 0:根据端点Tx FIFO的状态,USBFS发送数据或握手包 1: USBFS总为IN令牌发送NAK握手包 该位是只读位,可以通过该寄存器的位CNAK和位SNAK控制该位 16 保留 必须保留为复位值。 15 **EPACT** 端点激活

对于端点0来说,该域固定为'1'

14:2 保留 必须保留为复位值。
1:0 MPL[1:0] 最大包长 域定义了控制数据包的最大包长,如USB 2.0协议所描述,对控制传输而言,有四种包长度:
00:64字节
01:32字节
10:16字节
11:8字节

设备 IN 端点 x 控制寄存器 (USBFS_DIEPxCTL) (x = 1..3, 3 是端点编号)

地址偏移: 0x0900 + (x * 0x20)

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EPEN	EPD	SODDFRM/SD1 PID	SD0PID/ SEVENFRM	SNAK	CNAK		i yi womlo.oJ	TXENI IMF3:01		STALL	保留		EPTYPE(1.0)	NAKS	EOFRM/DPID
rs	rs	w	w	w	w	rw			rw/rs		rw		r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EPACT	保 留				MPL[10:0]										
nu.										DA/					

位/位域	名称	描述
31	EPEN	端点使能
		软件置位,USBFS清零
		0: 端点除能
		1. 端点使能
		软件应该按照操作指南使能或除能端点
30	EPD	端点除能
		软件可通过置位该位从而除能端点、软件应该按照操作指南使能或除能端点。
29	SODDFRM	设置奇数帧(适用于同步IN端点)
		软件通过置1该位置1该寄存器的EOFRM位
	SD1PID	设置DATA1 PID(适用于中断和大容量IN端点)
		软件可通过置1该位置1该寄存器的DPID位
28	SEVENFRM	设置偶数帧(适用于同步IN端点)

digubevice		GD32F403XX 用户于加
		软件通过置1该位清零该寄存器的EOFRM位
	SD0PID	设置DATA1(适用于中断和大容量IN端点) 软件可通过置1该位清零该寄存器的DPID位
27	SNAK	设置NAK 软件置1该位置1该寄存器的NAKS位
26	CNAK	清零NAK 软件置1该位清零该寄存器的NAKS位
25:22	TXFNUM[3:0]	Tx FIFO编号 该位定义了IN端点的Tx FIFO编号
21	STALL	STALL握手 当接收IN令牌时,软件可以通过置1该位发送STALL握手包。该位比该寄存器的 NAKS位和寄存器USBFS_DCTL的GINS位优先级要高,如果STALL和NAKS位都被 置位,STALL位生效。 对于控制IN端点: 当对应的OUT端点接收到SETUP令牌时,只有USBFS可以清零此位,软件不可清 除此位。 对于中断或大容量IN端点: 只有软件可以清零此位。
20	保留	必须保留为复位值。
19:18	EPTYPE[1:0]	端点类型 该域定义端点的传输类型: 00: 控制 01: 同步 10: 大容量 11: 中断
17	NAKS	NAK状态 当该寄存器的STALL位和寄存器USBFS_DCTL的位GINS被清零,该位控制USBFS的NAK状态: 0:根据端点Tx FIFO的状态,USBFS发送数据或握手包 1:USBFS总为IN令牌发送NAK握手包 该位是只读位,可以通过该寄存器的位CNAK和位SNAK控制该位
16	EOFRM	奇偶帧(适用于同步IN端点) 对于同步传输,软件通过使用该位控制USBFS只在奇数帧或偶数帧为IN事务发送数据包,如果当前帧号的奇偶性不匹配该位,USBFS回复一个零长度的包: 0:只在偶数帧发送数据 1:只在奇数帧发送数据
	DPID	端点数据PID(适用于中断或大容量IN端点) 在端点或大容量传输中,有数据PID翻转机制,在传输开始之前,软件通过设定 SD0PID来设置此位,按照USB协议中描述的数据PID翻转机制,USBFS在传输过

程中保持该位。

0:数据包的PID是DATA0

1:数据包的PID是DATA1

15 EPACT 端点激活

该位控制端点是否激活, 当端点没有激活, 忽略任何令牌, 不做任何回复。

10:0 MPL[10:0] 该域定义最大包长

设备 OUT 端点 0 控制寄存器 (USBFS_DOEP0CTL)

