GigaDevice Semiconductor Inc. # GD30DR830x 3-Phase Motor Driver **Datasheet** # **Table of Contents** | Ta | able | e of Contents | . 2 | | | | | |----|----------------|--|-----------------|--|--|--|--| | Li | ist d | of Figures | . 4 | | | | | | Li | ist d | of Tables | . 5 | | | | | | 1. | . Features 6 | | | | | | | | 2. | . A | Applications | . 6 | | | | | | 3. | G | General description | . 6 | | | | | | 4. | D | Device overview | . 8 | | | | | | | 4.1. | . Device Comparison Table | 8 | | | | | | | 4.2. | . Block diagram | 8 | | | | | | | 4.3. | . Pinout and pin assignment | 10 | | | | | | | 4.4. | Pin definitions | 11 | | | | | | 5. | F | unctional description | 15 | | | | | | | _ | . Power module | 15 | | | | | | | 5.2. | . Gate driver architecture | 16 | | | | | | | 5.3. 5. | Gate driver control mode | 17
17 | | | | | | | 5.4. | Gate driver slew rate control | 17 | | | | | | | 5.5. | . Dead time | 18 | | | | | | | 5.6. 5. | Device configuration | | | | | | | | 5.7. | . Over temperature protection | 19 | | | | | | | 5.8. | . Buck Controller | 19 | | | | | | 6. | . E | Electrical characteristics | 21 | | | | | | | 6.1. | . Absolute maximum ratings | 21 | | | | | | | 6.2. | . Recommended operation conditions | 22 | | | | | | | 6.3. | . Power supplies and current consumption | 22 | | | | | | | 6.4. | Logic inputs characteristics | 23 | | | | | # GD30DR830x Datasheet | 6.5. | Open drain outputs characteristics | 23 | |--------|------------------------------------|----| | 6.6. | Gate driver characteristics | 23 | | 6.7. | VDD LDO characteristics | 24 | | 6.8. | Buck controller characteristics | 24 | | 6.9. | Protection features | 25 | | 7. Ty | pical application circuit | 26 | | | yout guideline | | | 9. Pa | ckage information | 28 | | 9.1. | QFN32 package outline dimensions | 28 | | 9.2. | QFN24 package outline dimensions | 30 | | 9.3. | Thermal characteristics | 32 | | 10. Or | dering information | 33 | # **List of Figures** | Figure 4-1. Block diagram for GD30DR8306x | 8 | |---------------------------------------------------------|----| | Figure 4-2. Block diagram for GD30DR8304x | 9 | | Figure 4-3. GD30DR8306x QFN32 pinouts | 10 | | Figure 4-4. GD30DR8304x QFN24 pinouts | 10 | | Figure 5-1. Charge pump and VGLS_LDO | 15 | | Figure 5-2. VDD_LDO | 16 | | Figure 5-3. Gate driver architecture | 16 | | Figure 5-4. 6xPWM mode | 17 | | Figure 5-5. Dead time insertion | 18 | | Figure 5-6. Buck controller application circuit | 20 | | Figure 6-1. Buck controller efficiency diagram | 25 | | Figure 7-1. Typical application circuit for GD30DR8306x | 26 | | Figure 8-1. Typical layout guideline | 27 | | Figure 9-1. QFN32 package outline | 28 | | Figure 9-2. QFN32 recommended footprint | 29 | | Figure 9-3. QFN24 package outline | 30 | | Figure 9-4. QFN24 recommended footprint | 31 | | | | # **List of Tables** | Table 4-1. Device conparison infromation for GD30DR830x | 8 | |--------------------------------------------------------------|------------| | Table 4-2. GD30DR8306x pin configuration | 11 | | Table 4-3. GD30DR8304x pin configuration | 13 | | Table 5-1. 6xPWM mode truth table | 17 | | Table 5-2. PWM mode configuration table | 18 | | Table 5-3. Gate drive current configuration table | 19 | | Table 6-1. Absolute maximum ratings | 21 | | Table 6-2. Recommended operation conditions | 22 | | Table 6-3. Power supplies and currents | 22 | | Table 6-4. Logic input characteristics | 2 3 | | Table 6-5. Open drain output characteristics | 23 | | Table 6-6. Gate driver characteristics | 2 3 | | Table 6-7. VDD LDO characteristics | 24 | | Table 6-8. Buck controller characteristics(GD30DR8306x only) | 24 | | Table 6-9. Protection features characteristics | 25 | | Table 9-1. QFN32 dimensions | 28 | | Table 9-2. QFN24 dimensions | 30 | | Table 9-3. Package thermal characteristics ⁽¹⁾ | 32 | | Table 10-1. Part ordering code for GD30DR8306x device | 33 | ### 1. Features - 4.5V to 30V Supply Voltage - Programmable gate drive current, peak 1A source and 1.2A sink current of GD30DR830x - Smart high-side and low-side Slew-Rate Control - PWM input control up to 200kHz - Only supported 6 PWM mode - Inside 5V/2A DC-DC buck controller(GD30DR8306x Only) - 3.3V and 5V digital interface - Integrated 5V LDO - Thermally-Enhanced: GD30DR8306x QFN32(5x5), GD30DR8304x QFN24(4X4) - Protection Features: - Dead time insertion - MOSFET Shoot Through protection - Over temperature protection - Fault diagnostics - VP and