地址偏移: 0x0B00 复位值: 0x0000 8000

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EPEN	EPD	1	呆	SNAK	EPTYPE[1:0] SNOOP STALL CNAK					NAKS	保留				
rs	r			w	w					rs	rw		r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EPACT							保留							WI - [1:0]	MD 11.00

名称	描述
EPEN	端点使能
	软件置位,USBFS清零
	0: 端点除能
	1: 端点使能
	软件应该按照操作指南使能或除能端点。
EPD	端点除能
	对于OUT端点0,该位固定为0
保留	必须保留为复位值。
SNAK	设置NAK
	软件置1该位置1该寄存器的NAKS位
CNAK	清零NAK
	软件置1该位清零该寄存器的NAKS位
	EPEN EPD 保留 SNAK

保留	必须保留为复位值。
STALL	STALL握手在OUT事务中,软件可以通过置1该位发送STALL握手包,对于OUT端点0,在接收SETUP令牌后,USBFS清除此位。该位比该寄存器的NAKS位和寄存器USBFS_DCTL的GINS位优先级要高,即如果STALL和NAKS位都被置位,STALL位生效。
SNOOP	调查模式 该位控制OUT端点的调查模式,在调查模式中,USBFS不再检查接收数据包的 CRC值 0:调查模式除能 1:调查模式使能
EPTYPE[1:0]	端点类型 对于控制端点,该位固定为"00"
NAKS	NAK状态 当该寄存器的STALL位和寄存器USBFS_DCTL的位GINS被清零,该位控制USBFS的NAK状态: 0:根据端点Rx FIFO的状态,USBFS发送数据或握手包 1:USBFS为OUT事务发NAK握手包 该位是只读位,通过该寄存器的CNAK和SNAK位控制该位
保留	必须保留为复位值。
EPACT	端点激活 对于端点 0 ,该域固定为 1
保留	必须保留为复位值。
MPL[1:0]	最大包长 该位是只读位,其数值来自于寄存器USBFS_DIEP0CTL的位MPL: 00: 64字节 01: 32字节 10: 16字节 11: 8字节
	STALL SNOOP EPTYPE[1:0] NAKS 保留 EPACT 保留

设备 OUT 端点 x 控制寄存器 (USBFS_DOEPxCTL) (x= 1..3, x 是端点编号)

地址偏移: 0x0B00 + (x * 0x20)

复位值: 0x0000 0000

软件用该寄存器控制 OUT 端点 0 以外的每个逻辑 OUT 端点

该寄存器采用字(32位)访问

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GD32F403xx 用户手册

EPEN	EPD	SODDFRM/SD1 PID	SEVENFRM / SDOPID	SNAK	CNAK		包質	7. K. Z. H		STALL	SNOOP	ר. - -		NAKS	EOFRM/DPID
rs	rs	w	w	w	w					rw/rs	rw	r	w	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EPACT		f E	K H							MPL[10:0]					

rw n

位/位域	名称	描述
31	EPEN	端点使能 软件置位,USBFS清零 0:端点除能 1:端点使能 软件应该按照操作指南使能或除能端点。
30	EPD	端点除能 软件通过置1该位除能端点,软件应该按照操作指南使能或除能端点。
29	SODDFRM	设置奇数帧(适用于同步OUT端点) 该位只针对同步OUT端点有效 软件置1该位来置位该寄存器的EOFRM位
	SD1PID	设置DATA1 PID(适用于中断和大容量OUT端点) 软件置1该位来置位该寄存器的DPID位
28	SEVENFRM	设置偶数帧(适用于同步OUT端点) 软件置1该位来清零该寄存器的EOFRM位
	SD0PID	设置DATA0 PID(适用于中断和大容量OUT端点) 软件置1该位来清零该寄存器的DPID位
27	SNAK	设置NAK 软件置1该位从而置1该寄存器的NAKS位
26	CNAK	清零NAK 软件置1该位从而清零该寄存器的NAKS位
25:22	保留	必须保留为复位值。
21	STALL	STALL握手 在OUT事务中,软件可以通过置1该位发送STALL握手包。该位比该寄存器的NAKS 位和寄存器USBFS_DCTL的GINS位优先级要高,如果STALL和NAKS位都被置 位,STALL位生效。 对于控制OUT端点:

当OUT端点接收SETUP令牌时,只有USBFS可以清零该位,软件不可清零此位。

		对于中断或大容量OUT端点 只有软件可以清零该位
20	SNOOP	调查模式 该位控制OUT端点的调查模式,在调查模式中,USBFS不再检查接收数据包的 CRC值 0:调查模式除能 1:调查模式使能
19:18	EPTYPE[1:0]	端点类型 该域定义端点的传输类型 00: 控制 01: 同步 10: 大容量 11: 中断
17	NAKS	NAK状态 当该寄存器的STALL位和寄存器USBFS_DCTL的位GONS被清零,该位控制 USBFS的NAK状态: 0:根据端点的Rx FIFO的状态,发送握手包 1:USBFS为OUT事务发送NAK握手 该位是只读位,通过该寄存器的CNAK和SNAK位控制该位
16	EOFRM	奇偶帧(适用于同步OUT端点) 对于同步传输,软件通过使用该位控制USBFS只在奇数帧或偶数帧发送数据包给 OUT事务,如果当前帧号的奇偶性不匹配该位,USBFS不保存数据包 0:只在偶数帧发送数据 1:只在奇数帧发送数据
	DPID	端点数据PID(适用于中断或大容量端点) 在端点或大容量传输中,有数据PID翻转机制,在传输开始之前,软件通过设定 SD0PID来设置此位,按照USB协议中描述的数据PID翻转机制,USBFS在传输过 程中保持该位。 0:数据包PID是DATA0 1:数据包PID是DATA1
15	EPACT	端点激活 位控制端点是否激活,当端点没有激活,忽略任何令牌,不做任何回复
14:11	保留	必须保留为复位值。
10:0	MPL[10:0]	该位定义最大包长

设备 IN 端点 x 中断标志寄存器 (USBFS_DIEPxINTF) (x = 0..3, x 是端点编号)

地址偏移: 0x0908 + (x * 0x20)

复位值: 0x0000 0080

该寄存器包含 IN 端点的状态和事件,当获得一个 IN 端点的中断时,应该读取该端点的中断标志寄存器,从而获知中断源。该寄存器的标志位通常硬件置位,除了 TXFE 位,各位写 1 清零。

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							伤 留	i i							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									_		П			_	
			任旨	-				TXFE	IEPNE	保留	EPTXFUD	СІТО	保留	EPDIS	큐
								r	rc_w1		rc_w1	rc_w1		rc_w1	rc_w1

位/位域	名称	描述
31:8	保留	必须保留为复位值。
7	TXFE	发送FIFO空 端点的Tx FIFO达到寄存器USBFS_GAHBCS的位TXFTH定义的空阈值。
6	IEPNE	IN端点NAK有效 寄存器USBFS_DIEPxCTL的位SNAK的设置生效,该位可以通过写1清零或设置 CNAK位
5	保留	必须保留为复位值。
4	EPTXFUD	端点Tx FIFO下溢 如果当IN令牌被接收后,Tx FIFO没有包数据,该标志被触发。
3	CITO	控制IN事务超时中断 在控制IN事务中,如果设备等待的握手包超时,该标志位被触发
2	保留	必须保留为复位值。
1	EPDIS	端点除能 端点除能时,该标志位被触发
0	TF	传输完成 当该端点的所有IN事务完成,该标志位被触发。

设备 OUT 端点 x 中断标志寄存器 (USBFS_DOEPxINTF) (x = 0..3, x 是端点编号)

地址偏移: 0x0B08 + (x * 0x20)

复位值: 0x0000 0000

该寄存器包含 OUT 端点的状态和事件, 当获得一个 OUT 端点的中断时, 应该读取该端点的中

断标志寄存器,从而获知中断源。该寄存器的标志位通常硬件置位,各位写1清零。

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							伤官	k							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留					BTBSTP	保留	EPRXFOVR	STPF	保留	EPDIS	Ħ
				田					STP 	Ħ	OVR	Ħ	Ħ	S	
									rc_w1/rw		rc_w1	rc_w1		rc_w1	rc_w1

位/位域	名称	描述
31:7	保留	必须保留为复位值。
6	BTBSTP	连续SETUP包(适用于控制OUT端点) 当一个控制OUT端点接收超过连续3个SETUP包时,该标志被触发。
5	保留	必须保留为复位值。
4	EPRXFOVR	端点Rx FIFO上溢 当OUT令牌被接收时,如果OUT端点的Rx FIFO没有足够的空间存放数据包,该位 被触发。在这种情况下,USBFS不能接收OUT数据包,发送一个NAK握手包。
3	STPF	SETUP阶段完成(适用于控制OUT端点) 当一个SETUP阶段完成,也就是USBFS在一个setup令牌后接收了一个IN或OUT令牌,该位被置位。
2	保留	必须保留为复位值。
1	EPDIS	端点除能 端点除能时,该标志位被触发
0	TF	传输完成 当该端点的所有 OUT 事务完成,该标志位被触发

设备 IN 端点 0 传输长度寄存器 (USBFS_DIEP0LEN)

地址偏移: 0x0910 复位值: 0x0000 0000 该寄存器采用字(32 位)访问

31

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GD32F403xx 用户手册

					保留						r CN [1:0]			保留	
15	14	13	12	11	10	9	8	7	6	5	n 4	w 3	2	1	0
				保留								TLEN[6:0]			

rw

位/位域	名称	描述
31:21	保留	必须保留为复位值。
20:19	PCNT[1:0]	包数 传输中被发送的数据包数量 在端点使能之前,软件设置该位,在传输开始后,该域在每次数据包成功发送后自 动减少。
18:7	保留	必须保留为复位值。
6:0	TLEN[6:0]	传输长度 一次传输的数据总字节数 该域是IN传输中需要发送的包数据的总字节数,在端点使能之前,软件设置该位,在软件或DMA成功地将包数据写入端点的Tx FIFO中,该域减少与包数据大小相同的数值。

设备 OUT 端点 0 传输长度寄存器 (USBFS_DOEP0LEN)

地址偏移: 0x0B10 复位值: 0x0000 0000

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	2	STPCNT[4:0]					保留					PCNT		保留	
	r	w										rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				保留								TLEN[6:0]			

rw

		<u> </u>
位/位域	名称	描述
31	保留	必须保留为复位值。
30:29	STPCNT[1:0]	SETUP包计数
		该域定义端点可以接受的最大连续SETUP包数量
		在SETUP传输之前,设置该域,每当连续SETUP包接收到时,该域值减1,当该域
		达到0时,寄存器USBFS_DOEP0INTF的BTBSTP标志被触发。
		00: 0个包
		01: 1个包
		10: 2个包
		11: 3个包
28:20	保留	必须保留为复位值。
19	PCNT	包计数
		一次传输中应该接收到包数量。
		在端点使能前,软件设置该位,在传输开始后,每当数据包接收到后,该域数值自 动减少。
18:7	保留	必须保留为复位值。
6:0	TLEN[6:0]	传输长度
		传输中数据总字数。
		该域是OUT传输中需要接收的包数据的总字节数,在端点使能之前,软件设置该
		位,在软件或DMA成功地将包数据读取端点的Rx FIFO中,该域减少与包数据大小
		相同的数值。

设备 IN 端点 x 传输长度寄存器 (USBFS_DIEPxLEN) (x = 1..3, x 是端点编号)

地址偏移: 0x910 + (x * 0x20)

复位值: 0x0000 0000

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	MCF1[1:0]	MODE 11:01					- CW [5.6]	DONTIO-01						TLEN[18:16]	
							r	w						rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								TI III							
								M/							

rw

位/位域 名称 描述

31	保留	必须保留为复位值。
30:29	MCPF[1:0]	每帧多包数目 该域是USB周期性IN端点每帧必须发的包数目。用于计算同步IN端点的数据PID。 01: 1个包 10: 2个包 11: 3个包
28:19	PCNT[9:0]	包数量 传输中被发送的数据包数量 在端点使能之前,软件设置该位,在传输开始后,该域在每次数据包成功发送后自 动减少。
18:0	TLEN[18:0]	传输长度 传输的数据总字节数 该域是IN传输中需要发送的包数据的总字节数,在端点使能之前,软件设置该位, 在软件或DMA成功地将包数据写入端点的Tx FIFO中,该域减少与包数据大小相同 的数值。

设备 OUT 端点 x 传输长度寄存器 (USBFS_DOEPxLEN) (x = 1..3, x 是端点编号)

地址偏移: 0x0B10 + (x * 0x20)

复位值: 0x0000 0000

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
保留	Т[1:0]	RXDPID/STPCN					TON [a.o]	DON'TTO O						TLEN[18:16]	
	r/ı	w					n	W						rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							וביעןוס.טן	TI III III III III III III III III III							

rw

位/位域	名称	描述
31	保留	必须保留为复位值。
30:29	RXDPID[1:0]	接收数据PID(适用于同步OUT端点) 该域保存该端点该数据包所接受的最后一个数据包的PID 00: DATA0 10: DATA1 其他、保留
		00: DATA0