VDD Under Voltage Lock-Out(UVLO) ### 2. Applications - 3-Phase BLDC and PMSM Motors - Power Tools - Robotics and RC Toys - Industrial Automation ### 3. General description The versatile programmable features listed below allow GD30DR830x to be used in a broad range of applications, such as 3-phase BLDC motors, electronic bikes, power tools, and etc. The GD30DR830x is a three-phase gate driver IC integrated with an optional DC/DC buck controller(GD30DR8306x only). The IC includes three half-bridge drivers, each is capable of driving two NMOSFETs and supports up to 1A source and 1.2A sink current capability. The drive currents will be adapted automatically to the optimized current according to different power MOSFET used in the application. A proprietary slew rate control is implemented to reduce the EMI of gate drive. The GD30DR830x can operate with a single power supply ranging from 4.5V to 30V. A regulated charge pump supporting 100% duty cycle is integrated in the device to supply the gate drive current and the internal LDOs. The device inserts fixed dead-time and uses automatic handshaking to prevent the high-side and low-side MOSFET from shoot-through when switching. The optional integrated DC/DC buck controller operates with power supply of 4.5V to 30V and the output voltage is 5V. The driver can drive an external NMOSFET up to 2A. The versatile programmable features of the IC allow for it to be used in a broad range of applications, such as 3-phase BLDC motors, electronic bikes, power tools, and etc. The GD30DR8306x is available in thermal enhanced package QFN32(5X5) with buck controller. The GD30DR8304x is available in thermal enhanced package QFN24(4X4) without buck controller. ### 4. Device overview ### 4.1. Device Comparison Table Table 4-1. Device conparison infromation for GD30DR830x | Code | Package | PWM Mode | Gate driver Current | Buck(V) | | | |-------------|------------------------|----------|-------------------------------|---------|-----------------------|----| | GD30DR8306x | 8306x QFN32(5X5) 6 PWM | | 220DD2206v OFN22/EVE\ | | Hardware configurable | 5V | | GD30DR8306X | QFN32(3A3) | O PVVIVI | Default 1.0A source/1.2A sink | 5V | | | | GD30DR8304x | QFN24(4X4) | 6 PWM | Fixed 500mA source/600mA sink | None | | | ### 4.2. Block diagram Figure 4-1. Block diagram for GD30DR8306x Figure 4-2. Block diagram for GD30DR8304x ### 4.3. Pinout and pin assignment Figure 4-3. GD30DR8306x QFN32 pinouts Figure 4-4. GD30DR8304x QFN24 pinouts ## 4.4. Pin definitions The table below shows the pin definition of GD30DR8306x. Table 4-2. GD30DR8306x pin configuration | Pin Name | Pins | Pin Type | Functions Description | | | |----------|------|----------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--| | ENGATE | 1 | I | Enable gate driver | Enables the gate driver, internal pull-down. | | | nFAULT | 2 | OD | Fault indicator | The low level indicates a fault had occurred, external pull-up to MCU power supply is needed ($1k\Omega$ to $10k\Omega$). | | | MODE | 3 | I | _ | _ | | | ISET | 4 | I | Driver current set | Gate driver output current setting, set by an external resistor. | | | DRVHA | 5 | 0 | Gate driver | Gate driver output for bridge A high-side. | | | SRCHA | 6 | I | Source connection | Source connection for bridge A high-side. | | | СОМ | 7 | I/O | Common for 3-driver | Common source connection for 3 lower side drivers, suggested to connect to power ground. | | | DRVLA | 8 | 0 | Gate driver | Gate driver output for bridge A low-side. | | | DRVLB | 9 | 0 | Gate driver | Gate driver output for bridge B low-side. | | | SRCHB | 10 | I | Source connection | Source connection for bridge B high-side. | | | DRVHB | 11 | 0 | Gate driver | Gate driver output for bridge B high-side. | | | DRVHC | 12 | 0 | Gate driver | Gate driver output for bridge C high-side. | | | SRCHC | 13 | I | Source connection | Source connection for bridge C high-side. | | | DRVLC | 14 | 0 | Gate driver | Gate driver output for bridge C low-side. | | | VGLS | 15 | Р | Low-side gate driver power supply | Internal voltage regulator for low-side gate driver, connecting 1µF and 10nF capacitor to GND. | | | VHP | 16 | Р | High-side gate driver power supply | Internal charge pump for high-side gate driver, connecting 1µF capacitor to VP. | | | НСР | 17 | | Charge pump flying | Flying capacitor for charge pump, connecting | | | LCP | 18 | P | capacitor | 47nF capacitor between HCP and LCP. | | | VP | 19 | Р | Power supply voltage | High-side MOSFET drain connection; common for all three half bridges, connecting | | | Pin Name | Pins | Pin Type | Functions Description | | | |----------|---------|----------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|--| | | | | | 4.7uF capacitor to GND. | | | BST | 20 | Р | Input for bootstrap capacitor | An external capacitor is required between the BST and the SW pins to provide bias to the MOSFET gate driver. | | | BDRV | 21 | 0 | Gate drive | Buck circuit, connecting to the gate terminal of the external MOSFET switch. | | | SW | 22 | Р | Switching node | Buck circuit, connecting to the source terminal of the external MOSFET switch. | | | cs | 23 | ı | Current sense | Buck circuit, current sense voltage input. | | | FB | 24 | I | Regulated output | Buck circuit, connecting directly to the regulated output voltage. | | | VDD | 25 | Р | Voltage Regulator | 5V internal supply regulator, connecting 6.3V, 1μF ceramic capacitor to GND. | | | nSD | 26 | I | Buck controller enable | Internal pull-down, pull above 2.2V to enable. | | | PWMHA | 27 | I | PWM input | Logic input signal for bridge A high-side. | | | PWMLA | 28 | I | PWM input | Logic input signal for bridge A low-side. | | | PWMHB | 29 | I | PWM input | Logic input signal for bridge B high-side. | | | PWMLB | 30 | I | PWM input | Logic input signal for bridge B low-side. | | | PWMHC | 31 | I | PWM input | Logic input signal for bridge C high-side. | | | PWMLC | 32 | I | PWM input | Logic input signal for low-side bridge C. | | | GND | Thermal | Р | Device ground Must be connected to ground. | | | #### Notes: Type: I = input, O = output, P = power, OD = open drain. The table below shows the pin definition of GD30DR8304x. Table 4-3. GD30DR8304x pin configuration | Pin Name | Pins | Pin Type | Functions Description | | | |----------|------|----------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--| | PWMLC | 1 | I | PWM input | Logic input signal for low-side bridge C. | | | ENGATE | 2 | I | Enable gate driver | Enables the gate driver, internal pull-down. | | | nFAULT | 3 | OD | Fault indicator | The low level indicates a fault had occurred, external pull-up to MCU power supply is needed ($1k\Omega$ to $10k\Omega$). | | | DRVHA | 4 | 0 | Gate driver | Gate driver output for bridge A high-side. | | | SRCHA | 5 | I | Source connection | Source connection for bridge A high-side. | | | DRVLA | 6 | 0 | Gate driver | Gate driver output for bridge A low-side. | | | DRVLB | 7 | 0 | Gate driver | Gate driver output for bridge B low-side. | | | SRCHB | 8 | ı | Source connection | Source connection for bridge B high-side. | | | DRVHB | 9 | 0 | Gate driver | Gate driver output for bridge B high-side. | | | DRVHC | 10 | 0 | Gate driver | Gate driver output for bridge C high-side. | | | SRCHC | 11 | ı | Source connection | Source connection for bridge C high-side. | | | DRVLC | 12 | 0 | Gate driver | Gate driver output for bridge C low-side. | | | VGLS | 13 | Р | Low-side gate driver power supply | Internal voltage regulator for low-side gate driver, connecting 1µF and 10nF capacitor to GND. | | | VHP | 14 | Р | High-side gate driver power supply | Internal charge pump for high-side gate driver, connecting 1µF capacitor to VP. | | | HCP | 15 | - | Charge pump flying | Flying capacitor for charge pump, connecting | | | LCP | 16 | Р | capacitor | 47nF capacitor between HCP and LCP. | | | VP | 17 | Р | Power supply voltage | High-side MOSFET drain connection; common for all three half bridges, connecting 4.7uF capacitor to GND. | | | VDD | 18 | Р | Voltage Regulator | 5V internal supply regulator, connecting 6.3V, 1μF ceramic capacitor to GND. | | | NC | 19 | _ | _ | This pin is not connected to silicon. | | | PWMHA | 20 | ı | PWM input | Logic input signal for bridge A high-side. | | | PWMLA | 21 | ı | PWM input | Logic input signal for bridge A low-side. | | # GD30DR830x Datasheet | Pin Name | Pins | Pin Type | Functions Description | | |----------|---------|----------|-----------------------|--------------------------------------------| | PWMHB | 22 | I | PWM input | Logic input signal for bridge B high-side. | | PWMLB | 23 | I | PWM input | Logic input signal for bridge B low-side. | | PWMHC | 24 | ı | PWM input | Logic input signal for bridge C high-side. | | GND | Thermal | Р | Device ground | Must be connected to ground. | #### Notes: Type: I = input, O = output, P = power, OD = open drain. ### 5. Functional description #### 5.1. Power module #### 5.1.1. Charge pump and VGLS_LDO A charge pump supplying voltage for the high-side gate driver is integrated to generate the appropriate gate to source bias voltage for the external high-side NMOSFET across a wide input supply voltage range. The charge pump generates $V_{VHP} = 2 \times V_{VP} - 1.5 V$ in doubled mode when V_{VP} is less than 11.5V and regulates the V_{VHP} supply to $V_{VP} + 10 V$ when V_{VP} is larger than 11.5V, respectively. The charge pump requires a 1µF capacitor between the VP and VHP pins and a 47nF capacitor between the HCP and LCP pins to act as the storage capacitor and flying capacitor, respectively. An undervoltage monitor for charge pump is integrated to detect the undervoltage condition. A 11V linear regulator, which operates from the VP voltage supply input, supplying voltage for the low-side gate driver is integrated to generate the correct gate to source voltage for the external low-side NMOSFET. The linear regulator supporting an output current of 40 mA requires a $1\mu F$ capacitor between the VGLS and GND pins to act as the regulated capacitor. Figure 5-1. Charge pump and VGLS LDO ### 5.1.2. VDD_LDO A linear regulator outputting 5V, is integrated to supply part of the chip and external circuits or MCU. The output driving current is 40mA, when output current exceeds 40mA, the output value will drop significantly. When the ENGATE pin is driven to low, the chip works in sleep mode to save power, which supplies 10mA current. Figure 5-2. VDD_LDO ### 5.2. Gate driver architecture The gate driver uses a push-pull topology in both the high-side and low-side providing a strong pull up or down to the external NMOSFET gates. And it uses a programmable current control scheme through 4 level input pin to adjust the peak gate drive current, so the VDS slew rate of the external power MOSFETs can be smart-adaptable. Both sides of the gate driver incorporate Zener clamp diodes to protect the external NMOSFETs gates from overvoltage scenarios. Figure 5-3. Gate driver architecture #### 5.3. Gate driver control mode The GD30DR830x is a gate driver IC designed for three-phase motor driver applications, operating in a wide range of 4.5V to 30V. This device integrates three half-bridge drivers, which can operate in only one methods: 6xPWM mode. #### 5.3.1. 6xPWM Mode The 6xPWM mode relates 6 inputs (PWMHx and PWMLx) to the 6 gate drives (DRVHx and DRVLx), and each half-bridge supports three output states: low, high, or high-impedance (Hi-Z). The corresponding PWMHx and PWMLx signals control the output state as listed in <u>Table 5-1.</u> 6xPWM mode truth table. Table 5-1. 6xPWM mode truth table | PWMLx | PWMHx | DRVLx | DRVHx | SRCHx | |-------|-------|-------|-------|-------| | 0 | 0 | L | L | Hi-Z | | 0 | 1 | L | Н | Н | | 1 | 0 | Н | L | L | | 1 | 1 | L | L | Hi-Z | Figure 5-4. 6xPWM mode #### 5.4. Gate driver slew rate control The high-side and low-side peak gate drive currents are programmable through the external resistors connected to the level pin (ISET), so the VDS slew rate can be smart-adaptable to different external power MOSFETs. A proprietary slew rate is implemented to the MOSFETs to improve the system EMI. #### 5.5. Dead time An internal handshaking scheme is used to prevent shoot-through and minimize the dead time when MOSFETs state in each half-bridge varies. The dead time insertion is available in 6xPWM mode. The applying dead time can be expressed as below: dead time = 200ns Figure 5-5. Dead time insertion ### 5.6. Device configuration The GD30DR8306x device can use external resistor connected to configuring pins to set the device configuration. #### 5.6.1. Hardware interface The Hardware interface is available in GD30DR8306x device. That uses external resistor connected to designated pins to set the device configuration, such as PWM MODE and the gate driver current. The MODE pin configures the PWM control mode. Table 5-2. PWM mode configuration table | External interface | Mode selection | |--------------------|----------------| | Hi-Z | 6xPWM mode | The ISET pin configures the gate driver source/sink current. Table 5-3. Gate drive current configuration table | External interface | Sink | Source | |--------------------|-------|--------| | Tied to GND | 75mA | 50mA | | 47KΩ±5% to GND | 300mA | 250mA | | Hi-Z | 600mA | 500mA | | Tied to VDD | 1.2A | 1A | ### 5.7. Over