SETUP包数(适用于控制OUT端点)

STPCNT[1:0] 该位定义该端点可以接受连续SETUP最大包数

在SETUP传输之前,设置该域,每当连续SETUP包接收到时,该域值减1,当该域

达到0时,寄存器USBFS_DOEP0INTF的BTBSTP标志被触发。

00:0个包

01: 1个包

10:2个包

11: 3个包

28:19 PCNT[9:0] 包数

传输中应该接收到包数量

在端点使能前,软件设置该位,在传输开始后,每当数据包接收到后,该域数值自

动减少。

18:0 TLEN[18:0] 传输长度

传输中数据总字数

该域是IN传输中需要接收的包数据的总字节数,在端点使能之前,软件设置该位, 在软件或DMA成功地将包数据读取端点的Rx FIFO中,该域减少与包数据大小相同

的数值。

设备 IN 端点 x 发送 FIFO 状态寄存器 (USBFS_DIEPxTFSTAT) (x = 0..3, x 是端点编号)

地址偏移: 0x0918 + (x * 0x20)

复位值: 0x0000 0200

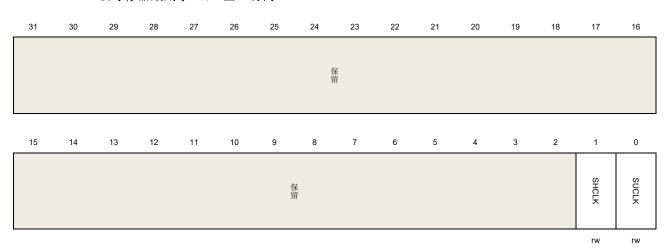
该寄存器包含每个端点的 Tx FIFO 的信息。

该寄存器采用字(32位)访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							任皇	-							
							Ĕ	Ĭ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Ē	<u> </u>							
							in 17 0 10 0 10 0 10 0 10 0 10 0 10 0 10	O TE C							
								7. 7.							

r

位/位域 名称 描述


15:0 IEPTFS[15:0] IN端点的Tx FIFO可用空间 IN端点的Tx FIFO可用空间用32位字为单位 0: FIFO是满的 1: 1字可用 ...

23.7.4. 电源和时钟控制寄存器 (USBFS_PWRCLKCTL)

n: n字可用

地址偏移: 0x0E00 复位值: 0x0000 0000

该寄存器采用字(32位)访问

位/位域	名称	描述
31:2	保留	必须保留为复位值。
1	SHCLK	停止HCLK 停止HCLK,节省电量 0: HCLK未停止 1: HCLK停止
0	SUCLK	停止USB时钟 停止USB时钟,节省电量 0: USB时钟未停止 1: USB时钟停止

24. 版本历史

表 24-1. 版本历史

版本号	描述	日期
1.0	初稿发布	2017年2月20日
1.1	1. 修订 ADC/DAC/DMA/RCU/USART 模块	2017年10月17日
2.0	1. 适用于新的文档规范	2018年12月14日
	1. 修改 CAN_STAT 和 CAN_TSTAT 寄存器中的错设描述	
	2. 修改 PMU 3.3 小节中的模块框图,详情请参考 图 3-1 	j
2.1	中睡眠模式部分通过 WFE 指令进入睡眠模式后唤醒的描述,详情请参考 睡眠模式 3. 修改 WDGT 14.1.4 章节中寄存器属性描述,由 "ro、wo'修改为'r、w',详情请参考 FWDGT 寄存器	2019年10月8日
	4. 修改 I2C 18.4.10 小节 FMPCFG 寄存器的复位值, 由 0x0002 修改为 0x0000,详情请参考 <u>快速+模式</u> 置寄存器 (I2C FMPCFG)	
	1. 修改 CAN 的波特率计算公式,详情请参考 <i>波特率</i>	
	2. 修改 I2C 18.3.11 章节的描述,将'SMBTYPE'修改 为'SMBSEL',详情请参考 SMBus 通讯流程	
2.2	3. 修改 WDGT 14.1.3 小节描述,添加喂狗后立刻进 入深度睡眠或待机模式的注意事项,详情请参考 <u>办</u> 能说明	2020年6月30日
	 4. 修改第 1 章表 1-2,将 BootLoader 区域 block 整合在一起,详情请参考表 1-2. GD32F403xx 系列器化的存储器映射表 5. 修改 ADC 12.4.3 章节相关描述,添加关于 ADC 启 	<u>+</u>
	动之后延时的说明,详情请参考 <u>ADCON</u>	
	1. 修改 CAN_RFIFO 寄存器中 RFD 位描述	
	 修改 PMU 3.3.2 小节的 VDDA 描述,当 VDDA 与 VDD 不同时,VDDA 需高于 VDD 不超过 0.3V,详 情请参考 <u>VDDA 域</u> 	
0.2	3. 修改 USB 23.5.2 小节 SOF Generate 描述,将在每个令牌包中产生的脉冲宽度由 16 HCLK 修改为	0000 /5 40 5 40 5
2.3	12 HCLK,详情请参考 <u>USB 主机功能</u> 4. 修改 TIMER 中 TIMERx_SMCFG(x = 0~4,7,8,11) 寄存器 bit[2:0]的描述,详情请参考 <u>从模式配置寄存</u>	2020年12月16日
	器 (TIMERx_SMCFG) 5. 修改 DBG 11.4.2 小节中 DBG_CTL0 寄存器中描述,调整 TIMER6_HOLD、TIMER5_HOLD、TIMER_7HOLD、TIMER_7HOLD 三个比特位的顺序,详情请参考 <u>格</u>	,