temperature protection If the die temperature exceeds the trip point of the thermal limit (Totsd), the nFAULT pin is driven to low, which indicates a thermal event occurred until a clear fault command is issued through an effective falling edge on ENGATE pin (t_{RST}). #### 5.8. Buck Controller A DC/DC buck controller is integrated in GD30DR8306x, the controller drives an external high side N-channel MOSFET for 2A output current, the output is regulated to 5V. The controller requires an external schottky diode to conduct current when the high side MOSFET is off. The controller method is based upon peak current mode control and the switching frequency is 500kHz. A small ceramic capacitor Cboot is required between BST and SW pin to provide the gate drive voltage for the high side MOSFET. The Cboot capacitor is refreshed when the high side MOSFET is off and the low side diode conducts and the BST to SW voltage is charged to approximately 4.5V. When the voltage from BST to SW drops below 2.2V, the high side MOSFET is turned off using an UVLO circuit which allows the low side diode to conduct and refresh the charge on the Cboot capacitor. An internal circuit will also turn off the high side MOSFET and pull SW voltage to ground every four switching cycles for approximately 180ns to recharge the Cboot capacitor in maximum duty cycle applications or when the load is light. The controller requires an external $50m\Omega$ resistor between CS and FB pin for current sensing. To ensure the control loop stability, an output capacitor in the range of 20uF-100uF is recommended and the ESR should be less than $150~m\Omega$. Figure 5-6. Buck controller application circuit shows a typical application circuit. Note: Only GD30DR8306x with buck controller. Figure 5-6. Buck controller application circuit ### 6. Electrical characteristics ## 6.1. Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 6-1. Absolute maximum ratings | Symbol | Parameter | Min | Max | Unit | |-------------------|----------------------------------------------------------------|---------|------------------------|----------| | | Gate driver | | | | | V_{VP} | Power supply pin voltage (VP) | -0.3 | 30 | V | | V_{VHP} | Charge pump pin voltage (HCP, VHP) | -0.3 | V _{VP} + 12 | V | | V_{LCP} | Charge pump negative-switching pin voltage (LCP) | -0.3 | V _{VP} | V | | V_{VDD} | Internal logic regulator pin voltage (VDD) | -0.3 | 5.5 | V | | Vı | Digital pin voltage (ENGATE, PWMHx, PWMLx, nFAULT, MODE, ISET) | -0.3 | 5.5 | V | | V_{DRVH} | Continuous high-side gate drive pin voltage (DRVHx) | -2 | V _{VHP} + 0.5 | V | | V_{DRVH} | Transient 200-ns high-side gate drive pin voltage (DRVHx) | -3 | V _{VHP} + 0.5 | ٧ | | V_{DRVH} | High-side gate drive pin voltage with respect to SRCHx (DRVHx) | -0.3 | 13.5 | V | | V _{SRCH} | Continuous high-side source sense pin voltage (SRCHx) | -1 | V _{VP} + 5 | V | | V_{DRVL} | Continuous low-side gate drive pin voltage (DRVLx) | 0.5 | 13.5 | V | | I _{SRC} | Gate drive pin source current (DRVHx, DRVLx) | Interna | lly limited | Α | | I_{SNK} | Gate drive pin sink current (DRVHx, DRVLx) | Interna | lly limited | Α | | V _{COM} | Continuous low-side source sense pin voltage (COM) | -0.6 | 1 | V | | | Buck controller(GD30DR8306x only) | | | | | V_{BDRV} | Power supply pin voltage (BDRV) | -0.3 | 30 | V | | V_{nSD} | Shutdown control pin voltage (nSD) | -0.3 | V_{VP} | V | | V_{FB} | Voltage feedback pin voltage (FB) | -0.3 | 7 | V | | V_{BST} | Bootstrap pin voltage with respect to SW (BST) | -0.3 | 7 | V | | V_{SW} | Switching node pin voltage (SW) | -0.3 | V _{VP} | V | | V _{CS} | Current Sense (CS) | -0.3 | 7 | ٧ | | | Thermal characteristics | | | | | TJ | Operating junction temperature | -40 | 125 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | # 6.2. Recommended operation conditions Table 6-2. Recommended operation conditions | Symbol | Parameter | Min | Max | Unit | |-----------------------|----------------------------------------------------|-----|-----|------| | | Gate driver and current sense amplifier | | | | | V_{VP} | Power supply voltage (VP) | 4.5 | 30 | V | | Vı | Input voltage (ENGATE, PWMHx, PWMLx, nFAULT, MODE, | 0 | 5.5 | V | | VI | ISET) | 0 | 0.0 | • | | f_{PWM} | Applied PWM signal (PWMHx, PWMLx) | 0 | 200 | kHz | | $I_{\text{GATE_HS}}$ | High-side average gate drive current (DRVHx) | 0 | 25 | mA | | $I_{\text{GATE_LS}}$ | Low-side average gate drive current (DRVLx) | 