		3 5021 10	070() (1) (1)	/1
	<u>制寄存器 0 (DB</u>	G_CTL0)		
	1. 添加"过滤器部	分的寄存器仅 CAN0 可用"的描		
	述。详情请参考	22.4.17-22.4.22 寄存器部分。		
2.4	2. 修改 SMBALT 位	互域描述。详情请参考 <i>传输状态寄存</i>	第	
2.4	器 0 (I2C STAT	<u>'O)</u>	2021年6月30日	
	3. 修改 ADC 寄存器	B基地址。		
	4. 修改 <u>图 21-21</u> 和	图 21-22		
	1. 修改 <u>表 14-1</u> 中最	身小超时时间与最大超时时间		
	2. 删除 ETM 相关抗			
	3. 修改 8.4.10 中的	第1条备注描述;修改		
2.5	AFIO_PCF0 bit1	5 描述	2021年12月30日	1
	4. 外部晶振从 3-25	M 改到 4-32M		
	5. 修改 I2C_STATO) 和 I2C_STAT1 寄存器中的		
	ADDSEND 位和	MASTER 位的描述		
	1. RCU_DSV 寄存器	器描述修正		
2.6	2. 系列一致性更新		2022年7月14日	
2.0	3. 删除 TRACE_M	ODE 位域	2022 年 7 万 14 日	
	4. 修改系统框图中	将 ADC 修改为 ADCs		
	1. I2C 章节各系列	横向一致性修改		
	2. CTC 章节各系列	横向一致性修改		
2.7	3. 修改 SPI AF rem	nap 描述	2022年12月31日	1
	4. 增加 CAN 中断表	長格,修改寄存器部分格式		
	5. EXTI 横向一致性	主修改		
	1. 3.3.2 小节关于 \	/DDA 与 VDD 压差描述修改		
	2. 19.4.5 小节图 19	9-53. I2S 主机接收禁能流程和图		
		化流程中将 I2SSTDSEL 位域改为		
2.8	I2SSTD[1:0]		2024年3月15日	
	3. 表 8 3. 调试端			
		:描述增加"当通道 0 在输入模式	5	
		Rx_CH0CV 会将此标志清 0。"		
	, , , , ,	TL0/CTL1/OCTL 默认值		
	_	RDATA 寄存器时序补充,当 EOC		
2.9		一个 CK_ADC 再读取 ADC 转换结	2024年7月26日	
	果。			
	3. 修改笔误	l. Nbr 4 . 🖂		
	1. 增加 timer1、ti			
		ner4 的 DMA 请求映射		
		到 General-LO,表 16-1 和下面		
3.0		R1/4 及互联,16.2.5 章节增加	2025年2月5日	
	模块寄存器基均			
		mer4的 ADC 外部触发源		
		mer4 保持控制位		
	6. 增加 timer1、ti	mer4 AF REMAP 控制位		

GD32F403xx 用户手册

7.	时钟树增加 timer1、timer4 外设,APB1RST 和	
	APB1EN 寄存器增加 timer1、timer4 bit 位	
8.	系统架构图和 memory map 增加 timer1、	
	timer4	

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2024 GigaDevice - All rights reserved