0 | 25 | mA | | I_{DVDD} | External load current (VDD) | 0 | 40 | mA | | V_{VDD} | Reference voltage input (VDD) | 3 | 5.5 | V | | V_{OD} | Open drain pull-up voltage (nFAULT) | 0 | 5.5 | V | | I _{OD} | Open drain output current (nFAULT) | 0 | 5 | mA | | | Buck controller(GD30DR8306x only) | | | | | V_{BDRV} | Drive voltage (BDRV) | 4.5 | 30 | V | | V_{nSD} | Shutdown control input voltage (nSD) | 0 | 30 | V | | | Thermal characteristics | | | | | TA | Operating ambient temperature | -40 | 105 | °C | ## 6.3. Power supplies and current consumption Table 6-3. Power supplies and currents | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------|-----------------------------|----------------------------------------------------------------|------|------|------|------| | I _{VP} | VP operating supply current | V _{VP} = 24 V, EN = 3.3 V, | 10.5 | | 14 | mA | | VF | operating supply surreint | PWMHx/PWMLx = 0 V | | | | | | I _{VPQ} | VP sleep mode supply | ENGATE = nSD = 0 V, V _{VP} = 30 V | 108 | 144 | 200 | | | IVPQ | current | ENGATE = 113D = 0 V, VVP = 30 V | 100 | 144 | 200 | μΑ | | t _{RST} | Reset pulse time | ENGATE = 0 V period to reset faults | 8 | | 40 | μs | | + | Turn on time | V _{VP} > V _{UVLO} , | 1 | | | m. | | t _{WAKE} | Turn on time | ENGATE = 3.3 V to outputs ready | ı | | _ | ms | | t _{SLEEP} | Turn off time | ENGATE = 0 V to device sleep mode | 1 | _ | _ | ms | | V_{VDD} | VDD regulator voltage | $I_{VDD} = 0$ to 40 mA | | 5 | | V | | | | $V_{VP} = 12 \text{ V}, I_{VHP} = 0 \text{ to } 25 \text{ mA}$ | 8.4 | 11 | 12.5 | | | W | VHP operating voltage with | V _{VP} = 8 V, I _{VHP} = 0 to 20 mA | 6.3 | 9 | 10 | v | | V_{VHP} | respect to VP | V _{VP} = 6 V, I _{VHP} = 0 to 15 mA | 4 | 5 | 6 | ٧ | | | | V _{VP} = 4.5 V, I _{VHP} = 0 to 10 mA | 4 | 5 | 6 | | | V | Low-side gate drive voltage | V _P = 16 V | 10 E | 11.2 | 11 E | V | | V _{VGLS} | with respect to GND | VP - 10 V | 10.5 | 11.2 | 11.5 | V | ## 6.4. Logic inputs characteristics Logic input pins include ENGATE, PWMHx, PWMLx. Table 6-4. Logic input characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|--------------------------|------------------------|------|-----|-----|------| | V _{IL} | Input logic low voltage | | 0 | _ | 0.8 | V | | V _{IH} | Input logic high voltage | _ | 1.5 | _ | 5.5 | V | | V _{HYS} | Input logic hysteresis | _ | 100 | _ | _ | mV | | I _{IL} | Input logic low current | V _{VIN} = 0 V | -5.5 | _ | 5.5 | μΑ | | I _{IH} | Input logic high current | $V_{VIN} = 5 V$ | _ | 50 | 100 | μΑ | | R _{PD} | Pull-down resistance | To GND | 100 | _ | _ | kΩ | ## 6.5. Open drain outputs characteristics Open drain output pins include nFAULT. Table 6-5. Open drain output characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------|-------------------------------|-----------------------|------|------|-----|------| | V _{OL} | Output logic low voltage | I _O = 5 mA | | _ | 0.1 | V | | I _{oz} | Output high impedance leakage | V _O = 5 V | -5.5 | 0.01 | 5.5 | μA | ### 6.6. Gate driver characteristics Gate driver pins include DRVHx, DRVLx. Table 6-6. Gate driver characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|---------------------------------|-------------------------------|-----|------|-----|------| | t _{DTF} | Gate drive dead time
(Fixed) | _ | | 200 | | ns | | | | Tied to GND | _ | 50 | _ | | | | Dook source gets current | 47KΩ±5% to GND | 1 | 250 | | mA | | I _{SRC} | Peak source gate current | Hi-Z | _ | 500 | | IIIA | | | | Tied to VDD | | 1000 | | | | | | Tied to GND | | 75 | | | | | Dook sink gots ourrent | 47KΩ±5% to GND | 1 | 300 | l | mA | | I _{SNK} | Peak sink gate current | Hi-Z | _ | 600 | | IIIA | | | | Tied to VDD | | 1200 | | | | R _{OFF} | Gate hold off resistor | DRVHx to SHx and DRVLx to GND | _ | 150 | | kΩ | ### 6.7. VDD LDO characteristics **Table 6-7. VDD LDO characteristics** | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------------|--------------------------|------------------------------|-----|-----|-----|------| | V _{VDD} | LDO output voltage and | | 4.8 | 5.1 | 5.2 | ٧ | | VVDD | Internal logic voltage | | 4.0 | 5.1 | 5.2 | V | | V_{UVLO} | VP undervoltage lockout | VP falling, UVLO | 4.2 | 4.3 | 4.5 | ٧ | | V | VP undervoltage | Dising to folling throughold | | 200 | | mV | | V _{UVLO_HYS} | hysteresis | Rising to falling threshold | _ | 200 | | IIIV | | + | VP undervoltage deglitch | VD folling LIVI O | | 10 | | -10 | | t _{UVLO_DEG} | time | VP falling, UVLO | | 10 | | μs | ### 6.8. Buck controller characteristics Table 6-8. Buck controller characteristics(GD30DR8306x only) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------|--|-------------------------|-----|------------|-----|------| | \/ | Buck Controller output | | | <i>-</i> 0 | | V | | V _{OUT} | voltage | _ | | 5.0 | _ | V | | ΙQ | Shutdown supply current | $V_{nSD} = 0 V$ | _ | 6 | 10 | μΑ | | V_{nSD_H} | Rising nSD threshold | _ | _ | 2.2 | _ | V | | V_{nSD_L} | Falling nSD threshold | _ | _ | 0.8 | _ | V | | R _{PD} | nSD pull-down resistor | _ | _ | 9 | _ | МΩ | | Tss | Soft start time | _ | _ | 1 | _ | ms | | T _{on_min} | Minimum on time | _ | _ | 35 | _ | ns | | Toff | Forced off time | _ | _ | 180 | _ | ns | | T _R | BDRV rise time(10%~90%) | C _L = 1000pF | _ | 25 | _ | ns | | T _F | BDRV fall time(90%~10%) | C _L = 1000pF | _ | 20 | _ | ns | | I _{OH} | Peak BDRV source current | _ | _ | 300 | _ | mA | | lol | Peak BDRV sink current | _ | _ | 450 | _ | mA | | Fsw | Switching frequency | _ | 450 | 500 | 550 | kHz | | I _{LIMIT} | Peak current limit | V _{VP} = 24 V | _ | 4.2 | _ | Α | | W | V _{OUT} UVP threshold rise edge | | _ | 3.24 | _ | V | | V_{UVP} | V _{OUT} UVP threshold fall edge | _ | _ | 3.0 | _ | V | | Vovp | Vout OVP threshold | - | _ | 5.5 | _ | V | | V _{UVLO} | BST UVLO voltage | BST to SW | _ | 2.2 | _ | V | | D _{MAX} | Maximum duty cycle | _ | _ | 97% | _ | _ | Figure 6-1. Buck controller efficiency diagram ### 6.9. Protection features Protection features include over current protection, under voltage lockout and thermal shutdown. **Table 6-9. Protection features characteristics** | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------------|--------------------------|-------------------------------|-----|-----|-----|------| | V | VD underveltege leekeut | VP rising, UVLO | 4.2 | 4.3 | 4.4 | V | | V_{UVLO} | VP undervoltage lockout | VP falling, UVLO | 4.0 | 4.1 | 4.2 | V | | V | VP undervoltage | Rising to falling threshold | | 200 | | mV | | $V_{\text{UVLO_HYS}}$ | hysteresis | Kising to failing threshold | _ | 200 | | IIIV | | t.,,,,,,,,,, | VP undervoltage deglitch | VP falling, UVLO | | 100 | | 116 | | t _{UVLO_DEG} | time | VF failing, UVLO | | 100 | | μs | | VHP _{UV} | Charge pump | VHP falling, relative to VP | | 2.8 | | V | | VIII UV | undervoltage lockout | VIII lailing, relative to VI | | 2.0 | | V | | VLP_{UV} | Charge pump | VLP falling, relative to GND | | 2.8 | | V | | V =1 UV | undervoltage lockout | VEI Tailing, relative to GIVD | | 2.0 | | V | | T_{OTSD} | Thermal shutdown | Die temperature, Tյ | 150 | 170 | 185 | °C | | OTSD | temperature | Die temperature, 13 | 130 | 170 | 100 |) | | T_{HYS} | Thermal hysteresis | Die temperature, TJ | _ | 20 | | °C | # 7. Typical application circuit Figure 7-1. Typical application circuit for GD30DR8306x ## 8. Layout guideline Figure 8-1. Typical layout guideline #### Notes: - The VDD 1uF bypass capacitors should connect directly the VSS to ensure loop stability. - 2) The VP 4.7uF bypass capacitor should be placed close to the supply pin with a direct path back to the GND pad. - 3) The VP and VHP 1uF bypass capacitors should connect to the charge pump pins. - 4) The VGLS 1uF and 10nF capacitor should connect directly the GND net to ensure loop stability. - 5) The HCP and LCP 47nF flying capacitor should be placed directly next to the charge pump pins. - 6) All capacitors should be as close to the chip pin as possible. # 9. Package information # 9.1. QFN32 package outline dimensions Figure 9-1. QFN32 package outline Table 9-1. QFN32 dimensions | Symbol | Min | Тур | Max | |--------|------|------|------| | А | 0.70 | 0.75 | 0.80 | | A1 | 0 | 0.02 | 0.05 | | b | 0.18 | 0.25 | 0.30 | | С | 0.18 | 0.20 | 0.25 | | D | 4.90 | 5.00 | 5.10 | | D2 | 3.40 | 3.50 | 3.60 | | E | 4.90 | 5.00 | 5.10 | | E2 | 3.40 | 3.50 | 3.60 | | е | _ | 0.50 | | | h | 0.30 | 0.35 | 0.40 | | L | 0.35 | 0.40 | 0.45 | | Ne | | 3.50 | _ | (original dimensions are in millimeters) Figure 9-2. QFN32 recommended footprint (All dimensions are in millimeters) # 9.2. QFN24 package outline dimensions Figure 9-3. QFN24 package outline Table 9-2. QFN24 dimensions | Symbol | Min | Тур | Max | |--------|------|------|------| | A | 0.70 | 0.75 | 0.80 | | A1 | _ | 0.02 | 0.05 | | b | 0.18 | 0.25 | 0.30 | | С | 0.18 | 0.20 | 0.25 | | D | 3.90 | 4.00 | 4.10 | | D2 | 2.40 | 2.50 | 2.60 | | E | 3.90 | 4.00 | 4.10 | | E2 | 2.40 | 2.50 | 2.60 | | е | _ | 0.50 | _ | | h | 0.30 | 0.35 | 0.40 | | L | 0.35 | 0.40 | 0.45 | | Nd | _ | 2.50 | _ | | Ne | _ | 2.50 | _ | (Original dimensions are in millimeters) Figure 9-4. QFN24 recommended footprint (All dimensions are in millimeters) #### 9.3. Thermal characteristics Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter "O". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface. Θ_{JA}: Thermal resistance, junction-to-ambient. Θ_{JB}: Thermal resistance, junction-to-board. Θ_{JC}: Thermal resistance, junction-to-case. Ψ_{JB}: Thermal characterization parameter, junction-to-board. Ψ_{JT}: Thermal characterization parameter, junction-to-top center. $\Theta_{JA} = (T_J - T_A)/P_D$ $\Theta_{JB} = (T_J - T_B)/P_D$ $\Theta_{JC} = (T_J - T_C)/P_D$ Where, T_J = Junction temperature. T_A = Ambient temperature T_B = Board temperature T_C = Case temperature which is monitoring on package surface P_D = Total power dissipation Θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower Θ_{JA} can be considerate as better overall thermal performance. Θ_{JA} is generally used to estimate junction temperature. Θ_{JB} is used to measure the heat flow resistance between the chip surface and the PCB board. Θ_{JC} represents the thermal resistance between the chip surface and the package top case. Θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package). Table 9-3. Package thermal characteristics⁽¹⁾ | Symbol | Condition | Package | Value | Unit | |-------------|--|----------------|---------------|------| | ΘЈА | Natural convection, 2S2P PCB | QFN32 | 38.5 | °C/W | | ΘЈВ | Cold plate, 2S2P PCB | QFN32 | 10.04 | °C/W | | Θις | Cold plate, 2S2P PCB | QFN32 | 14.67 | °C/W | | Ψ_{JB} | Natural convection, 2S2P PCB | QFN32 | 10.78 | °C/W | | Ψ_{JT} | Natural convection, 2S2P PCB | QFN32 | 0.46 | °C/W | | Symbol | O a mallitha m | | V/-1 | | | Syllibol | Condition | Package | Value | Unit | | ОЈА | Natural convection, 2S2P PCB | QFN24 | 47.51 | °C/W | | | | | 1 01101 | | | ΘЈА | Natural convection, 2S2P PCB | QFN24 | 47.51 | °C/W | | Оја
Ојв | Natural convection, 2S2P PCB Cold plate, 2S2P PCB | QFN24
QFN24 | 47.51
14.9 | °C/W | ⁽¹⁾ Thermal characteristics are based on simulation, and meet JEDEC specification. # 10. Ordering information Table 10-1. Part ordering code for GD30DR8306x device | Ordering Code | Package | Package Type | Packing Type | MOQ | Temperature
Operating
Range | |----------------|------------|--------------|--------------|------|-----------------------------------| | GD30DR8306KU | QFN32(5X5) | Green | Tray | 2940 | Industrial
-40°C to +105°C | | GD30DR8304EUTR | QFN24(4X4) | Green | Tape&Reel | 3000 | Industrial
-40°C to +105°C | ### **Important Notice** This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company according to the laws of the People's Republic of China and other applicable laws. The Company reserves all rights under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only. The Company makes no representations or warranties of any kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor does the Company assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the sole responsibility of the user of this document to determine whether the Product is suitable and fit for its applications and products planned, and properly design, program, and test the functionality and safety of its applications and products planned using the Product. Unless otherwise expressly specified in the datasheet of the Product, the Product is designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities, atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments, pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems (including life support equipment and surgical implants); (iii) automotive applications or environments, including but not limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS, Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a selfcontained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses"). Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product. Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Product. Information in this document is provided solely in connection with the Product. The Company reserves the right to make changes, corrections, modifications or improvements to this document and the Product described herein at any time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.